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Motivations

What is Quantum Gravity?
Within quantum field theory, we would like to write and solve:
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Motivations

What is Quantum Gravity?

Within quantum field theory, we would like to write and solve:

z-= / D Db exp(— S[gyu, @]
M

guv: metric structure on M; ®: matter content.

What are D, S[], Z7
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One approach: Holography

Postulate (['t Hooft 1993, Susskind 1995]):

Quantum Gravity (D + 1 dimensions)

= Quantum Theory (D dimensions)
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One approach: Holography

Postulate (['t Hooft 1993, Susskind 1995]):

Quantum Gravity (D + 1 dimensions)

= Quantum Theory (D dimensions)

Hints for the emergence of gravity:
e Black hole entropy [Bekenstein 1972]:

C3

SBH = m Ahorizon

e Laws of black hole thermodynamics [Bardeen, Bekenstein, Carter, Hawking 1973]
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A simple model of holography

Bulk: Near-horizon limit of (near-extremal) black holes
— Jackiw-Teitelboim theory (D = 2):
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A simple model of holography

Bulk: Near-horizon limit of (near-extremal) black holes
— Jackiw-Teitelboim theory (D = 2):

1

_ 2 oo
Z = /DgWDgZ)exp <167rGN /d x\/8H(R+2)+ 87 Gn %dsk) .
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Source: math.slu.edu
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A simple model of holography

Bulk: Near-horizon limit of (near-extremal) black holes
— Jackiw-Teitelboim theory (D = 2):

1

Z= /DgWDgZ)exp <16WGN /d2x\/§¢(R+2)+ sfg,v fdsk) .
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Source: math.slu.edu

Boundary: Sachdev-Ye-Kitaev model (D = 1)

2
H= Y i, (B oo

1<i<j<k<I<N
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A simple model of holography

Same effective action on the boundary (review [Mertens 2022]):

bb 7{
87y Ju duSch(t, u] ,

with t : S' — S, t/(u) > 0 (reparametrization) and

Schlt, u] = <tt((5)) ) % < (( u)))
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A simple model of holography

Same effective action on the boundary (review [Mertens 2022]):

bb 7{
87y Ju duSch(t, u] ,

with t : S' — S, t/(u) > 0 (reparametrization) and

Schit, u] = <i,((5)))/ - % (i,',((s)))z'

This theory is integrable! (coadjoint orbit of the Virasoro group)
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A simple model of holography

Same effective action on the boundary (review [Mertens 2022]):

bb 7{
87y Ju duSch(t, u] ,

with t : S' — S, t/(u) > 0 (reparametrization) and

Schit, u] = <i,((5))>/ - % (i,',((s)))z'

This theory is integrable! (coadjoint orbit of the Virasoro group)

But no discrete energy spectrum...
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Immersions of the disk

We are interested in metrics on the disk.

Conformal gauge:
ds® = ™ |dz)?, z=x+1Iy.

Metrics of constant curvature:

40,0:¥ = —ke®™, k=41,0.
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Immersions of the disk

We are interested in metrics on the disk.
Conformal gauge:

ds® = ™ |dz)?, z=x+1Iy.
Metrics of constant curvature:

40,0:¥ = —ke®™, k=41,0.

Theorem

a) Let ¥p : S' — R be a continuous function defined on the boundary of the
disk. Then there exists a unique solution X € C°°(D) of the Liouville
equation such that ¥ = ¥, on the boundary.

b) Assuming F holomorphic, the most generic solution (up to disk
automorphisms, PSL(2,R)) takes the form:

S0 2lF(2)
5.
1+ k[F(2)]
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Immersions of the disk

We parametrize metrics on the disk D:

ds? — Lw|dz|2 {F : D — H? R?, 52 holomorphic,

(1+ wlF(2)P) F'(z) #£0Vz € D.
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Immersions of the disk

We parametrize metrics on the disk D:

42 4|F'(2)] dz]? F : D — H? R? 52 holomorphic,
=¥ 14z,
(1+ &|F(2)P)? F'(z) #0Vz € D.

If F is globally injective (= F’(z) # 0): embedding.
If F is locally injective ( <= F’(z) # 0): immersion.
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Immersions of the disk

We parametrize metrics on the disk D:

ds? = 4‘F/(Z)|2 |dz|2 {F : D — H* R?%, 52 holomorphic,
P ’

1+ kIFE)P) F'(2) 40z € D.

If F is globally injective (= F’(z) # 0): embedding.
If F is locally injective ( <= F’(z) # 0): immersion.

()=

OEE

Reparametrization embedding — General embedding (self-avoiding) — Immersion
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Questions

e How does considering immersions change the previous results?
e What are the properties of those immersions?
Number of self-overlaps, fractals,...?

e Of their boundaries?
Do they characterise the whole immersion?
Minimal combinatorial properties that lead to an immersion?
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Self-overlapping curves: History

Self-overlapping curves = curves that are boundary of an immersed disk.
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Self-overlapping curves: History

Self-overlapping curves = curves that are boundary of an immersed disk.

The classification of holomorphic extensions of the immersions of S was posed
by Picard [1893], then solved by Titus [1961] and Blank [1967] (cuts and words).
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Self-overlapping curves: History

Self-overlapping curves = curves that are boundary of an immersed disk.

The classification of holomorphic extensions of the immersions of S was posed
by Picard [1893], then solved by Titus [1961] and Blank [1967] (cuts and words).

Such curves can bound multiple non-homeomorphic disks!

Shor & Van Wyk [1992] gave an O(n®) algorithm to determine and count
inequivalent extensions (constrained Delaunay triangulations).
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Self-overlapping curves: History

Self-overlapping curves = curves that are boundary of an immersed disk.

The classification of holomorphic extensions of the immersions of S was posed
by Picard [1893], then solved by Titus [1961] and Blank [1967] (cuts and words).

Such curves can bound multiple non-homeomorphic disks!

Shor & Van Wyk [1992] gave an O(n®) algorithm to determine and count
inequivalent extensions (constrained Delaunay triangulations).

Graver & Cargo [2011] solved the problem with graph theory (covering graph).
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Self-overlapping curves: Numbers

e Turning number (index)

X/y// _ y/X//
turn(’y fkds = 1 k= m .

e Winding number (number of overlaps)

!
wind- (z0) = %% ) g5

5 (t) — 20

D8 ®
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Self-overlapping curves: Cuts

Curves that can be decomposed into simple curves through well-chosen cuts.

) >
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Self-overlapping curves: Maximally Planar Matchings

[Bonsma, Breuer 2012] Mapping the curve, together with good Blank cuts*, to a
chordal graph, the problem of counting inequivalent disks corresponds to
counting Maximum Independent Sets in the circle graph (for n vertices of the
circle graph, O(n?)).

*such that the cut with the slices of the curve form a simple curve
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Self-overlapping curves: Inequivalent disks

Examples of boundary curves that don’t have a unique holomorphic extension:
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Self-overlapping curves: Inequivalent disks

Examples of boundary curves that don’t have a unique holomorphic extension:
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L
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(a) Milnor (2 disks) (b) Bennequin (5 disks)
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Self-overlapping curves: Inequivalent disks

Examples of boundary curves that don’t have a unique holomorphic extension:

(/

L
.

(a) Milnor (2 disks) (b) Bennequin (5 disks)

NB: They can also be glued together.
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Milnor's doodle
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Milnor's doodle
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Milnor's doodle
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Milnor's doodle
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Milnor's doodle
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Milnor's doodle

Figure: Minimal number of cuts and the associated “good” pairings.
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Monte Carlo: 2D quantum “flat” gravity

Random samples of immersed disks in R? (i.e. random flat metrics on the disk)
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Monte Carlo: 2D quantum “flat” gravity

Random samples of immersed disks in R? (i.e. random flat metrics on the disk)

1) Generate random Gaussian field Xp(0): 2 parameters: {N,c}
(2m-uniform: df = 27)

2) €= [doe*o®)
(arclength-uniform: dv = 27 e*0(")dg)

3) Redefine X () = —Xp(0(})) + 2log(¢/27)
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Monte Carlo: 2D quantum “flat” gravity

Random samples of immersed disks in R? (i.e. random flat metrics on the disk)

1) Generate random Gaussian field Xp(0): 2 parameters: {N,c}
(2m-uniform: df = 27)

2) €= [doe*o®)
(arclength-uniform: dv = 27 e*0(")dg)

3) Redefine X () = —Xp(0(})) + 2log(¢/27)

Y has an action invariant under PSL(2,R).
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Monte Carlo: 2D quantum “flat” gravity
Random samples of immersed disks in R? (i.e. random flat metrics on the disk)
4) Analytic continuation:
o ) 1 , ()
H(z)|meio = X(0) +il(9), (W)= 27rP/d19 tan 022

5) Integrate the exponential of its analytic continuation:

F(2)|,eeiv = I/ dv'e™” exp H(e )} ,  (gauge: F(1)=0).
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Monte Carlo: 2D quantum “flat” gravity
Random samples of immersed disks in R? (i.e. random flat metrics on the disk)
4) Analytic continuation:
o ) 1 , ()
H(z)|meio = X(0) +il(9), (W)= 27rP/d19 tan 022

5) Integrate the exponential of its analytic continuation:

F(2)|,eeiv = 1/ ay'e™”’ exp H(e”9 )} ,  (gauge: F(1)=0).
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Monte Carlo: Samples

(a) o =05 (b)o =15 (c)o=3
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Monte Carlo: Samples
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Monte Carlo: Lengths
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Monte Carlo: Areas, self-intersections and overlaps (100 samples)
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Conclusions and Perspectives

Random metrics (with fixed curvature) on the disk
correspond to self-overlapping curves.
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Conclusions and Perspectives

Random metrics (with fixed curvature) on the disk
correspond to self-overlapping curves.

e What is this kind of new random object?
(fixed length, extrinsic curvature, order parameter...)

e Implement counting and identification of distinct immersions.

(faster algorithms using minimal number of cuts?)
e Partition function.

e Hyperbolic case, other topologies...
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Conclusions and Perspectives

Random metrics (with fixed curvature) on the disk
correspond to self-overlapping curves.

e What is this kind of new random object?
(fixed length, extrinsic curvature, order parameter...)

e Implement counting and identification of distinct immersions.
(faster algorithms using minimal number of cuts?)

e Partition function.

e Hyperbolic case, other topologies...

Thank you!
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Self-overlapping curves: technical results

Theorem (Graver, Cargo 2011)
An oriented normal curve v, with 0 < wind.,(f) < 2, admits a unique extension
if:
(i) the number of faces with wind.,(f) = 2 equals the number of faces with
wind,(f) =0,

(ii) all faces with wind,(f) = 2 have boundaries of even length.

DOd b

Fic. 22.
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Self-overlapping curves: technical results

Theorem (Graver, Cargo 2011)

An oriented normal curve v, with 0 < wind.,(f) < 2, admits a unique extension
if:
(i) the number of faces with wind.,(f) = 2 equals the number of faces with
wind,(f) =0,

(ii) all faces with wind,(f) = 2 have boundaries of even length.

DOd b

Fic. 22.

Theorem (Shor, Van Wyk 1992)

The number of incompatible decompositions is equal to the number of
combinatorially inequivalent constrained Delaunay triangulations.
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