Peeking at quantum gravity with self-overlapping curves

Women at the Intersection of Mathematics \& Theoretical Physics March 21, 2023

Nicolas Delporte
with Frank Ferrari and Romain Pascalie (ULB)

(1) Motivations
(2) Immersions of the disk

3 Conclusions and Perspectives
(1) Motivations
(2) Immersions of the disk

3 Conclusions and Perspectives

Motivations

What is Quantum Gravity?

Motivations

What is Quantum Gravity?

Within quantum field theory, we would like to write and solve:

$$
Z=\int_{\mathcal{M}} \mathcal{D} g_{\mu \nu} \mathcal{D} \Phi \exp \left(-S\left[g_{\mu \nu}, \Phi\right]\right)
$$

$g_{\mu \nu}$: metric structure on \mathcal{M}; Φ : matter content.

Motivations

What is Quantum Gravity?

Within quantum field theory, we would like to write and solve:

$$
Z=\int_{\mathcal{M}} \mathcal{D} g_{\mu \nu} \mathcal{D} \Phi \exp \left(-S\left[g_{\mu \nu}, \Phi\right]\right)
$$

$g_{\mu \nu}$: metric structure on \mathcal{M}; Φ : matter content.

What are $\mathcal{D}, S[\cdot], Z$?

One approach: Holography

Postulate (['t Hooft 1993, Susskind 1995]):
Quantum Gravity ($D+1$ dimensions)
$=$ Quantum Theory (D dimensions)

One approach: Holography

Postulate (['t Hooft 1993, Susskind 1995]):

Quantum Gravity ($D+1$ dimensions)

$=$ Quantum Theory (D dimensions)

Hints for the emergence of gravity:

- Black hole entropy [Bekenstein 1972]:

$$
S_{B H}=\frac{c^{3}}{4 G \hbar} A_{\text {horizon }}
$$

- Laws of black hole thermodynamics [Bardeen, Bekenstein, Carter, Hawking 1973]

A simple model of holography

Bulk: Near-horizon limit of (near-extremal) black holes
\rightarrow Jackiw-Teitelboim theory $(D=2)$:

A simple model of holography

Bulk: Near-horizon limit of (near-extremal) black holes
\rightarrow Jackiw-Teitelboim theory $(D=2)$:

$$
Z=\int \mathcal{D} g_{\mu \nu} \mathcal{D} \phi \exp \left(\frac{1}{16 \pi G_{N}} \int \mathrm{~d}^{2} x \sqrt{g} \phi(R+2)+\frac{\phi_{b}}{8 \pi G_{N}} \oint \mathrm{~d} s k\right)
$$

Source: math.slu.edu

A simple model of holography

Bulk: Near-horizon limit of (near-extremal) black holes
\rightarrow Jackiw-Teitelboim theory $(D=2)$:

$$
Z=\int \mathcal{D} g_{\mu \nu} \mathcal{D} \phi \exp \left(\frac{1}{16 \pi G_{N}} \int \mathrm{~d}^{2} x \sqrt{g} \phi(R+2)+\frac{\phi_{b}}{8 \pi G_{N}} \oint \mathrm{~d} s k\right)
$$

Source: math.slu.edu

Boundary: Sachdev-Ye-Kitaev model ($D=1$)

$$
H=\sum_{1 \leq i<j<k<1 \leq N} J_{i j k l} \psi_{i} \psi_{j} \psi_{k} \psi_{l}, \quad\left\langle J_{i j k l}^{2}\right\rangle \propto \frac{J^{2}}{N^{3}} .
$$

A simple model of holography

Same effective action on the boundary (review [Mertens 2022]):

$$
\frac{\phi_{b}}{8 \pi G_{N}} \oint_{S^{1}} \mathrm{~d} u S c h[t, u]
$$

with $t: S^{1} \rightarrow S^{1}, t^{\prime}(u)>0$ (reparametrization) and

$$
S c h[t, u]=\left(\frac{t^{\prime \prime}(u)}{t^{\prime}(u)}\right)^{\prime}-\frac{1}{2}\left(\frac{t^{\prime \prime}(u)}{t^{\prime}(u)}\right)^{2}
$$

A simple model of holography

Same effective action on the boundary (review [Mertens 2022]):

$$
\frac{\phi_{b}}{8 \pi G_{N}} \oint_{S^{1}} \mathrm{~d} u S c h[t, u]
$$

with $t: S^{1} \rightarrow S^{1}, t^{\prime}(u)>0$ (reparametrization) and

$$
S c h[t, u]=\left(\frac{t^{\prime \prime}(u)}{t^{\prime}(u)}\right)^{\prime}-\frac{1}{2}\left(\frac{t^{\prime \prime}(u)}{t^{\prime}(u)}\right)^{2}
$$

This theory is integrable! (coadjoint orbit of the Virasoro group)

A simple model of holography

Same effective action on the boundary (review [Mertens 2022]):

$$
\frac{\phi_{b}}{8 \pi G_{N}} \oint_{S^{1}} \mathrm{~d} u S_{c h}[t, u],
$$

with $t: S^{1} \rightarrow S^{1}, t^{\prime}(u)>0$ (reparametrization) and

$$
\operatorname{Sch}[t, u]=\left(\frac{t^{\prime \prime}(u)}{t^{\prime}(u)}\right)^{\prime}-\frac{1}{2}\left(\frac{t^{\prime \prime}(u)}{t^{\prime}(u)}\right)^{2} .
$$

This theory is integrable! (coadjoint orbit of the Virasoro group)
But no discrete energy spectrum...
(1) Motivations
(2) Immersions of the disk
(3) Conclusions and Perspectives

Immersions of the disk

We are interested in metrics on the disk.

Conformal gauge:

$$
\mathrm{d} s^{2}=e^{2 \Sigma}|\mathrm{~d} z|^{2}, \quad z=x+i y
$$

Metrics of constant curvature:

$$
4 \partial_{z} \partial_{\bar{z}} \Sigma=-\kappa e^{2 \Sigma}, \quad \kappa= \pm 1,0 .
$$

Immersions of the disk

We are interested in metrics on the disk.

Conformal gauge:

$$
\mathrm{d} s^{2}=e^{2 \Sigma}|\mathrm{~d} z|^{2}, \quad z=x+i y
$$

Metrics of constant curvature:

$$
4 \partial_{z} \partial_{\bar{z}} \Sigma=-\kappa e^{2 \Sigma}, \quad \kappa= \pm 1,0 .
$$

Theorem
a) Let $\Sigma_{b}: S^{1} \rightarrow \mathbb{R}$ be a continuous function defined on the boundary of the disk. Then there exists a unique solution $\Sigma \in C^{\infty}(D)$ of the Liouville equation such that $\Sigma=\Sigma_{b}$ on the boundary.
b) Assuming F holomorphic, the most generic solution (up to disk automorphisms, $\operatorname{PSL}(2, \mathbb{R})$) takes the form:

$$
e^{\Sigma(z)}=\frac{2\left|F^{\prime}(z)\right|}{1+\kappa|F(z)|^{2}}
$$

Immersions of the disk

We parametrize metrics on the disk \mathcal{D} :

$$
\mathrm{d} s^{2}=\frac{4\left|F^{\prime}(z)\right|^{2}}{\left(1+\kappa|F(z)|^{2}\right)^{2}}|\mathrm{~d} z|^{2}, \quad\left\{\begin{array}{l}
F: \mathcal{D} \rightarrow H^{2}, \mathbb{R}^{2}, S^{2} \text { holomorphic, } \\
F^{\prime}(z) \neq 0 \forall z \in \mathcal{D} .
\end{array}\right.
$$

Immersions of the disk

We parametrize metrics on the disk \mathcal{D} :

$$
\mathrm{ds} s^{2}=\frac{4\left|F^{\prime}(z)\right|^{2}}{\left(1+\kappa|F(z)|^{2}\right)^{2}}|\mathrm{~d} z|^{2}, \quad\left\{\begin{array}{l}
F: \mathcal{D} \rightarrow H^{2}, \mathbb{R}^{2}, S^{2} \text { holomorphic, } \\
F^{\prime}(z) \neq 0 \forall z \in \mathcal{D} .
\end{array}\right.
$$

If F is globally injective $\left(\Longrightarrow F^{\prime}(z) \neq 0\right)$: embedding. If F is locally injective $\left(\Longleftrightarrow F^{\prime}(z) \neq 0\right)$: immersion.

Immersions of the disk

We parametrize metrics on the disk \mathcal{D} :

$$
\mathrm{d} s^{2}=\frac{4\left|F^{\prime}(z)\right|^{2}}{\left(1+\kappa|F(z)|^{2}\right)^{2}}|\mathrm{~d} z|^{2}, \quad\left\{\begin{array}{l}
F: \mathcal{D} \rightarrow H^{2}, \mathbb{R}^{2}, S^{2} \text { holomorphic, } \\
F^{\prime}(z) \neq 0 \forall z \in \mathcal{D}
\end{array}\right.
$$

If F is globally injective $\left(\Longrightarrow F^{\prime}(z) \neq 0\right)$: embedding. If F is locally injective $\left(\Longleftrightarrow F^{\prime}(z) \neq 0\right)$: immersion.

Reparametrization embedding - General embedding (self-avoiding) - Immersion

Questions

- How does considering immersions change the previous results?
- What are the properties of those immersions?

Number of self-overlaps, fractals, ...?

- Of their boundaries?

Do they characterise the whole immersion?
Minimal combinatorial properties that lead to an immersion?

Self-overlapping curves: History

Self-overlapping curves $=$ curves that are boundary of an immersed disk.

Self-overlapping curves: History

Self-overlapping curves $=$ curves that are boundary of an immersed disk.
The classification of holomorphic extensions of the immersions of S^{1} was posed by Picard [1893], then solved by Titus [1961] and Blank [1967] (cuts and words).

Self-overlapping curves: History

Self-overlapping curves $=$ curves that are boundary of an immersed disk.
The classification of holomorphic extensions of the immersions of S^{1} was posed by Picard [1893], then solved by Titus [1961] and Blank [1967] (cuts and words).

Such curves can bound multiple non-homeomorphic disks!

Self-overlapping curves: History

Self-overlapping curves $=$ curves that are boundary of an immersed disk.

The classification of holomorphic extensions of the immersions of S^{1} was posed by Picard [1893], then solved by Titus [1961] and Blank [1967] (cuts and words).

Such curves can bound multiple non-homeomorphic disks!

Shor \& Van Wyk [1992] gave an $\mathcal{O}\left(n^{3}\right)$ algorithm to determine and count inequivalent extensions (constrained Delaunay triangulations).

Self-overlapping curves: History

Self-overlapping curves $=$ curves that are boundary of an immersed disk.

The classification of holomorphic extensions of the immersions of S^{1} was posed by Picard [1893], then solved by Titus [1961] and Blank [1967] (cuts and words).

Such curves can bound multiple non-homeomorphic disks!

Shor \& Van Wyk [1992] gave an $\mathcal{O}\left(n^{3}\right)$ algorithm to determine and count inequivalent extensions (constrained Delaunay triangulations).

Graver \& Cargo [2011] solved the problem with graph theory (covering graph).

Self-overlapping curves: Numbers

- Turning number (index)

$$
\operatorname{turn}(\gamma)=\frac{1}{2 \pi} \oint_{\gamma} k \mathrm{~d} s=1, \quad k=\frac{x^{\prime} y^{\prime \prime}-y^{\prime} x^{\prime \prime}}{\left(x^{\prime 2}+y^{\prime 2}\right)^{3 / 2}}
$$

- Winding number (number of overlaps)

$$
\operatorname{wind}_{\gamma}\left(z_{0}\right)=\frac{1}{2 \pi i} \oint_{\gamma} \frac{\gamma^{\prime}(t)}{\gamma(t)-z_{0}} \mathrm{~d} t \geq 0
$$

Self-overlapping curves: Cuts

Curves that can be decomposed into simple curves through well-chosen cuts.

Self-overlapping curves: Maximally Planar Matchings

[Bonsma, Breuer 2012] Mapping the curve, together with good Blank cuts*, to a chordal graph, the problem of counting inequivalent disks corresponds to counting Maximum Independent Sets in the circle graph (for n vertices of the circle graph, $\left.\mathcal{O}\left(n^{2}\right)\right)$.

*such that the cut with the slices of the curve form a simple curve

Self-overlapping curves: Inequivalent disks

Examples of boundary curves that don't have a unique holomorphic extension:

Self-overlapping curves: Inequivalent disks

Examples of boundary curves that don't have a unique holomorphic extension:

Self-overlapping curves: Inequivalent disks

Examples of boundary curves that don't have a unique holomorphic extension:

NB: They can also be glued together.

Milnor's doodle

Milnor's doodle

Milnor's doodle

Milnor's doodle

Milnor's doodle

Milnor's doodle

Milnor's doodle

Figure: Minimal number of cuts and the associated "good" pairings.

Monte Carlo: 2D quantum "flat" gravity

Random samples of immersed disks in \mathbb{R}^{2} (i.e. random flat metrics on the disk)

Monte Carlo: 2D quantum "flat" gravity

Random samples of immersed disks in \mathbb{R}^{2} (i.e. random flat metrics on the disk)

1) Generate random Gaussian field $\Sigma_{D}(\theta): 2$ parameters: $\{N, \sigma\}$ (2π-uniform: $\mathrm{d} \theta=\frac{2 \pi}{N}$)
2) $\ell=\int \mathrm{d} \theta e^{\Sigma_{D}(\theta)}$
(arclength-uniform: $\mathrm{d} \vartheta=\frac{2 \pi}{\ell} e^{\Sigma_{D}(\theta)} \mathrm{d} \theta$)
3) Redefine $\Sigma(\vartheta)=-\Sigma_{D}(\theta(\vartheta))+2 \log (\ell / 2 \pi)$

Monte Carlo: 2D quantum "flat" gravity

Random samples of immersed disks in \mathbb{R}^{2} (i.e. random flat metrics on the disk)

1) Generate random Gaussian field $\Sigma_{D}(\theta): 2$ parameters: $\{N, \sigma\}$ (2π-uniform: $\mathrm{d} \theta=\frac{2 \pi}{N}$)
2) $\ell=\int \mathrm{d} \theta e^{\Sigma_{D}(\theta)}$
(arclength-uniform: $\mathrm{d} \vartheta=\frac{2 \pi}{\ell} e^{\Sigma_{D}(\theta)} \mathrm{d} \theta$)
3) Redefine $\Sigma(\vartheta)=-\Sigma_{D}(\theta(\vartheta))+2 \log (\ell / 2 \pi)$

Σ has an action invariant under $\operatorname{PSL}(2, \mathbb{R})$.

Monte Carlo: 2D quantum "flat" gravity

Random samples of immersed disks in \mathbb{R}^{2} (i.e. random flat metrics on the disk)
4) Analytic continuation:

$$
\left.H(z)\right|_{z=e^{i \vartheta}}=\Sigma(\vartheta)+i \Gamma(\vartheta), \quad \Gamma(\vartheta)=\frac{1}{2 \pi} \mathrm{P} \int \mathrm{~d} \vartheta^{\prime} \frac{\Sigma\left(\vartheta^{\prime}\right)}{\tan \frac{\vartheta^{\prime}-\vartheta}{2}},
$$

5) Integrate the exponential of its analytic continuation:

$$
\left.F(z)\right|_{z=e^{i \vartheta}}=i \int_{0}^{\vartheta} \mathrm{d} \vartheta^{\prime} e^{i \vartheta \vartheta^{\prime}} \exp \left[H\left(e^{i \vartheta^{\prime}}\right)\right], \quad(\text { gauge: } F(1)=0) .
$$

Monte Carlo: 2D quantum "flat" gravity

Random samples of immersed disks in \mathbb{R}^{2} (i.e. random flat metrics on the disk)
4) Analytic continuation:

$$
\left.H(z)\right|_{z=e^{i \vartheta}}=\Sigma(\vartheta)+i \Gamma(\vartheta), \quad \Gamma(\vartheta)=\frac{1}{2 \pi} \mathrm{P} \int \mathrm{~d} \vartheta^{\prime} \frac{\Sigma\left(\vartheta^{\prime}\right)}{\tan \frac{\vartheta^{\prime}-\vartheta}{2}},
$$

5) Integrate the exponential of its analytic continuation:

$$
\left.\left.F(z)\right|_{z=e^{i \vartheta}}=i \int_{0}^{\vartheta} \mathrm{d} \vartheta^{\prime} e^{i \vartheta^{\prime}} \exp \left[H\left(e^{i \vartheta^{\prime}}\right)\right], \quad \text { (gauge: } F(1)=0\right)
$$

Monte Carlo: Samples

(a) $\sigma=0.5$
(b) $\sigma=1.5$
(c) $\sigma=3$

Monte Carlo: Samples

(a) $\sigma=0.5$

(e) $\sigma=7$

(c) $\sigma=3$

(d) $\sigma=4$
(f) $\sigma=8$

Monte Carlo: Lengths

$$
\begin{gathered}
\ell=\int \mathrm{d} \theta e^{\Sigma(\theta)}, \quad\langle\ell\rangle=2 \pi \\
\left\langle\ell^{2}\right\rangle=\frac{4 \pi^{2}}{\sigma} \exp \left(-\frac{\pi \sigma^{2}}{12}\right) \operatorname{Erfi}\left(\frac{\sqrt{\pi} \sigma}{2}\right) \\
\Delta \ell=\sqrt{\left\langle\ell^{2}\right\rangle-\langle\ell\rangle^{2}} \\
\operatorname{Erfi}(z)=\frac{-2 i}{\sqrt{\pi}} \int_{0}^{z} \mathrm{~d} t e^{t^{2}}
\end{gathered}
$$

Monte Carlo: Areas, self-intersections and overlaps (100 samples)

(1) Motivations

(2) Immersions of the disk

3 Conclusions and Perspectives

Conclusions and Perspectives

Random metrics (with fixed curvature) on the disk correspond to self-overlapping curves.

Conclusions and Perspectives

Random metrics (with fixed curvature) on the disk correspond to self-overlapping curves.

- What is this kind of new random object? (fixed length, extrinsic curvature, order parameter...)
- Implement counting and identification of distinct immersions. (faster algorithms using minimal number of cuts?)
- Partition function.
- Hyperbolic case, other topologies...

Conclusions and Perspectives

> Random metrics (with fixed curvature) on the disk correspond to self-overlapping curves.

- What is this kind of new random object? (fixed length, extrinsic curvature, order parameter...)
- Implement counting and identification of distinct immersions. (faster algorithms using minimal number of cuts?)
- Partition function.
- Hyperbolic case, other topologies...

Thank you!

Self-overlapping curves: technical results

Theorem (Graver, Cargo 2011)
An oriented normal curve γ, with $0 \leq \operatorname{wind}_{\gamma}(f) \leq 2$, admits a unique extension if:
(i) the number of faces with wind $\gamma_{\gamma}(f)=2$ equals the number of faces with $\operatorname{wind}_{\gamma}(f)=0$,
(ii) all faces with wind $_{\gamma}(f)=2$ have boundaries of even length.

Fig. 22.

Self-overlapping curves: technical results

Theorem (Graver, Cargo 2011)
An oriented normal curve γ, with $0 \leq$ wind $_{\gamma}(f) \leq 2$, admits a unique extension if:
(i) the number of faces with wind $\gamma_{\gamma}(f)=2$ equals the number of faces with $\operatorname{wind}_{\gamma}(f)=0$,
(ii) all faces with wind $\gamma_{\gamma}(f)=2$ have boundaries of even length.

Fig. 22.

Theorem (Shor, Van Wyk 1992)
The number of incompatible decompositions is equal to the number of combinatorially inequivalent constrained Delaunay triangulations.

