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THE SYMMETRIC GROUP

The symmetric group Sn of order n! is generated by the simple
transpositions

{s1,s2, . . . ,sn−1}

subject to the relations

s2
i = 1 for 1 ⩽ i < n;

sisj = sjsi for |i− j|> 1;

sisi+1si = si+1sisi+1 for 1 ⩽ i ⩽ n−2.

Sn is the quotient of the braid group Bn by the relation s2
i = 1.

Question
What are the representations of Sn? Can we classify them?

Representations depend on the characteristic of the underlying field F!

FIELDS OF CHARACTERISTIC ZERO: FIELDS OF PRIME CHARACTERISTIC:
e.g. Q, C. e.g. finite fields Z/pZ, p a prime.
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IRREDUCIBLE MODULES
What are the building blocks of representations?

Representations of a finite group G are equivalent to modules.

a module = a vector space equipped with an action of G

Definition
A module V of G is irreducible if its only submodules are V and 0.

THE ONE-DIMENSIONAL MODULES OF Sn

The trivial module V of Sn:

π(v) = v ∀π ∈Sn, v ∈ V .

The sign module V ′ of Sn:

π(v ′)= sgn(π)v ′ ∀π ∈Sn, v ′ ∈V ′.

Open Problem
Can we explicitly describe the irreducible modules of Sn?
What are their dimensions? What are their bases?
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INTRODUCING COMBINATORICS

A partition λ of n is a non-increasing sequence of non-negative integers
λ = (λ1,λ2, . . .) such that λi ⩾ λi+1 for all i ⩾ 1 and ∑

∞
i=1 | λi |= n.

The partitions of 4 are: (4), (3,1), (22), (2,12),(14).

Theorem

{distinct irreducible representations of Sn over C } 1:1←→{partitions of n}.

Can we construct an irreducible representation of Sn for each partition of n?

{partitions of 4} ↔ {Young diagrams of 4}
(4)

(3,1)

(22)

(2,12)

(14)
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JAMES’S COMBINATORIAL CONSTRUCTION

A λ -tableau T is a filling of its Young diagram by 1,2, . . . , |λ |.

S|λ | acts on T by place permutation.

The “standard” (3,2)-tableaux: 1 3 5
2 4

, 1 3 4
2 5

, 1 2 5
3 4

, 1 2 4
3 5

, 1 2 3
4 5

.

Construction (Gordon James, 1970s)
For each partition λ of n, one can construct an Sn-module called a Specht
module, S(λ )

, with basis

{vT | T is a “standard” λ -tableau }.

IN CHARACTERISTIC ZERO

{S(λ ) | λ is a partition} 1:1←→{distinct irreducible representations of Sn}

The dimension of S(λ ) = #{“standard” λ -tableaux}.
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LABELLING IRREDUCIBLE MODULES

IN POSITIVE CHARACTERISTIC: Specht modules are not always irreducible!

The irreducible modules of Sn arise as quotients of Specht modules.

λ is p-regular if no p consecutive rows of [λ ] are the same.

λ is p-restricted if no p consecutive columns of [λ ] are the same.

Let p = 3. [(5,33)] = is neither 3-regular nor 3-restricted

,

but [(6,3,1)] = is 3-regular but not 3-restricted.

Theorem
{D (λ ) | λ is p-regular} is a complete set of distinct irreducible Sn-modules.

Open Problem
What are the dimensions and bases of irreducible Sn-modules?
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HECKE ALGEBRAS

Let charF= p is 0 or a prime.
Let q ∈ F× be a primitive eth root of unity, so e = ∞ or e ∈ {2,3, . . .}.

The Hecke algebra of the symmetric group, H (Sn), is the unital, asso-
ciative F-algebra with generating set

{T1,T2, . . . ,Tn−1}

subject to the relations

(Ti −q)(Ti +1) = 0 for 1 ⩽ i < n;

TiTj = TjTi for |i− j|> 1;

TiTi+1Ti = Ti+1TiTi+1 for 1 ⩽ i ⩽ n−2.

There is a cyclotomic Hecke algebra, Hn, associated to each complex
reflection group of type G(ℓ,1,n) = (Z/ℓZ) ≀Sn.

LEVEL ℓ= 1: the Iwahori–Hecke algebra H (Sn) of type A.

LEVEL ℓ= 2: the Iwahori–Hecke algebra H ((Z/2Z) ≀Sn) of type B.
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There is a cyclotomic Hecke algebra, Hn, associated to each complex
reflection group of type G(ℓ,1,n) = (Z/ℓZ) ≀Sn.
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A LONG-STANDING CONJECTURE

POSITIVE CHARACTERISTIC: Let charF= p > 0 be a prime.

Conjecture (James,1990)
The representation theory of the Hecke algebra of the symmetric group
H (Sn) is independent of the characteristic p if pe > n.

There are many cases where James’s conjecture holds, however...

Theorem (Williamson, 2012)
James’s conjecture is false! Williamson found counterexamples for large p.

Can we explicitly describe the irreducible modules of Sn?

We know presentations, dimensions and bases of Specht modules!

Aim
FIRST STEP: classify the irreducible Specht modules in positive characteristic.
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HOOK LENGTHS

Let λ be a partition, and [λ ] be its Young diagram.

The hook length of a box (a,b) ∈ [λ ] is

hλ
ab :=(λa−b)+(λ ′b−a)+1

=arm length+ leg length+node (a,b)

Let λ = (9,8,5,3) and box (a,b) = (2,2).
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Let λ be a partition, and [λ ] be its Young diagram.
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Let λ be a partition, and [λ ] be its Young diagram.

The hook length of a box (a,b) ∈ [λ ] is

hλ
ab :=(λa−b)+(λ ′b−a)+1

=arm length+ leg length+node (a,b)

Let λ = (9,8,5,3) and box (a,b) = (2,2).

hλ
ab = = 6+2+1 = 9.
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HOOK LENGTHS
Let λ be a partition, and [λ ] be its Young diagram.

The hook length of a box (a,b) ∈ [λ ] is

hλ
ab :=(λa−b)+(λ ′b−a)+1

=arm length+ leg length+node (a,b)

Let λ = (9,8,5,3) and box (a,b) = (2,2).

hλ
ab = = 6+2+1 = 9.

The hook lengths of λ are 12 11 10 8 7 5 4 3 1
10 9 8 6 5 3 2 1
6 5 4 2 1
3 2 1



IRREDUCIBLE SPECHT MODULES FOR H (Sn)
Which partitions label irreducible Specht modules?

p-adic valuations: νp(x) = max{y ∈ N | py | x}

(e,p)-adic valuations: νe,p(h) :=

{
νp(

h
e )+1 if e|h;

0 otherwise.

Theorem (James–Mathas)

Let e ∈ {3,4, . . .}. Then S(λ ) is irreducible if and only if there exist integers
k ⩾ 0 and ℓ⩾ 0 with (k +1, ℓ+1) ̸∈ [λ ], satisfying

1 e-restricted condition:
νe,p(hλ

ab) = νe,p(hλ
ac) whenever (a,b),(a,c) ∈ [λ ] and a > k;

2 e-regular condition:
νe,p(hλ

ac) = νe,p(hλ
bc) whenever (a,c),(b,c) ∈ [λ ] and c > ℓ;

3 all other boxes in [λ ]:
νe,p(hλ

ac) = 0 for 1 ⩽ a ⩽ k, 1 ⩽ b ⩽ ℓ.
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(23,12) is 3-restricted.
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Let e = p = 3.

[(10,5,3,23,12)] = 17 14 10 8 7 5 4 3 2 1
11 8 4 2 1
8 5 1
6 3
5 2
4 1
2
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BEYOND THE SYMMETRIC GROUP

Let Hn denote the Iwahori–Hecke algebra H ((Z/2Z) ≀Sn) of type B.

A bipartition of n is a pair (λ ,µ) of partitions such that |λ |+ |µ|= n.

((5,2),(4,2,1)) is a bipartition of 14, with Young diagram .

For each bipartition (λ ,µ), we can construct a Specht module, S(λ ,µ)

,
with basis

{vT | T is a “standard” (λ ,µ)-tableau }.

Irreducible Hn-modules arise as quotients of Specht modules.

Can we classify irreducible Specht modules S(λ ,µ)?
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CONJECTURAL CLASSIFICATION

Conjecture (Joint work with Matthew Fayers)
The “unrestrictable” Specht module S(λ ,µ) is IRREDUCIBLE if and only if

there
exists an irreducible Specht module S(ν) such that the bipartition (λ ,µ) “fits
into” the Young diagram [ν] in one of two ways:
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