IRREDUCIBLE SPECHT MODULES FOR SYMMETRIC GROUPS AND BEYOND

LOUISE SUTTON

Women at the Intersection of Mathematics and Theoretical Physics Meet in Okinawa

The **symmetric group** \mathfrak{S}_n of order n! is generated by the simple transpositions

 $\{s_1, s_2, \dots, s_{n-1}\}$

subject to the relations

$$\begin{split} s_i^2 &= 1 & \text{for } 1 \leqslant i < n; \\ s_i s_j &= s_j s_i & \text{for } |i - j| > 1; \\ s_i s_{i+1} s_i &= s_{i+1} s_i s_{i+1} & \text{for } 1 \leqslant i \leqslant n-2. \end{split}$$

The **symmetric group** \mathfrak{S}_n of order n! is generated by the simple transpositions

 $\{s_1, s_2, \ldots, s_{n-1}\}$

subject to the relations

$$\begin{split} s_i^2 &= 1 & \text{for } 1 \leqslant i < n; \\ s_i s_j &= s_j s_i & \text{for } |i - j| > 1; \\ s_i s_{i+1} s_i &= s_{i+1} s_i s_{i+1} & \text{for } 1 \leqslant i \leqslant n-2. \end{split}$$

 \mathfrak{S}_n is the quotient of the braid group B_n by the relation $s_i^2 = 1$.

The **symmetric group** \mathfrak{S}_n of order n! is generated by the simple transpositions

 $\{s_1, s_2, \dots, s_{n-1}\}$

subject to the relations

$$\begin{split} s_i^2 &= 1 & \text{for } 1 \leqslant i < n; \\ s_i s_j &= s_j s_i & \text{for } |i - j| > 1; \\ s_i s_{i+1} s_i &= s_{i+1} s_i s_{i+1} & \text{for } 1 \leqslant i \leqslant n-2. \end{split}$$

 \mathfrak{S}_n is the quotient of the braid group B_n by the relation $s_i^2 = 1$.

Question

What are the representations of \mathfrak{S}_n ? Can we classify them?

The **symmetric group** \mathfrak{S}_n of order n! is generated by the simple transpositions

 $\{s_1, s_2, \dots, s_{n-1}\}$

subject to the relations

$$\begin{split} s_i^2 &= 1 & \text{for } 1 \leqslant i < n; \\ s_i s_j &= s_j s_i & \text{for } |i - j| > 1; \\ s_i s_{i+1} s_i &= s_{i+1} s_i s_{i+1} & \text{for } 1 \leqslant i \leqslant n-2. \end{split}$$

 \mathfrak{S}_n is the quotient of the braid group B_n by the relation $s_i^2 = 1$.

Question

What are the representations of \mathfrak{S}_n ? Can we classify them?

Representations depend on the characteristic of the underlying field \mathbb{F} !

The **symmetric group** \mathfrak{S}_n of order n! is generated by the simple transpositions

 $\{s_1, s_2, \dots, s_{n-1}\}$

subject to the relations

Si

$$\begin{split} s_i^2 &= 1 & \text{for } 1 \leqslant i < n; \\ s_i s_j &= s_j s_i & \text{for } |i-j| > 1; \\ s_{i+1} s_i &= s_{i+1} s_i s_{i+1} & \text{for } 1 \leqslant i \leqslant n-2. \end{split}$$

 \mathfrak{S}_n is the quotient of the braid group B_n by the relation $s_i^2 = 1$.

Question

What are the representations of \mathfrak{S}_n ? Can we classify them?

Representations depend on the characteristic of the underlying field \mathbb{F} !

FIELDS OF CHARACTERISTIC ZERO:FIELDS OF PRIME CHARACTERISTIC:e.g. \mathbb{Q} , \mathbb{C} .e.g. finite fields $\mathbb{Z}/p\mathbb{Z}$, p a prime.

What are the building blocks of representations?

What are the building blocks of representations?

Representations of a finite group *G* are equivalent to **modules**.

a **module** = a vector space equipped with an action of G

What are the building blocks of representations?

Representations of a finite group *G* are equivalent to **modules**.

a **module** = a vector space equipped with an action of G

Definition

A module V of G is irreducible if its only submodules are V and 0.

What are the building blocks of representations?

Representations of a finite group *G* are equivalent to **modules**.

a **module** = a vector space equipped with an action of G

Definition

A module V of G is **irreducible** if its only submodules are V and 0.

The one-dimensional modules of \mathfrak{S}_n

The *trivial* module V of \mathfrak{S}_n :

 $\pi(v) = v \quad \forall \pi \in \mathfrak{S}_n, v \in V.$

What are the building blocks of representations?

Representations of a finite group *G* are equivalent to **modules**.

a **module** = a vector space equipped with an action of G

Definition

A module V of G is **irreducible** if its only submodules are V and 0.

The one-dimensional modules of \mathfrak{S}_n

The *trivial* module V of \mathfrak{S}_n : The sign module V' of \mathfrak{S}_n :

 $\pi(v) = v \quad \forall \pi \in \mathfrak{S}_n, v \in V. \qquad \pi(v') = \operatorname{sgn}(\pi)v' \quad \forall \pi \in \mathfrak{S}_n, v' \in V'.$

What are the building blocks of representations?

Representations of a finite group *G* are equivalent to **modules**.

a **module** = a vector space equipped with an action of G

Definition

A module V of G is **irreducible** if its only submodules are V and 0.

The one-dimensional modules of \mathfrak{S}_n

The *trivial* module *V* of \mathfrak{S}_n : The *sign* module *V'* of \mathfrak{S}_n :

 $\pi(v) = v \quad \forall \pi \in \mathfrak{S}_n, \ v \in V. \qquad \pi(v') = \operatorname{sgn}(\pi)v' \quad \forall \pi \in \mathfrak{S}_n, \ v' \in V'.$

Open Problem

Can we explicitly describe the irreducible modules of \mathfrak{S}_n ? What are their dimensions? What are their bases?

A **partition** λ of *n* is a non-increasing sequence of non-negative integers $\lambda = (\lambda_1, \lambda_2, ...)$ such that $\lambda_i \ge \lambda_{i+1}$ for all $i \ge 1$ and $\sum_{i=1}^{\infty} |\lambda_i| = n$.

A **partition** λ of *n* is a non-increasing sequence of non-negative integers $\lambda = (\lambda_1, \lambda_2, ...)$ such that $\lambda_i \ge \lambda_{i+1}$ for all $i \ge 1$ and $\sum_{i=1}^{\infty} |\lambda_i| = n$.

The partitions of 4 are: (4), (3, 1), (2^2) , $(2, 1^2)$, (1^4) .

A **partition** λ of *n* is a non-increasing sequence of non-negative integers $\lambda = (\lambda_1, \lambda_2, ...)$ such that $\lambda_i \ge \lambda_{i+1}$ for all $i \ge 1$ and $\sum_{i=1}^{\infty} |\lambda_i| = n$.

The partitions of 4 are: (4), (3, 1), (2^2), (2, 1^2), (1^4).

Theorem

{distinct irreducible representations of \mathfrak{S}_n over \mathbb{C} } \longleftrightarrow {partitions of n}.

A **partition** λ of *n* is a non-increasing sequence of non-negative integers $\lambda = (\lambda_1, \lambda_2, ...)$ such that $\lambda_i \ge \lambda_{i+1}$ for all $i \ge 1$ and $\sum_{i=1}^{\infty} |\lambda_i| = n$.

The partitions of 4 are: (4), (3, 1), (2^2) , $(2, 1^2)$, (1^4) .

Theorem

{distinct irreducible representations of \mathfrak{S}_n over \mathbb{C} } \longleftrightarrow {partitions of n}.

Can we construct an irreducible representation of \mathfrak{S}_n for each partition of n?

A **partition** λ of *n* is a non-increasing sequence of non-negative integers $\lambda = (\lambda_1, \lambda_2, ...)$ such that $\lambda_i \ge \lambda_{i+1}$ for all $i \ge 1$ and $\sum_{i=1}^{\infty} |\lambda_i| = n$.

The partitions of 4 are: (4), (3, 1), (2^2) , $(2, 1^2)$, (1^4) .

Theorem

{distinct irreducible representations of \mathfrak{S}_n over \mathbb{C} } \longleftrightarrow {partitions of n}.

Can we construct an irreducible representation of \mathfrak{S}_n for each partition of n?

 $\{ \text{partitions of 4} \} \quad \leftrightarrow \quad \{ \text{Young diagrams of 4} \}$

A **partition** λ of *n* is a non-increasing sequence of non-negative integers $\lambda = (\lambda_1, \lambda_2, ...)$ such that $\lambda_i \ge \lambda_{i+1}$ for all $i \ge 1$ and $\sum_{i=1}^{\infty} |\lambda_i| = n$.

The partitions of 4 are: (4), (3, 1), (2^2) , $(2, 1^2)$, (1^4) .

Theorem

{distinct irreducible representations of \mathfrak{S}_n over \mathbb{C} } \longleftrightarrow {partitions of n}.

Can we construct an irreducible representation of \mathfrak{S}_n for each partition of n?

```
 \{ \text{partitions of 4} \} \quad \leftrightarrow \quad \{ \text{Young diagrams of 4} \} 
 (4) \qquad \qquad \Box \Box \Box \Box
```

A partition λ of *n* is a non-increasing sequence of non-negative integers $\lambda = (\lambda_1, \lambda_2, ...)$ such that $\lambda_i \ge \lambda_{i+1}$ for all $i \ge 1$ and $\sum_{i=1}^{\infty} |\lambda_i| = n$.

The partitions of 4 are: (4), (3, 1), (2^2) , $(2, 1^2)$, (1^4) .

Theorem

{distinct irreducible representations of \mathfrak{S}_n over \mathbb{C} } \longleftrightarrow {partitions of n}.

Can we construct an irreducible representation of \mathfrak{S}_n for each partition of n?

 $\begin{array}{cccc} \{ \text{partitions of 4} \} & \leftrightarrow & \{ \text{Young diagrams of 4} \} \\ (4) & & & \\ (3,1) & & & \\ (2^2) & & & \\ (2,1^2) & & & \\ (1^4) & & & \\ \end{array}$

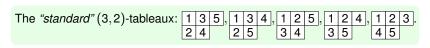
A λ -tableau *T* is a filling of its Young diagram by $1, 2, \dots, |\lambda|$.

A λ -tableau *T* is a filling of its Young diagram by 1,2,..., $|\lambda|$.

 $\mathfrak{S}_{|\lambda|}$ acts on *T* by place permutation.

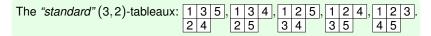
A λ -tableau *T* is a filling of its Young diagram by 1,2,..., $|\lambda|$.

 $\mathfrak{S}_{|\lambda|}$ acts on *T* by place permutation.



A λ -tableau *T* is a filling of its Young diagram by 1, 2, ..., $|\lambda|$.

 $\mathfrak{S}_{|\lambda|}$ acts on T by place permutation.

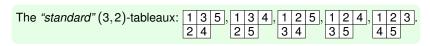


Construction (Gordon James, 1970s)

For each partition λ of n, one can construct an \mathfrak{S}_n -module called a **Specht module**, $S(\lambda)$

A λ -tableau *T* is a filling of its Young diagram by 1, 2, ..., $|\lambda|$.

 $\mathfrak{S}_{|\lambda|}$ acts on T by place permutation.



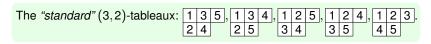
Construction (Gordon James, 1970s)

For each partition λ of n, one can construct an \mathfrak{S}_n -module called a **Specht module**, $S(\lambda)$, with basis

 $\{v_T \mid T \text{ is a "standard" } \lambda \text{-tableau } \}.$

A λ -tableau *T* is a filling of its Young diagram by 1, 2, ..., $|\lambda|$.

 $\mathfrak{S}_{|\lambda|}$ acts on *T* by place permutation.



Construction (Gordon James, 1970s)

For each partition λ of *n*, one can construct an \mathfrak{S}_n -module called a **Specht module**, $S(\lambda)$, with basis

 $\{v_T \mid T \text{ is a "standard" } \lambda \text{-tableau } \}.$

IN CHARACTERISTIC ZERO

 $\{S(\lambda) \mid \lambda \text{ is a partition}\} \xleftarrow{1:1} \{\text{distinct irreducible representations of } \mathfrak{S}_n\}$

A λ -tableau *T* is a filling of its Young diagram by 1,2,..., $|\lambda|$.

 $\mathfrak{S}_{|\lambda|}$ acts on *T* by place permutation.

The "standard"
$$(3,2)$$
-tableaux: $\begin{bmatrix} 1 & 3 & 5 \\ 2 & 4 \end{bmatrix}$, $\begin{bmatrix} 1 & 3 & 4 \\ 2 & 5 \end{bmatrix}$, $\begin{bmatrix} 1 & 2 & 5 \\ 3 & 4 \end{bmatrix}$, $\begin{bmatrix} 1 & 2 & 4 \\ 3 & 5 \end{bmatrix}$, $\begin{bmatrix} 1 & 2 & 4 \\ 4 & 5 \end{bmatrix}$.

Construction (Gordon James, 1970s)

For each partition λ of n, one can construct an \mathfrak{S}_n -module called a **Specht module**, $S(\lambda)$, with basis

 $\{v_T \mid T \text{ is a "standard" } \lambda \text{-tableau } \}.$

IN CHARACTERISTIC ZERO

 $\{S(\lambda) \mid \lambda \text{ is a partition}\} \stackrel{1:1}{\longleftrightarrow} \{\text{distinct irreducible representations of } \mathfrak{S}_n\}$

The dimension of $S(\lambda) = \#\{\text{"standard" } \lambda \text{-tableaux}\}$.

IN POSITIVE CHARACTERISTIC: Specht modules are not always irreducible!

IN POSITIVE CHARACTERISTIC: Specht modules are not always irreducible!

IN POSITIVE CHARACTERISTIC: Specht modules are not always irreducible!

The irreducible modules of \mathfrak{S}_n arise as quotients of Specht modules.

• λ is *p*-regular if no *p* consecutive rows of $[\lambda]$ are the same.

IN POSITIVE CHARACTERISTIC: Specht modules are not always irreducible!

- λ is *p*-regular if no *p* consecutive rows of $[\lambda]$ are the same.
- λ is *p*-restricted if no *p* consecutive columns of $[\lambda]$ are the same.

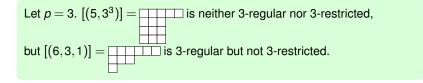
IN POSITIVE CHARACTERISTIC: Specht modules are not always irreducible!

- λ is *p*-regular if no *p* consecutive rows of $[\lambda]$ are the same.
- λ is *p*-restricted if no *p* consecutive columns of $[\lambda]$ are the same.

Let
$$p = 3$$
. $[(5, 3^3)] =$ is neither 3-regular nor 3-restricted

IN POSITIVE CHARACTERISTIC: Specht modules are not always irreducible!

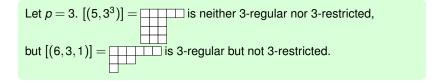
- λ is *p*-regular if no *p* consecutive rows of $[\lambda]$ are the same.
- λ is *p*-restricted if no *p* consecutive columns of $[\lambda]$ are the same.



IN POSITIVE CHARACTERISTIC: Specht modules are not always irreducible!

The irreducible modules of \mathfrak{S}_n arise as quotients of Specht modules.

- λ is *p*-regular if no *p* consecutive rows of $[\lambda]$ are the same.
- λ is *p*-restricted if no *p* consecutive columns of $[\lambda]$ are the same.



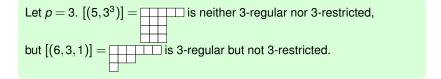
Theorem

 $\{D(\lambda) \mid \lambda \text{ is } p\text{-regular}\}\$ is a complete set of distinct irreducible \mathfrak{S}_n -modules.

IN POSITIVE CHARACTERISTIC: Specht modules are not always irreducible!

The irreducible modules of \mathfrak{S}_n arise as quotients of Specht modules.

- λ is *p*-regular if no *p* consecutive rows of $[\lambda]$ are the same.
- λ is *p*-restricted if no *p* consecutive columns of $[\lambda]$ are the same.



Theorem

 $\{D(\lambda) \mid \lambda \text{ is } p\text{-regular}\}\$ is a complete set of distinct irreducible \mathfrak{S}_n -modules.

Open Problem

What are the dimensions and bases of irreducible \mathfrak{S}_n -modules?

HECKE ALGEBRAS

Let char $\mathbb{F} = p$ is 0 or a prime.

Let $q \in \mathbb{F}^{\times}$ be a primitive eth root of unity, so $e = \infty$ or $e \in \{2, 3, ...\}$.

HECKE ALGEBRAS

Let char $\mathbb{F} = p$ is 0 or a prime. Let $q \in \mathbb{F}^{\times}$ be a primitive eth root of unity, so $e = \infty$ or $e \in \{2, 3, ...\}$.

The **Hecke algebra of the symmetric group**, $\mathscr{H}(\mathfrak{S}_n)$, is the unital, associative \mathbb{F} -algebra with generating set

$$\{T_1,T_2,\ldots,T_{n-1}\}$$

subject to the relations

Let char $\mathbb{F} = p$ is 0 or a prime. Let $q \in \mathbb{F}^{\times}$ be a primitive eth root of unity, so $e = \infty$ or $e \in \{2, 3, ...\}$.

The **Hecke algebra of the symmetric group**, $\mathscr{H}(\mathfrak{S}_n)$, is the unital, associative \mathbb{F} -algebra with generating set

 $\{T_1, T_2, \ldots, T_{n-1}\}$

 $\begin{aligned} \text{subject to the relations} \\ (T_i - q)(T_i + 1) &= 0 & \text{for } 1 \leq i < n; \\ T_i T_j &= T_j T_i & \text{for } |i - j| > 1; \\ T_i T_{i+1} T_i &= T_{i+1} T_i T_{i+1} & \text{for } 1 \leq i \leq n-2. \end{aligned}$

Let char $\mathbb{F} = p$ is 0 or a prime. Let $q \in \mathbb{F}^{\times}$ be a primitive eth root of unity, so $e = \infty$ or $e \in \{2, 3, ...\}$.

The **Hecke algebra of the symmetric group**, $\mathscr{H}(\mathfrak{S}_n)$, is the unital, associative \mathbb{F} -algebra with generating set

 $\{T_1, T_2, \ldots, T_{n-1}\}$

 $\begin{aligned} \text{subject to the relations} \\ (T_i - q)(T_i + 1) &= 0 & \text{for } 1 \leqslant i < n; \\ T_i T_j &= T_j T_i & \text{for } |i - j| > 1; \\ T_i T_{i+1} T_i &= T_{i+1} T_i T_{i+1} & \text{for } 1 \leqslant i \leqslant n - 2. \end{aligned}$

There is a **cyclotomic Hecke algebra**, \mathcal{H}_n , associated to each complex reflection group of type $G(\ell, 1, n) = (\mathbb{Z}/\ell\mathbb{Z}) \wr \mathfrak{S}_n$.

Let char $\mathbb{F} = p$ is 0 or a prime. Let $q \in \mathbb{F}^{\times}$ be a primitive eth root of unity, so $e = \infty$ or $e \in \{2, 3, ...\}$.

The **Hecke algebra of the symmetric group**, $\mathscr{H}(\mathfrak{S}_n)$, is the unital, associative \mathbb{F} -algebra with generating set

 $\{T_1, T_2, \ldots, T_{n-1}\}$

 $\begin{aligned} \text{subject to the relations} \\ (T_i - q)(T_i + 1) &= 0 & \text{for } 1 \leqslant i < n; \\ T_i T_j &= T_j T_i & \text{for } |i - j| > 1; \\ T_i T_{i+1} T_i &= T_{i+1} T_i T_{i+1} & \text{for } 1 \leqslant i \leqslant n-2. \end{aligned}$

There is a **cyclotomic Hecke algebra**, \mathcal{H}_n , associated to each complex reflection group of type $G(\ell, 1, n) = (\mathbb{Z}/\ell\mathbb{Z}) \wr \mathfrak{S}_n$.

• LEVEL $\ell = 1$: the Iwahori–Hecke algebra $\mathscr{H}(\mathfrak{S}_n)$ of type A.

Let char $\mathbb{F} = p$ is 0 or a prime. Let $q \in \mathbb{F}^{\times}$ be a primitive eth root of unity, so $e = \infty$ or $e \in \{2, 3, ...\}$.

The **Hecke algebra of the symmetric group**, $\mathscr{H}(\mathfrak{S}_n)$, is the unital, associative \mathbb{F} -algebra with generating set

 $\{T_1, T_2, \ldots, T_{n-1}\}$

 $\begin{aligned} \text{subject to the relations} \\ (T_i - q)(T_i + 1) &= 0 & \text{for } 1 \leqslant i < n; \\ T_i T_j &= T_j T_i & \text{for } |i - j| > 1; \\ T_i T_{i+1} T_i &= T_{i+1} T_i T_{i+1} & \text{for } 1 \leqslant i \leqslant n-2. \end{aligned}$

There is a **cyclotomic Hecke algebra**, \mathcal{H}_n , associated to each complex reflection group of type $G(\ell, 1, n) = (\mathbb{Z}/\ell\mathbb{Z}) \wr \mathfrak{S}_n$.

- LEVEL $\ell = 1$: the Iwahori–Hecke algebra $\mathscr{H}(\mathfrak{S}_n)$ of type A.
- LEVEL $\ell = 2$: the Iwahori–Hecke algebra $\mathscr{H}((\mathbb{Z}/2\mathbb{Z})\wr\mathfrak{S}_n)$ of type B.

POSITIVE CHARACTERISTIC: Let char $\mathbb{F} = p > 0$ be a prime.

POSITIVE CHARACTERISTIC: Let char $\mathbb{F} = p > 0$ be a prime.

Conjecture (James, 1990)

The representation theory of the Hecke algebra of the symmetric group $\mathscr{H}(\mathfrak{S}_n)$ is independent of the characteristic p if pe > n.

POSITIVE CHARACTERISTIC: Let char $\mathbb{F} = p > 0$ be a prime.

Conjecture (James, 1990)

The representation theory of the Hecke algebra of the symmetric group $\mathscr{H}(\mathfrak{S}_n)$ is independent of the characteristic p if pe > n.

There are many cases where James's conjecture holds, however...

Theorem (Williamson, 2012)

James's conjecture is false! Williamson found counterexamples for large p.

POSITIVE CHARACTERISTIC: Let char $\mathbb{F} = p > 0$ be a prime.

Conjecture (James, 1990)

The representation theory of the Hecke algebra of the symmetric group $\mathscr{H}(\mathfrak{S}_n)$ is independent of the characteristic p if pe > n.

There are many cases where James's conjecture holds, however...

Theorem (Williamson, 2012)

James's conjecture is false! Williamson found counterexamples for large p.

Can we explicitly describe the irreducible modules of \mathfrak{S}_n ?

POSITIVE CHARACTERISTIC: Let char $\mathbb{F} = p > 0$ be a prime.

Conjecture (James, 1990)

The representation theory of the Hecke algebra of the symmetric group $\mathscr{H}(\mathfrak{S}_n)$ is independent of the characteristic p if pe > n.

There are many cases where James's conjecture holds, however...

Theorem (Williamson, 2012)

James's conjecture is false! Williamson found counterexamples for large p.

Can we explicitly describe the irreducible modules of \mathfrak{S}_n ?

We know presentations, dimensions and bases of Specht modules!

POSITIVE CHARACTERISTIC: Let char $\mathbb{F} = p > 0$ be a prime.

Conjecture (James, 1990)

The representation theory of the Hecke algebra of the symmetric group $\mathscr{H}(\mathfrak{S}_n)$ is independent of the characteristic p if pe > n.

There are many cases where James's conjecture holds, however...

Theorem (Williamson, 2012)

James's conjecture is false! Williamson found counterexamples for large p.

Can we explicitly describe the irreducible modules of \mathfrak{S}_n ?

We know presentations, dimensions and bases of Specht modules!

Aim

FIRST STEP: classify the irreducible Specht modules in positive characteristic.

Let λ be a partition, and $[\lambda]$ be its Young diagram.

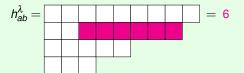
The **hook length** of a box $(a,b) \in [\lambda]$ is

$$\begin{split} h_{ab}^{\lambda} := & (\lambda_a - b) + (\lambda_b' - a) + 1 \\ & = & \text{arm length} + \text{leg length} + \text{node } (a, b) \end{split}$$

Let λ be a partition, and $[\lambda]$ be its Young diagram.

The **hook length** of a box $(a,b) \in [\lambda]$ is

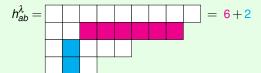
 $h_{ab}^{\lambda} := (\lambda_a - b) + (\lambda_b' - a) + 1$ = arm length + leg length + node (a, b)



Let λ be a partition, and $[\lambda]$ be its Young diagram.

The **hook length** of a box $(a,b) \in [\lambda]$ is

 $h_{ab}^{\lambda} := (\lambda_a - b) + (\lambda_b' - a) + 1$ = arm length + leg length + node (a, b)

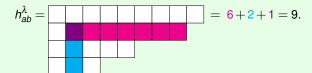


Let λ be a partition, and $[\lambda]$ be its Young diagram.

The hook length of a box
$$(a, b) \in [\lambda]$$
 is

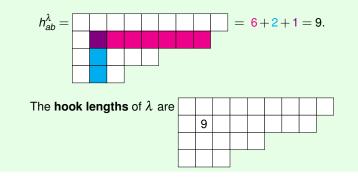
$$h_{ab}^{\lambda} := (\lambda_a - b) + (\lambda'_b - a) + 1$$

$$= \operatorname{arm length} + \operatorname{leg length} + \operatorname{node} (a, b)$$



Let λ be a partition, and $[\lambda]$ be its Young diagram.

The **hook length** of a box
$$(a,b) \in [\lambda]$$
 is
$$h_{ab}^{\lambda} := (\lambda_a - b) + (\lambda'_b - a) + 1$$
$$= \text{arm length} + \text{leg length} + \text{node } (a,b)$$

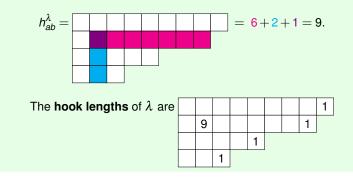


Let λ be a partition, and $[\lambda]$ be its Young diagram.

The **hook length** of a box
$$(a,b) \in [\lambda]$$
 is

$$h_{ab}^{\lambda} := (\lambda_a - b) + (\lambda'_b - a) + 1$$

$$= \operatorname{arm length} + \operatorname{leg length} + \operatorname{node} (a,b)$$

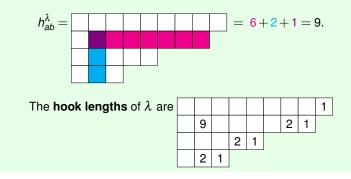


Let λ be a partition, and $[\lambda]$ be its Young diagram.

The **hook length** of a box
$$(a,b) \in [\lambda]$$
 is

$$h_{ab}^{\lambda} := (\lambda_a - b) + (\lambda'_b - a) + 1$$

$$= \operatorname{arm length} + \operatorname{leg length} + \operatorname{node} (a,b)$$

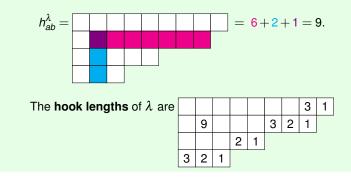


Let λ be a partition, and $[\lambda]$ be its Young diagram.

The **hook length** of a box
$$(a,b) \in [\lambda]$$
 is

$$h_{ab}^{\lambda} := (\lambda_a - b) + (\lambda'_b - a) + 1$$

$$= \operatorname{arm length} + \operatorname{leg length} + \operatorname{node} (a,b)$$

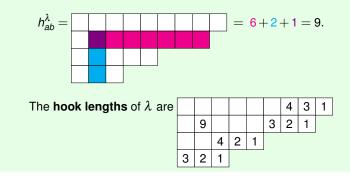


Let λ be a partition, and $[\lambda]$ be its Young diagram.

The **hook length** of a box
$$(a,b) \in [\lambda]$$
 is

$$h_{ab}^{\lambda} := (\lambda_a - b) + (\lambda'_b - a) + 1$$

$$= \operatorname{arm length} + \operatorname{leg length} + \operatorname{node} (a,b)$$

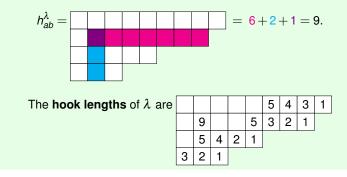


Let λ be a partition, and $[\lambda]$ be its Young diagram.

The **hook length** of a box
$$(a,b) \in [\lambda]$$
 is

$$h_{ab}^{\lambda} := (\lambda_a - b) + (\lambda'_b - a) + 1$$

$$= \operatorname{arm length} + \operatorname{leg length} + \operatorname{node} (a,b)$$

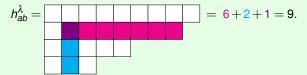


Let λ be a partition, and $[\lambda]$ be its Young diagram.

The **hook length** of a box
$$(a, b) \in [\lambda]$$
 is

$$h_{ab}^{\lambda} := (\lambda_a - b) + (\lambda'_b - a) + 1$$

$$= \operatorname{arm length} + \operatorname{leg length} + \operatorname{node} (a, b)$$



The hook lengths of λ are	12	11	10	8	7	5	4	3	1	
	10	9	8	6	5	3	2	1		
	6	5	4	2	1					
	3	2	1							

Which partitions label irreducible Specht modules?

Which partitions label irreducible Specht modules?

p-adic valuations: $v_p(x) = \max\{y \in \mathbb{N} \mid p^y \mid x\}$

Which partitions label irreducible Specht modules?

p-adic valuations: $v_p(x) = \max\{y \in \mathbb{N} \mid p^y \mid x\}$

(e, p)-adic valuations:	$v_{e,p}(h) := \begin{cases} v_p(\frac{h}{e}) + 1\\ 0 \end{cases}$	if <i>e</i> <i>h</i> ;
	$\int 0$	otherwise.

Which partitions label irreducible Specht modules?

p-adic valuations: $v_p(x) = \max\{y \in \mathbb{N} \mid p^y \mid x\}$

(e,p)-adic valuations:	$v_{e,p}(h) := \begin{cases} v_p(\frac{h}{e}) + 1 \\ 0 \end{cases}$	if <i>e</i> <i>h</i> ;
	$v_{e,p}(n) = \int 0$	otherwise.

Theorem (James–Mathas)

Which partitions label irreducible Specht modules?

p-adic valuations: $v_p(x) = \max\{y \in \mathbb{N} \mid p^y \mid x\}$

(e,p)-adic valuations:	$v_{e,p}(h) := \begin{cases} v_p(\frac{h}{e}) + 1\\ 0 \end{cases}$	if <i>e</i> <i>h</i> ;
	$v_{e,p}(n) = \begin{cases} 0 \end{cases}$	otherwise.

Theorem (James–Mathas)

Let $e \in \{3, 4, ...\}$. Then $S(\lambda)$ is **irreducible** if and only if there exist integers $k \ge 0$ and $\ell \ge 0$ with $(k + 1, \ell + 1) \notin [\lambda]$, satisfying

Which partitions label irreducible Specht modules?

p-adic valuations: $v_p(x) = \max\{y \in \mathbb{N} \mid p^y \mid x\}$

(e, p)-adic valuations:	$v_{e,p}(h) := \begin{cases} v_p(rac{h}{e}) + 1 \\ 0 \end{cases}$	if <i>e</i> ∣ <i>h</i> ;
	$v_{e,p}(n) = \int 0$	otherwise.

Theorem (James–Mathas)

Let $e \in \{3, 4, ...\}$. Then $S(\lambda)$ is **irreducible** if and only if there exist integers $k \ge 0$ and $\ell \ge 0$ with $(k + 1, \ell + 1) \notin [\lambda]$, satisfying

e-restricted condition:

 $v_{e,p}(h_{ab}^{\lambda}) = v_{e,p}(h_{ac}^{\lambda})$ whenever $(a,b), (a,c) \in [\lambda]$ and a > k;

Which partitions label irreducible Specht modules?

p-adic valuations: $v_p(x) = \max\{y \in \mathbb{N} \mid p^y \mid x\}$

(e, p)-adic valuations:	$v_{e,p}(h) := \begin{cases} v_p(\frac{h}{e}) + 0 \end{cases}$	1 if <i>e</i> <i>h</i> ;
	$v_{e,p}(n) = \int 0$	otherwise.

Theorem (James–Mathas)

Let $e \in \{3, 4, ...\}$. Then $S(\lambda)$ is **irreducible** if and only if there exist integers $k \ge 0$ and $\ell \ge 0$ with $(k + 1, \ell + 1) \notin [\lambda]$, satisfying

- *e-restricted condition:* $v_{e,p}(h_{ab}^{\lambda}) = v_{e,p}(h_{ac}^{\lambda})$ whenever $(a,b), (a,c) \in [\lambda]$ and a > k;
- **2** *e-regular condition:* $v_{e,p}(h_{ac}^{\lambda}) = v_{e,p}(h_{bc}^{\lambda})$ whenever $(a, c), (b, c) \in [\lambda]$ and $c > \ell$;

Which partitions label irreducible Specht modules?

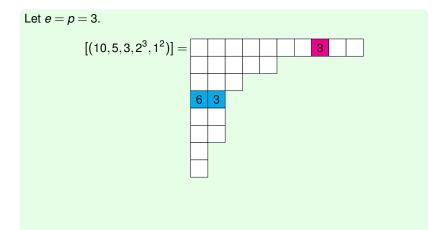
p-adic valuations: $v_p(x) = \max\{y \in \mathbb{N} \mid p^y \mid x\}$

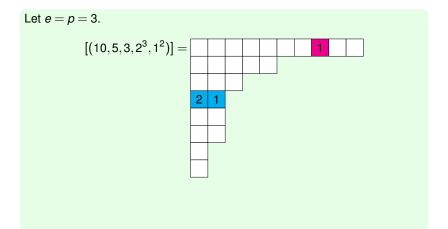
(e,p)-adic valuations:	$v_{e,p}(h) := \begin{cases} v_p(rac{h}{e}) + \\ 0 \end{cases}$	- 1 if <i>e</i> <i>h</i> ;
	$v_{e,p}(n) = \int 0$	otherwise.

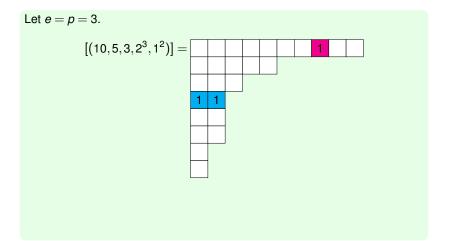
Theorem (James–Mathas)

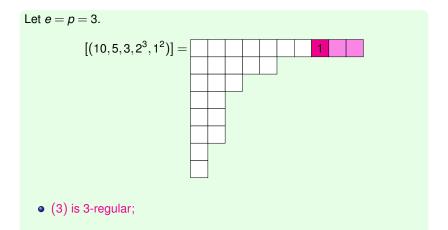
Let $e \in \{3, 4, ...\}$. Then $S(\lambda)$ is **irreducible** if and only if there exist integers $k \ge 0$ and $\ell \ge 0$ with $(k + 1, \ell + 1) \notin [\lambda]$, satisfying

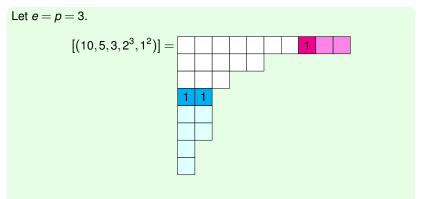
- *e-restricted condition:* $v_{e,p}(h_{ab}^{\lambda}) = v_{e,p}(h_{ac}^{\lambda})$ whenever $(a,b), (a,c) \in [\lambda]$ and a > k;
- **2** *e-regular condition:* $v_{e,p}(h_{ac}^{\lambda}) = v_{e,p}(h_{bc}^{\lambda})$ whenever $(a, c), (b, c) \in [\lambda]$ and $c > \ell$;
- **3** all other boxes in $[\lambda]$: $v_{e,p}(h_{ac}^{\lambda}) = 0$ for $1 \le a \le k, 1 \le b \le \ell$.











- (3) is 3-regular;
- $(2^3, 1^2)$ is 3-restricted.

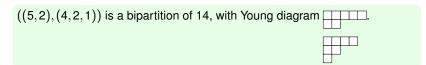
Let \mathscr{H}_n denote the Iwahori–Hecke algebra $\mathscr{H}((\mathbb{Z}/2\mathbb{Z})\wr\mathfrak{S}_n)$ of type B.

Let \mathscr{H}_n denote the Iwahori–Hecke algebra $\mathscr{H}((\mathbb{Z}/2\mathbb{Z})\wr\mathfrak{S}_n)$ of type B.

A **bipartition** of *n* is a pair (λ, μ) of partitions such that $|\lambda| + |\mu| = n$.

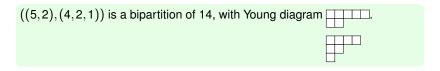
Let \mathscr{H}_n denote the Iwahori–Hecke algebra $\mathscr{H}((\mathbb{Z}/2\mathbb{Z})\wr\mathfrak{S}_n)$ of type B.

A **bipartition** of *n* is a pair (λ, μ) of partitions such that $|\lambda| + |\mu| = n$.



Let \mathscr{H}_n denote the Iwahori–Hecke algebra $\mathscr{H}((\mathbb{Z}/2\mathbb{Z})\wr\mathfrak{S}_n)$ of type B.

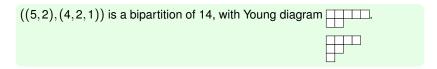
A **bipartition** of *n* is a pair (λ, μ) of partitions such that $|\lambda| + |\mu| = n$.



For each bipartition (λ, μ) , we can construct a **Specht module**, $S(\lambda, \mu)$

Let \mathscr{H}_n denote the Iwahori–Hecke algebra $\mathscr{H}((\mathbb{Z}/2\mathbb{Z})\wr\mathfrak{S}_n)$ of type B.

A **bipartition** of *n* is a pair (λ, μ) of partitions such that $|\lambda| + |\mu| = n$.

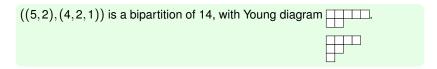


For each bipartition (λ, μ) , we can construct a **Specht module**, $S(\lambda, \mu)$, with basis

$$\{v_T \mid T \text{ is a "standard"}(\lambda, \mu) \text{-tableau} \}$$
.

Let \mathscr{H}_n denote the Iwahori–Hecke algebra $\mathscr{H}((\mathbb{Z}/2\mathbb{Z})\wr\mathfrak{S}_n)$ of type B.

A **bipartition** of *n* is a pair (λ, μ) of partitions such that $|\lambda| + |\mu| = n$.



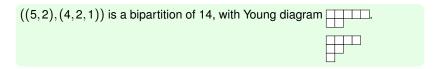
For each bipartition (λ, μ) , we can construct a **Specht module**, $S(\lambda, \mu)$, with basis

$$\{v_T \mid T \text{ is a "standard"}(\lambda, \mu)$$
-tableau $\}$.

Irreducible \mathcal{H}_n -modules arise as quotients of Specht modules.

Let \mathscr{H}_n denote the Iwahori–Hecke algebra $\mathscr{H}((\mathbb{Z}/2\mathbb{Z})\wr\mathfrak{S}_n)$ of type B.

A **bipartition** of *n* is a pair (λ, μ) of partitions such that $|\lambda| + |\mu| = n$.



For each bipartition (λ, μ) , we can construct a **Specht module**, $S(\lambda, \mu)$, with basis

$$\{v_T \mid T \text{ is a "standard"}(\lambda, \mu) \text{-tableau}\}.$$

Irreducible \mathcal{H}_n -modules arise as quotients of Specht modules.

Can we classify irreducible Specht modules $S(\lambda, \mu)$?

Conjecture (Joint work with Matthew Fayers)

The "unrestrictable" Specht module $S(\lambda,\mu)$ is IRREDUCIBLE if and only if

Conjecture (Joint work with Matthew Fayers)

The "unrestrictable" Specht module $S(\lambda, \mu)$ is IRREDUCIBLE if and only if there exists an irreducible Specht module $S(\nu)$

Conjecture (Joint work with Matthew Fayers)

The "unrestrictable" Specht module $S(\lambda, \mu)$ is IRREDUCIBLE if and only if there exists an irreducible Specht module $S(\nu)$ such that the bipartition (λ, μ) "fits into" the Young diagram $[\nu]$ in one of two ways:

Conjecture (Joint work with Matthew Fayers)

The "unrestrictable" Specht module $S(\lambda, \mu)$ is IRREDUCIBLE if and only if there exists an irreducible Specht module $S(\nu)$ such that the bipartition (λ, μ) "fits into" the Young diagram $[\nu]$ in one of two ways:

