IrReducible Specht modules FOR SYMMETRIC GROUPS AND BEYOND

Louise Sutton

Women at the Intersection of Mathematics and Theoretical Physics Meet in Okinawa

The symmetric group

The symmetric group \mathfrak{S}_{n} of order n ! is generated by the simple transpositions

$$
\left\{s_{1}, s_{2}, \ldots, s_{n-1}\right\}
$$

subject to the relations

$$
\begin{aligned}
s_{i}^{2} & =1 \\
s_{i} s_{j} & =s_{j} s_{i} \\
s_{i} s_{i+1} s_{i} & =s_{i+1} s_{i} s_{i+1}
\end{aligned}
$$

$$
\begin{aligned}
& \text { for } 1 \leqslant i<n \\
& \text { for }|i-j|>1 \\
& \text { for } 1 \leqslant i \leqslant n-2
\end{aligned}
$$

The symmetric group

The symmetric group \mathfrak{S}_{n} of order n ! is generated by the simple transpositions

$$
\left\{s_{1}, s_{2}, \ldots, s_{n-1}\right\}
$$

subject to the relations

$$
\begin{aligned}
s_{i}^{2} & =1 & & \text { for } 1 \leqslant i<n \\
s_{i} s_{j} & =s_{j} s_{i} & & \text { for }|i-j|>1 \\
s_{i} s_{i+1} s_{i} & =s_{i+1} s_{i} s_{i+1} & & \text { for } 1 \leqslant i \leqslant n-2 .
\end{aligned}
$$

\mathfrak{S}_{n} is the quotient of the braid group B_{n} by the relation $s_{i}^{2}=1$.

The symmetric group

The symmetric group \mathfrak{S}_{n} of order n ! is generated by the simple transpositions

$$
\left\{s_{1}, s_{2}, \ldots, s_{n-1}\right\}
$$

subject to the relations

$$
\begin{aligned}
s_{i}^{2} & =1 & & \text { for } 1 \leqslant i<n ; \\
s_{i} s_{j} & =s_{j} s_{i} & & \text { for }|i-j|>1 \\
s_{i} s_{i+1} s_{i} & =s_{i+1} s_{i} s_{i+1} & & \text { for } 1 \leqslant i \leqslant n-2 .
\end{aligned}
$$

\mathfrak{S}_{n} is the quotient of the braid group B_{n} by the relation $s_{i}^{2}=1$.

Question

What are the representations of \mathfrak{S}_{n} ? Can we classify them?

The symmetric group

The symmetric group \mathfrak{S}_{n} of order $n!$ is generated by the simple transpositions

$$
\left\{s_{1}, s_{2}, \ldots, s_{n-1}\right\}
$$

subject to the relations

$$
\begin{aligned}
s_{i}^{2} & =1 & & \text { for } 1 \leqslant i<n ; \\
s_{i} s_{j} & =s_{j} s_{i} & & \text { for }|i-j|>1 ; \\
s_{i} s_{i+1} s_{i} & =s_{i+1} s_{i} s_{i+1} & & \text { for } 1 \leqslant i \leqslant n-2 .
\end{aligned}
$$

\mathfrak{S}_{n} is the quotient of the braid group B_{n} by the relation $s_{i}^{2}=1$.

Question

What are the representations of \mathfrak{S}_{n} ? Can we classify them?
Representations depend on the characteristic of the underlying field \mathbb{F} !

THE SYMMETRIC GROUP

The symmetric group \mathfrak{S}_{n} of order n ! is generated by the simple transpositions

$$
\left\{s_{1}, s_{2}, \ldots, s_{n-1}\right\}
$$

subject to the relations

$$
\begin{aligned}
s_{i}^{2} & =1 & & \text { for } 1 \leqslant i<n \\
s_{i} s_{j} & =s_{j} s_{i} & & \text { for }|i-j|>1 \\
s_{i} s_{i+1} s_{i} & =s_{i+1} s_{i} s_{i+1} & & \text { for } 1 \leqslant i \leqslant n-2 .
\end{aligned}
$$

\mathfrak{S}_{n} is the quotient of the braid group B_{n} by the relation $s_{i}^{2}=1$.

Question

What are the representations of \mathfrak{S}_{n} ? Can we classify them?
Representations depend on the characteristic of the underlying field \mathbb{F} !

Fields of characteristic zero:
Fields of prime characteristic: e.g. \mathbb{Q}, \mathbb{C}. e.g. finite fields $\mathbb{Z} / p \mathbb{Z}, p$ a prime.

IRREDUCIBLE MODULES

What are the building blocks of representations?

IRREDUCIBLE MODULES

What are the building blocks of representations?
Representations of a finite group G are equivalent to modules.
a module $=$ a vector space equipped with an action of G

IrREDUCIBLE MODULES

What are the building blocks of representations?
Representations of a finite group G are equivalent to modules.
a module $=$ a vector space equipped with an action of G

Definition

A module V of G is irreducible if its only submodules are V and 0 .

Irreducible modules

What are the building blocks of representations?
Representations of a finite group G are equivalent to modules.
a module $=$ a vector space equipped with an action of G

Definition

A module V of G is irreducible if its only submodules are V and 0 .

THE ONE-DIMENSIONAL MODULES OF \mathfrak{S}_{n}

The trivial module V of \mathfrak{S}_{n} :

$$
\pi(v)=v \quad \forall \pi \in \mathfrak{S}_{n}, v \in V
$$

IRREDUCIBLE MODULES

What are the building blocks of representations?
Representations of a finite group G are equivalent to modules.
a module $=$ a vector space equipped with an action of G

Definition

A module V of G is irreducible if its only submodules are V and 0 .

THE ONE-DIMENSIONAL MODULES OF \mathfrak{S}_{n}

The trivial module V of \mathfrak{S}_{n} :

$$
\pi(v)=v \quad \forall \pi \in \mathfrak{S}_{n}, v \in V . \quad \pi\left(v^{\prime}\right)=\operatorname{sgn}(\pi) v^{\prime} \quad \forall \pi \in \mathfrak{S}_{n}, v^{\prime} \in V^{\prime}
$$

IRREDUCIBLE MODULES

What are the building blocks of representations?
Representations of a finite group G are equivalent to modules.
a module $=$ a vector space equipped with an action of G

Definition

A module V of G is irreducible if its only submodules are V and 0 .

THE ONE-DIMENSIONAL MODULES OF \mathfrak{S}_{n}

The trivial module V of \mathfrak{S}_{n} :

$$
\pi(v)=v \quad \forall \pi \in \mathfrak{S}_{n}, v \in V . \quad \pi\left(v^{\prime}\right)=\operatorname{sgn}(\pi) v^{\prime} \quad \forall \pi \in \mathfrak{S}_{n}, v^{\prime} \in V^{\prime}
$$

Open Problem

Can we explicitly describe the irreducible modules of \mathfrak{S}_{n} ? What are their dimensions? What are their bases?

Introducing combinatorics

A partition λ of n is a non-increasing sequence of non-negative integers
$\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots\right)$ such that $\lambda_{i} \geqslant \lambda_{i+1}$ for all $i \geqslant 1$ and $\sum_{i=1}^{\infty}\left|\lambda_{i}\right|=n$.

Introducing combinatorics

A partition λ of n is a non-increasing sequence of non-negative integers $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots\right)$ such that $\lambda_{i} \geqslant \lambda_{i+1}$ for all $i \geqslant 1$ and $\sum_{i=1}^{\infty}\left|\lambda_{i}\right|=n$.

The partitions of 4 are: $(4),(3,1),\left(2^{2}\right),\left(2,1^{2}\right),\left(1^{4}\right)$.

INTRODUCING COMBINATORICS

A partition λ of n is a non-increasing sequence of non-negative integers $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots\right)$ such that $\lambda_{i} \geqslant \lambda_{i+1}$ for all $i \geqslant 1$ and $\sum_{i=1}^{\infty}\left|\lambda_{i}\right|=n$.

The partitions of 4 are: $(4),(3,1),\left(2^{2}\right),\left(2,1^{2}\right),\left(1^{4}\right)$.

Theorem

$\left\{\right.$ distinct irreducible representations of \mathfrak{S}_{n} over $\left.\mathbb{C}\right\} \stackrel{1: 1}{\longleftrightarrow}\{$ partitions of $n\}$.

Introducing combinatorics

A partition λ of n is a non-increasing sequence of non-negative integers $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots\right)$ such that $\lambda_{i} \geqslant \lambda_{i+1}$ for all $i \geqslant 1$ and $\sum_{i=1}^{\infty}\left|\lambda_{i}\right|=n$.

The partitions of 4 are: $(4),(3,1),\left(2^{2}\right),\left(2,1^{2}\right),\left(1^{4}\right)$.

Theorem

$\left\{\right.$ distinct irreducible representations of \mathfrak{S}_{n} over $\left.\mathbb{C}\right\} \stackrel{1: 1}{\stackrel{1}{4}}\{$ partitions of $n\}$.
Can we construct an irreducible representation of \mathfrak{S}_{n} for each partition of n ?

Introducing combinatorics

A partition λ of n is a non-increasing sequence of non-negative integers $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots\right)$ such that $\lambda_{i} \geqslant \lambda_{i+1}$ for all $i \geqslant 1$ and $\sum_{i=1}^{\infty}\left|\lambda_{i}\right|=n$.

The partitions of 4 are: $(4),(3,1),\left(2^{2}\right),\left(2,1^{2}\right),\left(1^{4}\right)$.

Theorem

$\left\{\right.$ distinct irreducible representations of \mathfrak{S}_{n} over $\left.\mathbb{C}\right\} \stackrel{1: 1}{\longleftrightarrow}\{$ partitions of $n\}$.
Can we construct an irreducible representation of \mathfrak{S}_{n} for each partition of n ?

$$
\text { \{partitions of } 4\} \quad \leftrightarrow \quad\{\text { Young diagrams of } 4\}
$$

Introducing combinatorics

A partition λ of n is a non-increasing sequence of non-negative integers $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots\right)$ such that $\lambda_{i} \geqslant \lambda_{i+1}$ for all $i \geqslant 1$ and $\sum_{i=1}^{\infty}\left|\lambda_{i}\right|=n$.

The partitions of 4 are: $(4),(3,1),\left(2^{2}\right),\left(2,1^{2}\right),\left(1^{4}\right)$.

Theorem

$\left\{\right.$ distinct irreducible representations of \mathfrak{S}_{n} over $\left.\mathbb{C}\right\} \stackrel{1: 1}{\longleftrightarrow}\{$ partitions of $n\}$.
Can we construct an irreducible representation of \mathfrak{S}_{n} for each partition of n ?

$$
\begin{equation*}
\text { \{partitions of } 4\} \quad \leftrightarrow \quad\{\text { Young diagrams of } 4\} \tag{4}
\end{equation*}
$$

Introducing combinatorics

A partition λ of n is a non-increasing sequence of non-negative integers $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots\right)$ such that $\lambda_{i} \geqslant \lambda_{i+1}$ for all $i \geqslant 1$ and $\sum_{i=1}^{\infty}\left|\lambda_{i}\right|=n$.

The partitions of 4 are: $(4),(3,1),\left(2^{2}\right),\left(2,1^{2}\right),\left(1^{4}\right)$.

Theorem

$\left\{\right.$ distinct irreducible representations of \mathfrak{S}_{n} over $\left.\mathbb{C}\right\} \stackrel{1: 1}{\longleftrightarrow}\{$ partitions of $n\}$.
Can we construct an irreducible representation of \mathfrak{S}_{n} for each partition of n ?

$$
\text { \{partitions of } 4\} \quad \leftrightarrow \quad\{\text { Young diagrams of } 4\}
$$

(4)
$\left(2^{2}\right)$
$\left(2,1^{2}\right)$
$\left(1^{4}\right)$
\square
\square

JAMES'S COMBINATORIAL CONSTRUCTION

A λ-tableau T is a filling of its Young diagram by $1,2, \ldots,|\lambda|$.

JAMES'S COMBINATORIAL CONSTRUCTION

A λ-tableau T is a filling of its Young diagram by $1,2, \ldots,|\lambda|$.
$\mathfrak{S}_{|\lambda|}$ acts on T by place permutation.

JAmES's COMBINATORIAL CONSTRUCTION

A λ-tableau T is a filling of its Young diagram by $1,2, \ldots,|\lambda|$.
$\mathfrak{S}_{|\lambda|}$ acts on T by place permutation.

James's Combinatorial construction

A λ-tableau T is a filling of its Young diagram by $1,2, \ldots,|\lambda|$.
$\mathfrak{S}_{|\lambda|}$ acts on T by place permutation.

Construction (Gordon James, 1970s)

For each partition λ of n, one can construct an \mathfrak{S}_{n}-module called a Specht module, $S(\lambda)$

James's Combinatorial construction

A λ-tableau T is a filling of its Young diagram by $1,2, \ldots,|\lambda|$.
$\mathfrak{S}_{|\lambda|}$ acts on T by place permutation.

Construction (Gordon James, 1970s)

For each partition λ of n, one can construct an \mathfrak{S}_{n}-module called a Specht module, $S(\lambda)$, with basis

$$
\left\{v_{T} \mid T \text { is a "standard" } \lambda \text {-tableau }\right\} .
$$

James's Combinatorial construction

A λ-tableau T is a filling of its Young diagram by $1,2, \ldots,|\lambda|$.
$\mathfrak{S}_{|\lambda|}$ acts on T by place permutation.

Construction (Gordon James, 1970s)

For each partition λ of n, one can construct an \mathfrak{S}_{n}-module called a Specht module, $S(\lambda)$, with basis

$$
\left\{v_{T} \mid T \text { is a "standard" } \lambda \text {-tableau }\right\} .
$$

IN CHARACTERISTIC ZERO
$\{S(\lambda) \mid \lambda$ is a partition $\} \stackrel{1: 1}{\longleftrightarrow}$ \{distinct irreducible representations of $\left.\mathfrak{S}_{n}\right\}$

James's combinatorial construction

A λ-tableau T is a filling of its Young diagram by $1,2, \ldots,|\lambda|$.
$\mathfrak{S}_{|\lambda|}$ acts on T by place permutation.

Construction (Gordon James, 1970s)

For each partition λ of n, one can construct an \mathfrak{S}_{n}-module called a Specht module, $S(\lambda)$, with basis

$$
\left\{v_{T} \mid T \text { is a "standard" } \lambda \text {-tableau }\right\} .
$$

IN CHARACTERISTIC ZERO

$\{S(\lambda) \mid \lambda$ is a partition $\} \stackrel{1: 1}{\longleftrightarrow}$ \{distinct irreducible representations of $\left.\mathfrak{S}_{n}\right\}$ The dimension of $S(\lambda)=\#\{$ "standard" λ-tableaux $\}$.

LABELLING IRREDUCIBLE MODULES

IN POSITIVE CHARACTERISTIC: Specht modules are not always irreducible!

LABELLING IRREDUCIBLE MODULES

IN POSITIVE CHARACTERISTIC: Specht modules are not always irreducible!
The irreducible modules of \mathfrak{S}_{n} arise as quotients of Specht modules.

LABELLING IRREDUCIBLE MODULES

IN POSITIVE CHARACTERISTIC: Specht modules are not always irreducible!
The irreducible modules of \mathfrak{S}_{n} arise as quotients of Specht modules.

- λ is p-regular if no p consecutive rows of $[\lambda]$ are the same.

LABELLING IRREDUCIBLE MODULES

IN POSITIVE CHARACTERISTIC: Specht modules are not always irreducible!
The irreducible modules of \mathfrak{S}_{n} arise as quotients of Specht modules.

- λ is p-regular if no p consecutive rows of $[\lambda]$ are the same.
- λ is p-restricted if no p consecutive columns of $[\lambda]$ are the same.

LABELLING IRREDUCIBLE MODULES

IN POSITIVE CHARACTERISTIC: Specht modules are not always irreducible!
The irreducible modules of \mathfrak{S}_{n} arise as quotients of Specht modules.

- λ is p-regular if no p consecutive rows of $[\lambda]$ are the same.
- λ is p-restricted if no p consecutive columns of $[\lambda]$ are the same.

Let $p=3 \cdot\left[\left(5,3^{3}\right)\right]=\square \square$ is neither 3-regular nor 3-restricted

LABELLING IRREDUCIBLE MODULES

IN POSITIVE CHARACTERISTIC: Specht modules are not always irreducible!
The irreducible modules of \mathfrak{S}_{n} arise as quotients of Specht modules.

- λ is p-regular if no p consecutive rows of $[\lambda]$ are the same.
- λ is p-restricted if no p consecutive columns of $[\lambda]$ are the same.

Let $p=3 .\left[\left(5,3^{3}\right)\right]=\square \square$ is neither 3-regular nor 3-restricted,
but $[(6,3,1)]=\square$ is 3-regular but not 3-restricted.

LABELLING IRREDUCIBLE MODULES

IN POSITIVE CHARACTERISTIC: Specht modules are not always irreducible!
The irreducible modules of \mathfrak{S}_{n} arise as quotients of Specht modules.

- λ is p-regular if no p consecutive rows of $[\lambda]$ are the same.
- λ is p-restricted if no p consecutive columns of $[\lambda]$ are the same.

Let $p=3 .\left[\left(5,3^{3}\right)\right]=\square \square$ is neither 3-regular nor 3-restricted,
but $[(6,3,1)]=\square$ is 3-regular but not 3-restricted.

Theorem

$\{D(\lambda) \mid \lambda$ is p-regular $\}$ is a complete set of distinct irreducible \mathfrak{S}_{n}-modules.

LABELLING IRREDUCIBLE MODULES

IN POSITIVE CHARACTERISTIC: Specht modules are not always irreducible!
The irreducible modules of \mathfrak{S}_{n} arise as quotients of Specht modules.

- λ is p-regular if no p consecutive rows of $[\lambda]$ are the same.
- λ is p-restricted if no p consecutive columns of $[\lambda]$ are the same.

Let $p=3 .\left[\left(5,3^{3}\right)\right]=\square$ is neither 3-regular nor 3-restricted,
but $[(6,3,1)]=\square$ is 3-regular but not 3-restricted.

Theorem

$\{D(\lambda) \mid \lambda$ is p-regular $\}$ is a complete set of distinct irreducible \mathfrak{S}_{n}-modules.

Open Problem

What are the dimensions and bases of irreducible \mathfrak{S}_{n}-modules?

Hecke algebras

Let char $\mathbb{F}=p$ is 0 or a prime.
Let $q \in \mathbb{F}^{\times}$be a primitive eth root of unity, so $e=\infty$ or $e \in\{2,3, \ldots\}$.

Hecke algebras

Let char $\mathbb{F}=p$ is 0 or a prime.
Let $q \in \mathbb{F}^{\times}$be a primitive eth root of unity, so $e=\infty$ or $e \in\{2,3, \ldots\}$.

The Hecke algebra of the symmetric group, $\mathscr{H}\left(\mathfrak{S}_{n}\right)$, is the unital, associative \mathbb{F}-algebra with generating set

$$
\left\{T_{1}, T_{2}, \ldots, T_{n-1}\right\}
$$

subject to the relations

Hecke algebras

Let char $\mathbb{F}=p$ is 0 or a prime.
Let $q \in \mathbb{F}^{\times}$be a primitive eth root of unity, so $e=\infty$ or $e \in\{2,3, \ldots\}$.

The Hecke algebra of the symmetric group, $\mathscr{H}\left(\mathfrak{S}_{n}\right)$, is the unital, associative \mathbb{F}-algebra with generating set

$$
\left\{T_{1}, T_{2}, \ldots, T_{n-1}\right\}
$$

subject to the relations

$$
\begin{aligned}
\left(T_{i}-q\right)\left(T_{i}+1\right) & =0 & & \text { for } 1 \leqslant i<n \\
T_{i} T_{j} & =T_{j} T_{i} & & \text { for }|i-j|>1 \\
T_{i} T_{i+1} T_{i} & =T_{i+1} T_{i} T_{i+1} & & \text { for } 1 \leqslant i \leqslant n-2
\end{aligned}
$$

Hecke algebras

Let char $\mathbb{F}=p$ is 0 or a prime.
Let $q \in \mathbb{F}^{\times}$be a primitive eth root of unity, so $e=\infty$ or $e \in\{2,3, \ldots\}$.

The Hecke algebra of the symmetric group, $\mathscr{H}\left(\mathfrak{S}_{n}\right)$, is the unital, associative \mathbb{F}-algebra with generating set

$$
\left\{T_{1}, T_{2}, \ldots, T_{n-1}\right\}
$$

subject to the relations

$$
\begin{aligned}
\left(T_{i}-q\right)\left(T_{i}+1\right) & =0 & & \text { for } 1 \leqslant i<n \\
T_{i} T_{j} & =T_{j} T_{i} & & \text { for }|i-j|>1 \\
T_{i} T_{i+1} T_{i} & =T_{i+1} T_{i} T_{i+1} & & \text { for } 1 \leqslant i \leqslant n-2
\end{aligned}
$$

There is a cyclotomic Hecke algebra, \mathscr{H}_{n}, associated to each complex reflection group of type $G(\ell, 1, n)=(\mathbb{Z} / \ell \mathbb{Z}) \imath \mathfrak{S}_{n}$.

Hecke algebras

Let char $\mathbb{F}=p$ is 0 or a prime.
Let $q \in \mathbb{F}^{\times}$be a primitive eth root of unity, so $e=\infty$ or $e \in\{2,3, \ldots\}$.

The Hecke algebra of the symmetric group, $\mathscr{H}\left(\mathfrak{S}_{n}\right)$, is the unital, associative \mathbb{F}-algebra with generating set

$$
\left\{T_{1}, T_{2}, \ldots, T_{n-1}\right\}
$$

subject to the relations

$$
\begin{aligned}
\left(T_{i}-q\right)\left(T_{i}+1\right) & =0 & & \text { for } 1 \leqslant i<n \\
T_{i} T_{j} & =T_{j} T_{i} & & \text { for }|i-j|>1 \\
T_{i} T_{i+1} T_{i} & =T_{i+1} T_{i} T_{i+1} & & \text { for } 1 \leqslant i \leqslant n-2
\end{aligned}
$$

There is a cyclotomic Hecke algebra, \mathscr{H}_{n}, associated to each complex reflection group of type $G(\ell, 1, n)=(\mathbb{Z} / \ell \mathbb{Z}) \imath \mathfrak{S}_{n}$.

- LEVEL $\ell=1$: the Iwahori-Hecke algebra $\mathscr{H}\left(\mathfrak{S}_{n}\right)$ of type A.

Hecke algebras

Let char $\mathbb{F}=p$ is 0 or a prime.
Let $q \in \mathbb{F}^{\times}$be a primitive eth root of unity, so $e=\infty$ or $e \in\{2,3, \ldots\}$.

The Hecke algebra of the symmetric group, $\mathscr{H}\left(\mathfrak{S}_{n}\right)$, is the unital, associative \mathbb{F}-algebra with generating set

$$
\left\{T_{1}, T_{2}, \ldots, T_{n-1}\right\}
$$

subject to the relations

$$
\begin{aligned}
\left(T_{i}-q\right)\left(T_{i}+1\right) & =0 & & \text { for } 1 \leqslant i<n \\
T_{i} T_{j} & =T_{j} T_{i} & & \text { for }|i-j|>1 \\
T_{i} T_{i+1} T_{i} & =T_{i+1} T_{i} T_{i+1} & & \text { for } 1 \leqslant i \leqslant n-2
\end{aligned}
$$

There is a cyclotomic Hecke algebra, \mathscr{H}_{n}, associated to each complex reflection group of type $G(\ell, 1, n)=(\mathbb{Z} / \ell \mathbb{Z}) \imath \mathfrak{S}_{n}$.

- LEVEL $\ell=1$: the Iwahori-Hecke algebra $\mathscr{H}\left(\mathfrak{S}_{n}\right)$ of type A.
- LEVEL $\ell=2$: the Iwahori-Hecke algebra $\mathscr{H}\left((\mathbb{Z} / 2 \mathbb{Z})\right.$ \} $\left.\mathfrak{S}_{n}\right)$ of type B .

A LONG-STANDING CONJECTURE

Positive characteristic: Let char $\mathbb{F}=p>0$ be a prime.

A LONG-StANDING CONJECTURE

Positive characteristic: Let char $\mathbb{F}=p>0$ be a prime.

Conjecture (James, 1990)

The representation theory of the Hecke algebra of the symmetric group $\mathscr{H}\left(\mathfrak{S}_{n}\right)$ is independent of the characteristic p if pe $>n$.

A LONG-StANDING CONJECTURE

Positive characteristic: Let char $\mathbb{F}=p>0$ be a prime.

Conjecture (James, 1990)

The representation theory of the Hecke algebra of the symmetric group $\mathscr{H}\left(\mathfrak{S}_{n}\right)$ is independent of the characteristic p if pe $>n$.

There are many cases where James's conjecture holds, however...
Theorem (Williamson, 2012)
James's conjecture is false! Williamson found counterexamples for large p.

A LONG-StANDING CONJECTURE

Positive characteristic: Let char $\mathbb{F}=p>0$ be a prime.

Conjecture (James, 1990)

The representation theory of the Hecke algebra of the symmetric group $\mathscr{H}\left(\mathfrak{S}_{n}\right)$ is independent of the characteristic p if pe $>n$.

There are many cases where James's conjecture holds, however...
Theorem (Williamson, 2012)
James's conjecture is false! Williamson found counterexamples for large p.
Can we explicitly describe the irreducible modules of \mathfrak{S}_{n} ?

A LONG-STANDING CONJECTURE

Positive characteristic: Let char $\mathbb{F}=p>0$ be a prime.

Conjecture (James, 1990)

The representation theory of the Hecke algebra of the symmetric group $\mathscr{H}\left(\mathfrak{S}_{n}\right)$ is independent of the characteristic p if pe $>n$.

There are many cases where James's conjecture holds, however...
Theorem (Williamson, 2012)
James's conjecture is false! Williamson found counterexamples for large p.
Can we explicitly describe the irreducible modules of \mathfrak{S}_{n} ?
We know presentations, dimensions and bases of Specht modules!

A LONG-STANDING CONJECTURE

Positive characteristic: Let char $\mathbb{F}=p>0$ be a prime.

Conjecture (James, 1990)

The representation theory of the Hecke algebra of the symmetric group $\mathscr{H}\left(\mathfrak{S}_{n}\right)$ is independent of the characteristic p if pe $>n$.

There are many cases where James's conjecture holds, however...
Theorem (Williamson, 2012)
James's conjecture is false! Williamson found counterexamples for large p.
Can we explicitly describe the irreducible modules of \mathfrak{S}_{n} ?
We know presentations, dimensions and bases of Specht modules!

Aim

FIRST STEP: classify the irreducible Specht modules in positive characteristic.

Hook lengths

Let λ be a partition, and $[\lambda]$ be its Young diagram.
The hook length of a box $(a, b) \in[\lambda]$ is

$$
\begin{aligned}
h_{a b}^{\lambda} & : \\
= & \left(\lambda_{a}-b\right)+\left(\lambda_{b}^{\prime}-a\right)+1 \\
& =\text { arm length }+ \text { leg length }+ \text { node }(a, b)
\end{aligned}
$$

Hook lengths

Let λ be a partition, and $[\lambda]$ be its Young diagram.
The hook length of a box $(a, b) \in[\lambda]$ is

$$
\begin{aligned}
h_{a b}^{\lambda} & :=\left(\lambda_{a}-b\right)+\left(\lambda_{b}^{\prime}-a\right)+1 \\
& =\text { arm length }+ \text { leg length }+ \text { node }(a, b)
\end{aligned}
$$

Let $\lambda=(9,8,5,3)$ and box $(a, b)=(2,2)$.

$$
h_{\mathrm{ab}}^{\lambda}=\begin{array}{|l|l|l|l|l|l|l|l|l|}
\hline & & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & &
\end{array}
$$

Hook lengths

Let λ be a partition, and $[\lambda]$ be its Young diagram.
The hook length of a box $(a, b) \in[\lambda]$ is

$$
\begin{aligned}
h_{a b}^{\lambda} & :=\left(\lambda_{a}-b\right)+\left(\lambda_{b}^{\prime}-a\right)+1 \\
& =\text { arm length }+ \text { leg length }+ \text { node }(a, b)
\end{aligned}
$$

Let $\lambda=(9,8,5,3)$ and box $(a, b)=(2,2)$.

$$
h_{a b}^{\lambda}=\begin{array}{|l|l|l|l|l|l|l|l|l|}
\hline & & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & \\
\hline & & &
\end{array}
$$

Hook lengths

Let λ be a partition, and $[\lambda]$ be its Young diagram.
The hook length of a box $(a, b) \in[\lambda]$ is

$$
\begin{aligned}
& h_{a b}^{\lambda}: \\
&=\left(\lambda_{a}-b\right)+\left(\lambda_{b}^{\prime}-a\right)+1 \\
&=\text { arm length }+ \text { leg length }+ \text { node }(a, b)
\end{aligned}
$$

Let $\lambda=(9,8,5,3)$ and box $(a, b)=(2,2)$.

Hook lengths

Let λ be a partition, and $[\lambda]$ be its Young diagram.
The hook length of a box $(a, b) \in[\lambda]$ is

$$
\begin{aligned}
h_{a b}^{\lambda} & :=\left(\lambda_{a}-b\right)+\left(\lambda_{b}^{\prime}-a\right)+1 \\
& =\text { arm length }+ \text { leg length }+ \text { node }(a, b)
\end{aligned}
$$

Let $\lambda=(9,8,5,3)$ and box $(a, b)=(2,2)$.

The hook lengths of λ are

Hook lengths

Let λ be a partition, and $[\lambda]$ be its Young diagram.
The hook length of a box $(a, b) \in[\lambda]$ is

$$
\begin{aligned}
& h_{a b}^{\lambda}: \\
&=\left(\lambda_{a}-b\right)+\left(\lambda_{b}^{\prime}-a\right)+1 \\
&=\text { arm length }+ \text { leg length }+ \text { node }(a, b)
\end{aligned}
$$

Let $\lambda=(9,8,5,3)$ and box $(a, b)=(2,2)$.

Hook lengths

Let λ be a partition, and $[\lambda]$ be its Young diagram.
The hook length of a box $(a, b) \in[\lambda]$ is

$$
\begin{aligned}
h_{a b}^{\lambda} & :=\left(\lambda_{a}-b\right)+\left(\lambda_{b}^{\prime}-a\right)+1 \\
& =\text { arm length }+ \text { leg length }+ \text { node }(a, b)
\end{aligned}
$$

Let $\lambda=(9,8,5,3)$ and box $(a, b)=(2,2)$.

The hook lengths of λ are

						1
9				2	1	
		2	1			
2	1					

Hook lengths

Let λ be a partition, and $[\lambda]$ be its Young diagram.
The hook length of a box $(a, b) \in[\lambda]$ is

$$
\begin{aligned}
h_{a b}^{\lambda} & : \\
= & \left(\lambda_{a}-b\right)+\left(\lambda_{b}^{\prime}-a\right)+1 \\
& =\text { arm length }+ \text { leg length }+ \text { node }(a, b)
\end{aligned}
$$

Let $\lambda=(9,8,5,3)$ and box $(a, b)=(2,2)$.

The hook lengths of λ are

Hook lengths

Let λ be a partition, and $[\lambda]$ be its Young diagram.
The hook length of a box $(a, b) \in[\lambda]$ is

$$
\begin{aligned}
h_{a b}^{\lambda} & : \\
= & \left(\lambda_{a}-b\right)+\left(\lambda_{b}^{\prime}-a\right)+1 \\
& =\text { arm length }+ \text { leg length }+ \text { node }(a, b)
\end{aligned}
$$

Let $\lambda=(9,8,5,3)$ and box $(a, b)=(2,2)$.

The hook lengths of λ are

						4	3	1
	9				3	2	1	
		4	2	1				
3	2	1						

Hook lengths

Let λ be a partition, and $[\lambda]$ be its Young diagram.
The hook length of a box $(a, b) \in[\lambda]$ is

$$
\begin{aligned}
& h_{a b}^{\lambda}: \\
&=\left(\lambda_{a}-b\right)+\left(\lambda_{b}^{\prime}-a\right)+1 \\
&=\text { arm length }+ \text { leg length }+ \text { node }(a, b)
\end{aligned}
$$

Let $\lambda=(9,8,5,3)$ and box $(a, b)=(2,2)$.

The hook lengths of λ are

					5	4	3	1
	9			5	3	2	1	
	5	4	2	1				
3	2	1						

Hook lengths

Let λ be a partition, and $[\lambda]$ be its Young diagram.
The hook length of a box $(a, b) \in[\lambda]$ is

$$
\begin{aligned}
h_{a b}^{\lambda} & : \\
= & \left(\lambda_{a}-b\right)+\left(\lambda_{b}^{\prime}-a\right)+1 \\
& =\text { arm length }+ \text { leg length }+ \text { node }(a, b)
\end{aligned}
$$

Let $\lambda=(9,8,5,3)$ and box $(a, b)=(2,2)$.

The hook lengths of λ are

12	11	10	8	7	5	4		1
10	9	8	6	5	3	2		
6	5	4	2	1				
3	2	1						

Irreducible Specht modules for $\mathscr{H}\left(\mathfrak{S}_{n}\right)$

Which partitions label irreducible Specht modules?

Irreducible Specht modules for $\mathscr{H}\left(\mathfrak{S}_{n}\right)$

Which partitions label irreducible Specht modules?

$$
p \text {-adic valuations: } \quad v_{p}(x)=\max \left\{y \in \mathbb{N}\left|p^{y}\right| x\right\}
$$

Irreducible Specht modules for $\mathscr{H}\left(\mathfrak{S}_{n}\right)$

Which partitions label irreducible Specht modules?

$$
p \text {-adic valuations: } \quad v_{p}(x)=\max \left\{y \in \mathbb{N}\left|p^{y}\right| x\right\}
$$

(e, p)-adic valuations: $\quad v_{e, p}(h):= \begin{cases}v_{p}\left(\frac{h}{e}\right)+1 & \text { if } e \mid h ; \\ 0 & \text { otherwise } .\end{cases}$

Irreducible Specht modules for $\mathscr{H}\left(\mathfrak{S}_{n}\right)$

Which partitions label irreducible Specht modules?

$$
p \text {-adic valuations: } \quad v_{p}(x)=\max \left\{y \in \mathbb{N}\left|p^{y}\right| x\right\}
$$

(e, p)-adic valuations: $\quad v_{e, p}(h):= \begin{cases}v_{p}\left(\frac{h}{e}\right)+1 & \text { if } e \mid h ; \\ 0 & \text { otherwise } .\end{cases}$

Theorem (James-Mathas)

Irreducible Specht modules for $\mathscr{H}\left(\mathfrak{S}_{n}\right)$

Which partitions label irreducible Specht modules?

$$
p \text {-adic valuations: } \quad v_{p}(x)=\max \left\{y \in \mathbb{N}\left|p^{y}\right| x\right\}
$$

(e, p)-adic valuations: $\quad v_{e, p}(h):= \begin{cases}v_{p}\left(\frac{h}{e}\right)+1 & \text { if } e \mid h ; \\ 0 & \text { otherwise } .\end{cases}$

Theorem (James-Mathas)

Let $e \in\{3,4, \ldots\}$. Then $S(\lambda)$ is irreducible if and only if there exist integers $k \geqslant 0$ and $\ell \geqslant 0$ with $(k+1, \ell+1) \notin[\lambda]$, satisfying

Irreducible Specht modules for $\mathscr{H}\left(\mathfrak{S}_{n}\right)$

Which partitions label irreducible Specht modules?

$$
p \text {-adic valuations: } \quad v_{p}(x)=\max \left\{y \in \mathbb{N}\left|p^{y}\right| x\right\}
$$

(e, p)-adic valuations: $\quad v_{e, p}(h):= \begin{cases}v_{p}\left(\frac{h}{e}\right)+1 & \text { if } e \mid h ; \\ 0 & \text { otherwise } .\end{cases}$

Theorem (James-Mathas)

Let $e \in\{3,4, \ldots\}$. Then $S(\lambda)$ is irreducible if and only if there exist integers $k \geqslant 0$ and $\ell \geqslant 0$ with $(k+1, \ell+1) \notin[\lambda]$, satisfying
(1) e-restricted condition:
$v_{e, p}\left(h_{\mathrm{ab}}^{\lambda}\right)=v_{e, p}\left(h_{\mathrm{ac}}^{\lambda}\right)$ whenever $(a, b),(a, c) \in[\lambda]$ and $a>k$;

Irreducible Specht modules for $\mathscr{H}\left(\mathfrak{S}_{n}\right)$

Which partitions label irreducible Specht modules?

$$
p \text {-adic valuations: } \quad v_{p}(x)=\max \left\{y \in \mathbb{N}\left|p^{y}\right| x\right\}
$$

(e, p)-adic valuations: $\quad v_{e, p}(h):= \begin{cases}v_{p}\left(\frac{h}{e}\right)+1 & \text { if } e \mid h ; \\ 0 & \text { otherwise } .\end{cases}$

Theorem (James-Mathas)

Let $e \in\{3,4, \ldots\}$. Then $S(\lambda)$ is irreducible if and only if there exist integers $k \geqslant 0$ and $\ell \geqslant 0$ with $(k+1, \ell+1) \notin[\lambda]$, satisfying
(1) e-restricted condition:
$v_{e, p}\left(h_{a b}^{\lambda}\right)=v_{e, p}\left(h_{a c}^{\lambda}\right)$ whenever $(a, b),(a, c) \in[\lambda]$ and $a>k$;
(2) e-regular condition:

$$
v_{e, p}\left(h_{a c}^{\lambda}\right)=v_{e, p}\left(h_{b c}^{\lambda}\right) \text { whenever }(a, c),(b, c) \in[\lambda] \text { and } c>\ell \text {; }
$$

Irreducible Specht modules for $\mathscr{H}\left(\mathfrak{S}_{n}\right)$

Which partitions label irreducible Specht modules?

$$
p \text {-adic valuations: } \quad v_{p}(x)=\max \left\{y \in \mathbb{N}\left|p^{y}\right| x\right\}
$$

(e, p)-adic valuations: $\quad v_{e, p}(h):= \begin{cases}v_{p}\left(\frac{h}{e}\right)+1 & \text { if } e \mid h ; \\ 0 & \text { otherwise } .\end{cases}$

Theorem (James-Mathas)

Let $e \in\{3,4, \ldots\}$. Then $S(\lambda)$ is irreducible if and only if there exist integers $k \geqslant 0$ and $\ell \geqslant 0$ with $(k+1, \ell+1) \notin[\lambda]$, satisfying
(1) e-restricted condition:
$v_{e, p}\left(h_{a b}^{\lambda}\right)=v_{e, p}\left(h_{a c}^{\lambda}\right)$ whenever $(a, b),(a, c) \in[\lambda]$ and $a>k$;
(2) e-regular condition:
$v_{e, p}\left(h_{\mathrm{ac}}^{\lambda}\right)=v_{e, p}\left(h_{b c}^{\lambda}\right)$ whenever $(a, c),(b, c) \in[\lambda]$ and $c>\ell$;
(3) all other boxes in $[\lambda]$:
$v_{e, p}\left(h_{a c}^{\lambda}\right)=0$ for $1 \leqslant a \leqslant k, 1 \leqslant b \leqslant \ell$.

Partitions indexing irreducible Specht modules

Let $e=p=3$.

Partitions indexing irreducible Specht modules

Let $e=p=3$.

$$
\left[\left(10,5,3,2^{3}, 1^{2}\right)\right]=\begin{array}{|c|c|c|c|c|c|c|c|c|c|}
\hline 17 & 14 & 10 & 8 & 7 & 5 & 4 & 3 & 2 & 1 \\
\hline 11 & 8 & 4 & 2 & 1 & & & & & \\
\hline 8 & 5 & 1 & & & & & & & \\
\hline 6 & 3 & & & & & & & & \\
\cline { 1 - 3 } 5 & 2 & & & & & & & & \\
\cline { 1 - 3 } & 4 & & & & & & & & \\
\cline { 1 - 2 } & 2 & & & & & & & & \\
\cline { 1 - 2 } & & & & & & & & & \\
\hline
\end{array}
$$

Partitions indexing irreducible Specht modules

Let $e=p=3$.

- (3) is 3-regular;

Partitions indexing irreducible Specht modules

Let $e=p=3$.

- (3) is 3 -regular;
- $\left(2^{3}, 1^{2}\right)$ is 3 -restricted.

Beyond the symmetric group

Let \mathscr{H}_{n} denote the Iwahori-Hecke algebra $\mathscr{H}\left((\mathbb{Z} / 2 \mathbb{Z}) \imath \mathfrak{S}_{n}\right)$ of type B .

Beyond the symmetric group

Let \mathscr{H}_{n} denote the Iwahori-Hecke algebra $\mathscr{H}\left((\mathbb{Z} / 2 \mathbb{Z}) \imath \mathfrak{S}_{n}\right)$ of type B .

A bipartition of n is a pair (λ, μ) of partitions such that $|\lambda|+|\mu|=n$.

Beyond the symmetric group

Let \mathscr{H}_{n} denote the Iwahori-Hecke algebra $\mathscr{H}\left((\mathbb{Z} / 2 \mathbb{Z}) \imath \mathfrak{S}_{n}\right)$ of type B .

A bipartition of n is a pair (λ, μ) of partitions such that $|\lambda|+|\mu|=n$.
$((5,2),(4,2,1))$ is a bipartition of 14 , with Young diagram $\square \square \square$.

Beyond the symmetric group

Let \mathscr{H}_{n} denote the Iwahori-Hecke algebra $\mathscr{H}\left((\mathbb{Z} / 2 \mathbb{Z}) \imath \mathfrak{S}_{n}\right)$ of type B .

A bipartition of n is a pair (λ, μ) of partitions such that $|\lambda|+|\mu|=n$.
$((5,2),(4,2,1))$ is a bipartition of 14, with Young diagram $\square \square \square$.

For each bipartition (λ, μ), we can construct a Specht module, $S(\lambda, \mu)$

Beyond the symmetric group

Let \mathscr{H}_{n} denote the Iwahori-Hecke algebra $\mathscr{H}\left((\mathbb{Z} / 2 \mathbb{Z}) \imath \mathfrak{S}_{n}\right)$ of type B .

A bipartition of n is a pair (λ, μ) of partitions such that $|\lambda|+|\mu|=n$.
$((5,2),(4,2,1))$ is a bipartition of 14, with Young diagram $\square \square \square$.

For each bipartition (λ, μ), we can construct a Specht module, $S(\lambda, \mu)$, with basis

$$
\left\{v_{T} \mid T \text { is a "standard" }(\lambda, \mu) \text {-tableau }\right\} .
$$

Beyond the symmetric group

Let \mathscr{H}_{n} denote the Iwahori-Hecke algebra $\mathscr{H}\left((\mathbb{Z} / 2 \mathbb{Z}) \imath \mathfrak{S}_{n}\right)$ of type B .

A bipartition of n is a pair (λ, μ) of partitions such that $|\lambda|+|\mu|=n$.
$((5,2),(4,2,1))$ is a bipartition of 14, with Young diagram $\square \square \square$.

For each bipartition (λ, μ), we can construct a Specht module, $S(\lambda, \mu)$, with basis

$$
\left\{v_{T} \mid T \text { is a "standard" }(\lambda, \mu) \text {-tableau }\right\} .
$$

Irreducible \mathscr{H}_{n}-modules arise as quotients of Specht modules.

Beyond the symmetric group

Let \mathscr{H}_{n} denote the Iwahori-Hecke algebra $\mathscr{H}\left((\mathbb{Z} / 2 \mathbb{Z}) \imath \mathfrak{S}_{n}\right)$ of type B .

A bipartition of n is a pair (λ, μ) of partitions such that $|\lambda|+|\mu|=n$.
$((5,2),(4,2,1))$ is a bipartition of 14 , with Young diagram $\square \square \square$.

For each bipartition (λ, μ), we can construct a Specht module, $S(\lambda, \mu)$, with basis

$$
\left\{v_{T} \mid T \text { is a "standard" }(\lambda, \mu) \text {-tableau }\right\} .
$$

Irreducible \mathscr{H}_{n}-modules arise as quotients of Specht modules.

Can we classify irreducible Specht modules $S(\lambda, \mu)$?

Conjectural classification

Conjecture (Joint work with Matthew Fayers)
The "unrestrictable" Specht module $S(\lambda, \mu)$ is irreducible if and only if

Conjectural classification

Conjecture (Joint work with Matthew Fayers)

The "unrestrictable" Specht module $S(\lambda, \mu)$ is IRREDUCIbLE if and only if there exists an irreducible Specht module $S(v)$

CONJECTURAL CLASSIFICATION

Conjecture (Joint work with Matthew Fayers)

The "unrestrictable" Specht module $S(\lambda, \mu)$ is iRREDUCIbLE if and only if there exists an irreducible Specht module $S(v)$ such that the bipartition (λ, μ) "fits into" the Young diagram $[v]$ in one of two ways:

Conjectural classification

Conjecture (Joint work with Matthew Fayers)

The "unrestrictable" Specht module $S(\lambda, \mu)$ is iRREDUCIbLE if and only if there exists an irreducible Specht module $S(v)$ such that the bipartition (λ, μ) "fits into" the Young diagram $[v]$ in one of two ways:

