Partial permutohedra

Laura Escobar

Washington University in St. Louis
Women at the intersection of mathematics and theoretical physics meet in Okinawa

March 23, 2023

Based on: arXiv:2207.14253.

Joint with Roger Behrend, Federico Castillo, Anastasia Chavez, Alexander Diaz-Lopez, Pamela Harris and Erik Insko.

Polytopes

The convex hull of a set $S \subseteq \mathbb{R}^{d}$ is the smallest convex set containing S. We denote it by $\operatorname{Conv}(S)$.

Example. The convex hull of $\{(3,1),(4,2),(7,0),(10,3),(0,3),(0,4)\}$ is:

A polytope is the convex hull of a finite set.

An invitation to measure polytopes

The geometry of linear optimization is understood by studying polytopes.

The number of k-dimensional regions of a hyperplane arrangement in \mathbb{R}^{n} is equal to the number of $(n-k)$-dimensional faces of a zonotope.

Using the rich correspondence between geometry of toric varieties and combinatorics of convex polytopes, Batyrev constructed classes Calabi-Yau manifolds as hypersurfaces of toric varieties and proved the mirror symmetry conjecture for smooth toric varieties.

The n-dimensional associahedron is a polytope whose number of vertices equals the ($n+1$)-th Catalan number. Recently, Mizera and Arkani-Hamed-Bai-He-Yan showed that this polytope plays a central role in the theory of scattering amplitudes.

Given a polytope, how many vertices does it have? How many faces? What's its volume?

Theorem. (Dryer 83, Linial 86, Dryer-Frieze 88) Computing any of these values is $\# P$-hard.

Partial permutohedra

Definition. (Heuer-Striker '22) Given $d, n \in \mathbb{Z}_{>0}$, the partial permutohedron $\mathcal{P}(d, n)$ is the convex hull of all vectors in $\{0,1, \ldots, n\}^{d}$ whose nonzero entries are distinct.

Example. Let $d=2$.

Partial permutohedra

Definition. (Heuer-Striker '22) Given $d, n \in \mathbb{Z}_{>0}$, the partial permutohedron $\mathcal{P}(d, n)$ is the convex hull of all vectors in $\{0,1, \ldots, n\}^{d}$ whose nonzero entries are distinct.

Example. Let $d=3$.

Number of faces

The \mathbf{f}-polynomial of a d-dimensional polytope \mathcal{P} is $f_{\mathcal{P}}(t)=\sum_{i=0}^{d} f_{i}(\mathcal{P}) t^{i}$, where $f_{i}(\mathcal{P})$ denotes the number of i-dimensional faces of \mathcal{P}.

The Eulerian polynomial is $A_{d}(t)=\sum_{i=0}^{d-1} A(d, i) t^{i}$, where $A(d, i)$ is the number of permutations in S_{d} with exactly i descents.

A descent of w is a position $i<n$ with $w(i)>w(i+1)$. For example, $w=3452167$ has descents at positions 3 and 4 .

Theorem. (BCCDEHI '22+) The f-polynomial of $\mathcal{P}(d, n)$ with $n \leq d$ is

$$
f_{\mathcal{P}(d, n)}(t)=1+\sum_{i=0}^{n-1} \sum_{j=1}^{d-i}\binom{d}{i} A_{i}(t+1)(t+1)^{j}
$$

Volume of $\mathcal{P}(d, n)$ with $n \geq d-1$

To simplify volume expressions, we use the normalized volume defined such that $\operatorname{Vol}\left([0,1]^{m}\right)=m!$.

Denote by $v(d, n)$ the normalized volume of $\mathcal{P}(d, n)$.
Theorem. (BCCDEHI '22+) For any d and n with $n \geq d-1$, the normalized volume of $\mathcal{P}(d, n)$ is given recursively by

$$
v(d, n)=(d-1)!\sum_{k=1}^{d} k^{k-2} \frac{v(d-k, n-k)}{(d-k)!}\left(k n-\binom{k}{2}\right)\binom{d}{k}
$$

with the initial condition $v(0, n)=1$.
Examples.

$$
\begin{array}{lllll}
v(1, n) & = & n, \\
v(2, n) & = & -1 & & \\
v(3, n) & = & -6 & -9 n & \\
v(4, n) & & -54 & -96 n & -72 n^{2} \\
v(5, n) & = & -840 & -1350 n & -1200 n^{2} \\
& -600 n^{3} & +24 n^{4}, & \\
v\left(120 n^{5} .\right.
\end{array}
$$

Ideas behind the proof

Lemma. Let \mathbf{v} be a vertex of $\mathcal{P}(d, n)$. For each facet \mathcal{F} that does not contain \mathbf{v}, form the pyramid $\operatorname{Pyr}(\mathcal{F}, \mathbf{v})$. The collection of these pyramids for all such facets gives a polyhedral subdivision of $\mathcal{P}(d, n)$, and thus

$$
\operatorname{Vol}(\mathcal{P}(d, n))=\sum_{\substack{\text { facets } \mathcal{F} \\ \mathbf{v} \notin \mathcal{F}}} \operatorname{Vol}(\operatorname{Pyr}(\mathcal{F}, \mathbf{v})) .
$$

$$
\begin{aligned}
& \text { Let } \\
& \Pi_{k}=\operatorname{Conv}\left\{(w(1), \ldots, w(k)) \mid w \in S_{k}\right\} .
\end{aligned}
$$

Each facet not containing $\mathbf{0}$ is congruent to either a Cartesian product $\Pi_{k} \times \mathcal{P}(d-k, n-k)$ or Π_{d}.

This method was used to obtain the volume of $\mathcal{P}(d, n)$ for the case $n=d-1$ by Amanbayeva-Wang and Strong.

Next, we fix n and vary d.

Volume of $\mathcal{P}(d, 2)$

The following was conjectured in (Heuer-Striker '21).
Theorem. (BCCDEHI '22+) For any d, the normalized volume of $\mathcal{P}(d, 2)$ is $v(d, 2)=3^{d}-d$.

$$
\begin{aligned}
& \mathcal{P}(d, 2) \text { is equal to } \\
& 3 \text { Conv }\left\{\mathbf{0}, \mathbf{e}_{1}, \ldots, \mathbf{e}_{d}\right\} \text { with } d \\
& \text { simplices removed. }
\end{aligned}
$$

Volume of $\mathcal{P}(d, 3)$

Theorem. (BCCDEHI '22+) For any d, the normalized volume of $\mathcal{P}(d, 3)$ is

$$
v(d, 3)=6^{d}-d 3^{d}-(d-1)\binom{d}{2} .
$$

Theorem. (BCCDEHI '22+) For any d, the normalized volume of $\mathcal{P}(d, 4)$ is

$$
v(d, 4)=10^{d}-d 6^{d}-\frac{d(d-1)(d-3)}{6} 3^{d}-\left(3 d^{2}-6 d+1\right)\binom{d}{3} .
$$

Thank you!

