Thermalization or Relaxation of isolated quantum systems
"Thermal:zation"

not!
Hot coffer cools down due to heat exchange with external system.

thermal insulator
An isolated system is also thermalized.
(0 How about quantum systems?

- If not thermalized, why?
- Microscopic description of thermalization?

We use the knowledge of

- Quantuar mechanics
\leftarrow quantum systems
- Statistical wechruics
ϵ : on order to naderstand the mechanism of thermalization
(conalcting micro would to macro world)
- Integrable systems
- representative examples in which thermal:zation does not occur.

$$
[C M \text { ar Xiv.2002.01069] }
$$

Quacetuon
Statistical
mechanics mechanics

Relaxation of quantum integrable systems

Oatline
§ 1. Postulates of quantam mechanics
§2. Postalates of statistical mechanics
§3. Thermalization us. Integrable systems

S4. Sumenary
§ 1. Postulates of quantum mechanics
Quantum systems are mathematically formulated by using "Linear algebra".

Notations
H: HiLbert specs ϵ where of cysterns live in.
Z^{*} : complex conjugate of the complex number Z
ob $\underset{\sim}{ }(\psi)$: vector (called as "Kat").
$<\psi \mid: ~ v e c t o r ~ d u a l ~ t o ~(~ \psi>~(c a l l e d ~ a s " ~ b r a ") . ~ . ~$
$\langle\varphi \mid \psi\rangle$: inner product between the vectors $|\varphi\rangle$ and $\langle\psi|$.
$|\varphi\rangle \otimes \mid \psi)$: tensor product of (φ) and (ψ).
$\langle\varphi\rangle(\psi)$
A^{*} : complex conjugate of the matrix A.
A^{\dagger} : Hermitian conjugate or adjoint of the matrix A.

$$
\left(A^{\top}\right)^{*}
$$

$\langle\varphi| A|\psi\rangle$: inner product between $|\varphi\rangle$ and $A|\psi\rangle$ equivalently, inner product between $A^{\dagger}(\varphi)$ and $|\psi\rangle$.

Hilbert space (finitc-dim. care)
Complex vector space equipped with inner products.

Inoer products

$$
(,)=c \mid>: a l \times a l \rightarrow \mathbb{C} \text { s.t. }
$$

for $[v\rangle,(w) \in \mathscr{A}, \lambda_{j} \in \mathbb{C}$,
(i) Bilinear

$$
\begin{aligned}
\operatorname{cv} \mid\left(\sum_{j} \lambda_{j}\left|w_{j}\right\rangle\right) & =\sum_{j} \lambda_{j}\left\langle v \mid w_{j}\right\rangle \\
\left(\sum_{i} \lambda_{j}^{*}\left\langle v_{j}\right|\right)|w\rangle & =\sum_{j} \lambda_{j}^{*}\left\langle v_{j} \mid w\right\rangle
\end{aligned}
$$

(ii) Hermitian

$$
\langle v \mid \omega\rangle=\langle\omega \mid N\rangle^{*}
$$

(ii:) Positive definite

$$
\langle v \mid v\rangle \geq 0 \quad(=0 \text { iff }|v\rangle=0) .
$$

ci: A closed bracket produces a scalar.

Outer product
Linear operator
-4. Ar open bracket acts as a linear operator ow a H albert space.

Adjoint en Hermitian operators
He: Hilbert space
A : Linear operator ow \mathcal{H}
A^{+}: Adjoint operator of A
: $f A^{+}$is a unique linear operator set.

$$
\forall(v),|w\rangle \in \mathcal{H}, \quad(|v\rangle, A(w))=\left(A^{+}|v\rangle,|w\rangle\right) .
$$

Same as Hermitian conjugate whew dim H is finite.
$\angle V 1$: Dual vector of $(v) \in$ de

$$
\begin{aligned}
& \left.(v)^{+}=\operatorname{cv}\right) \\
\Rightarrow & (A(v))^{+}=\operatorname{cNl} A^{+} .
\end{aligned}
$$

c\&. Ar adjoint operator is ant:- - near.

$$
\left(\sum_{i=1}^{w} a_{i} A_{i}\right)^{t}=\sum_{i=1}^{w} a_{i}^{*} A_{i}^{+}
$$

Tensor products

- Tensor product of vectors

Her. H2: Hilbert space

$$
\left(\begin{array}{l}
\cdot \operatorname{dim} \partial l_{1}=w \\
\cdot \operatorname{dim} \partial l_{2}=w
\end{array}\right.
$$

tensor product
$\partial l_{1} \otimes \partial l_{2}$: wuw-dimensional vector space.
($~ \| ~$

$$
\begin{aligned}
& (v) \otimes(w) \in X_{1} \otimes X_{2} . \\
& \left.(v)^{\prime \prime} \mid w\right) \\
& (v . w) .
\end{aligned}
$$

Especially,

$$
\begin{aligned}
& \left(\begin{array}{ll}
\langle(i)\rangle_{i=1, \ldots m}: & \text { orthonormal basis for } \mathrm{Ll}_{1} \\
\langle(j\rangle\rangle_{j=1 . N}: & \\
&
\end{array}\right.
\end{aligned}
$$

Properties)

$$
\text { (i) } \begin{aligned}
& \forall z \in \mathbb{C},(v) \in \mathscr{L}_{1},(w) \in \mathcal{L}, \\
&z(\mid v) \otimes(w))=(z(v)) \otimes(w) \\
&=(v) \otimes(z \mid w))
\end{aligned}
$$

$$
\begin{aligned}
& \text { (ii) } \left.\forall\left(v_{1}\right),\left(v_{2}\right) \in l_{1}, \mid w\right) \in \mathscr{L}_{2}, \\
& \left.\left.\left(\left(v_{1}\right)+\left(v_{2}\right)\right) \otimes(w)=\left(v_{1}\right) \otimes(w)+\mid v_{2}\right) \otimes|w\rangle\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { (iii) } \forall(v) \in \mathcal{L}_{1},\left(w_{1}\right),\left(w_{2}\right) \in \mathscr{L}_{2}, \\
& \quad(v) \otimes\left(\left(w_{1}\right)+\left(w_{2}\right)\right)=(v) \oplus\left(w_{1}\right)+|v\rangle \otimes\left|w_{2}\right\rangle
\end{aligned}
$$

- Tensor product of operators

$$
\begin{aligned}
& \left(\begin{array}{l}
A: \alpha L_{1} \rightarrow \alpha l_{1} \\
B: \alpha Q_{2} \rightarrow+L_{2}
\end{array}\right.
\end{aligned}
$$

Inner product our He, ot

$$
\begin{aligned}
& H_{1} H_{2} \quad H_{1} \quad H_{2} \\
& \text { (} \left.\left.\left.\sum_{i} a_{i}\left|\hat{v}_{i}>\sigma\right| \hat{w}_{i}\right\rangle, \sum_{i} \operatorname{bo}_{i}\left|v_{i}^{m}>\theta\right| \hat{w}_{i}\right\rangle\right) \\
& \therefore \sum_{i, i} a_{i}^{*} b_{i}\left\langle v_{i} \mid v_{i}^{\prime}\right\rangle\left\langle w_{i} \mid w_{i}^{r}\right\rangle \text {. } \\
& \Rightarrow \text { B:limeariey } \\
& \text { Hermiticity } \\
& \text { satisfied. } \\
& \text { Positive definite ness }
\end{aligned}
$$

Matrix representations (Kronecker product)
For $A \in M(m, n ; \mathbb{C})$ and $B \in M(p, q ; \mathbb{C})$,

Ex.)

$$
\begin{aligned}
& \binom{w_{1}}{v_{2}} \oplus\binom{w_{1}}{w_{2}}=\left(\begin{array}{cc}
v_{1} & w_{1} \\
v_{c} & w_{2} \\
\hdashline v_{2} & w_{1} \\
v_{2} & w_{2}
\end{array}\right) \\
& \left(\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right)\left(\begin{array}{ll}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{array}\right)=\left(\begin{array}{lll:ll}
A_{11} B_{11} & A_{11} & B_{12} & A_{12} B_{11} & A_{c 2} B_{r 2} \\
A_{11} & B_{21} & A_{11} & B_{22} & A_{c 2} B_{21} \\
A_{12} B_{22} \\
A_{21} & B_{11} & A_{21} B_{12} & A_{22} B_{11} & A_{21} B_{r 2} \\
A_{21} & B_{21} & A_{21} B_{22} & A_{22} B_{22} & A_{22} B_{22}
\end{array}\right)
\end{aligned}
$$

Operator functions

$$
f: C \rightarrow \mathbb{C}(\text { normal function })
$$

"Matrix function", uniquely defined

$$
f(A):=\sum_{a} f(a) \quad(a)<a \mid
$$

for a normal matrix $A=\frac{\sum_{a} a|a\rangle<a \mid}{\text { spectral decomposition }}$.

Commutator and auti-commutator

- Comunatator

$$
A \text { e. } B \text { are simultaneously }
$$

$$
[A, B]:=A B-B A=0 \quad \text { if Hermitian. } \quad \text { diagounalizable }
$$

- Arti-comuntator

$$
\{A, B\}:=A B+B A
$$

Postulate 1 State space
Isolated
physical system \leftrightarrow Hilbert space $\partial \mathrm{C}$

Quantum state $\leftrightarrow \frac{\text { Unit vector }}{\text { "State vector" }}(\psi)$
(Remark)
Globally phase shifted states $e^{i \theta}|\psi\rangle$ are identified with $|\psi\rangle$.

Postulate 2) Physical quantities
(Observables)

Pugsical quantity \Leftrightarrow Self-adjoint operator (Hermitian)

Postulate 3) Boru's probability rale.

$$
A: C^{N} \rightarrow E^{N} \text { Hermite }
$$

Observable
Physical quantity
$\Rightarrow A=\sum_{n=1}^{N} \alpha_{n}\left|\alpha_{n}>c \alpha_{n}\right|:$ spectral decourp. eigenvalue eigenvector

$$
\begin{aligned}
& =\sum_{n=1}^{N} \alpha_{n} P\left(\alpha_{n}\right) \\
& \quad \text { projector onto }\left\{\left(\alpha_{n}\right)\right\}
\end{aligned}
$$

Io r quantum measurement on $\langle u\rangle \in t e$,

- Eigenvalues of $A \Leftrightarrow$ Measurement outcomes
- Probability to obtain the outcome" a "

$$
\begin{aligned}
P(\alpha) & \left.=c \psi\left|P(\alpha)^{\dagger} P(\alpha)\right| \psi\right\rangle \\
& =\|P(\alpha) \mid \psi>\|^{2} \\
& =|c \alpha| \psi\rangle\left.\right|^{2} \text { square of the amplitude } \\
& \geq 0 \text { (now-negative). }
\end{aligned}
$$

-必 $\sum_{\alpha}|c \alpha(\psi)|^{2}=\sum_{\alpha}\langle\psi(\alpha)<\alpha \mid \psi\rangle$

$$
=c \psi|\psi\rangle
$$

$=1$ San rule.

Expectation value of A ow $|\psi\rangle$.

$$
\begin{aligned}
\langle A\rangle & =\sum_{n=1}^{N} \alpha_{n} \rho\left(\alpha_{n}\right) \\
& =\sum_{n=1}^{N} \alpha_{n} \underbrace{\left|\left\langle\alpha_{n} \mid \psi\right\rangle\right|^{2}}_{"} \\
& =c \psi\left|\alpha_{n}\right\rangle\left\langle\alpha_{n} \mid \psi\right\rangle \\
& =\langle\psi| A|\psi\rangle .
\end{aligned}
$$

Postulate 4) (Time) Evolution

Closed quantum system

$$
\begin{aligned}
& \underset{t=t_{1}}{|\psi\rangle} \rightarrow \underbrace{\left(\psi^{r}\right\rangle}_{t_{2}}=\underbrace{U\left(t_{1}, t_{2}\right)}_{\text {unitary operator }}|\psi\rangle \\
& \simeq e^{-i H\left(t_{2}-t_{1}\right)} \\
& \Leftrightarrow i \frac{d}{d t}(\psi)=H(\psi) \text { : Schrodinger eq. }
\end{aligned}
$$

Hermitian operator
(Hamiltonian i energy operator)

Density operator

- The system is cu one of the state out of $\left\{\left|\psi_{i}\right\rangle\right\}$.

$$
\hat{\gamma}
$$

- We only know the prob. for the system in $\left|\psi_{i}\right\rangle$ is p :.

p
\uparrow

density matrix $\quad\left\{p_{i} \cdot\left|\psi_{i}\right\rangle\right\}$: ensemble of purestates.

Pure state and mixed state

Properties of density operator
$p=\sum_{i} p_{i}\left|\psi_{i}>\psi_{i}\right|:$ density operator
$\Leftrightarrow\left(\begin{array}{l}\text { - Trace condition } \operatorname{tr} \rho=1 \\ \text { - Positivity condition } \rho \geq 0 .\end{array}\right.$

Reduced density matrix
Description of che subsystem.

- Density matrix of the whole system $\rho^{A B}$
- Deasity matrix of the subsystem

$\oint 2$. Postulates of statistical mechanics
Aim of statistical mechanics:
to understand macroscopic properties frow microscopic description.

Classical Newton's eq. of crotion

$$
\left\{\begin{array}{l}
m \ddot{x}_{1}=F\left(x_{1}, x_{2}, \cdots\right) \\
m \ddot{x}_{2}=F\left(x_{1}, x_{2}, \cdots\right) \\
\vdots \\
m \ddot{x}_{\left(0^{2 f}\right.}=F\left(x_{1}, x_{2}, \cdots\right)
\end{array}\right.
$$

How do we solve it?
\Rightarrow Use statistics instead of Solving Newton eq.

Equ: librium
Macroscopic therovodynamics I

$$
\text { Microscopic mechanics }+ \text { statistics }
$$

Postulate 1)
equilibrinar
state

A fear thermodynamic var.

$$
E, \nabla, N, \cdots
$$

finite \# in thermodynamic limit.

Postulate 2)

Macroscopic system $\left(\begin{array}{l}\text { 0 Any macro variable }=\text { cons } . \\ \text { - Any macro current }=0 .\end{array}\right.$

Postulate 3)
Almost all microstates are indistinguishable by macro variables.
micro state 1

micro state k
atypical E_{E}, σ_{K}, N_{E}

$$
{ }^{\forall k} \cdot E_{k}=E
$$ macro $\nabla_{E}=\sigma$ macro $N_{E}=N$

macro x

1	
0	0
K	\downarrow

Postulate 4)
Properties of equilibrium state
= Properties of corresponding typical micro states.

Microcanonical ens.

Postulate 5) Principle of equal prob.
In an isolated system, wicrostates with energy $E: E[E-\delta E, E]$ are realized with equal prob.

$$
w_{1}=w_{2}=\cdots=\frac{1}{w(E)}
$$

\# of micro states wish energy

$$
\operatorname{in}(E-\delta E, E] \text {. }
$$

Expectation values of a macro var. X:

$$
\begin{aligned}
& \langle X\rangle=\sum_{i} \underbrace{w_{\text {the value of }} X\left(x_{i}, p:\right)}_{\frac{i}{w_{i}}} \underbrace{X(E)}_{\text {of computed }} \\
& \overline{\omega(E)} \text { ow the" "th micro state. }
\end{aligned}
$$

Thermodynamics uses a macro var. which is not a function of x : and p :.
\downarrow
Entropy
Postulate 5) Boltzmann's relation

$$
\begin{aligned}
S(E)= & k_{B} \ln w(E) \\
& (.31 \\
& \left(.38 \times 10^{-23} \mathrm{~J} / K\right. \\
& (\text { Boltzmann const. })
\end{aligned}
$$

Canonical ens.

Q.) Prob, to obtain the microstate of the subsystem with energy E ?

Prob, to obtain the subsystem sw the microstate \backsim :

$$
p\left(E_{n}\right)=\frac{w_{b}\left(E_{t}-E_{n}\right)}{\sum_{E^{\prime}} w_{b}\left(E_{t}-E^{\prime}\right) w\left(E^{r}\right)}
$$

(:) principle of equal prob.
$=\frac{1}{z} e^{-\frac{E_{n}}{K_{b} T}} \because$ Boltzmann's relation
canonical (Gibbs) distribution $Z=\sum_{n} e^{-\frac{E_{n}}{K_{B} T}} \quad$ "partition func."

Grand canonical ewsearble

Prob, to obtain the microstate w :

$$
p_{n}=\frac{1}{\Xi} e^{-\frac{1}{k_{B} T}\left(E_{n}-\mu N_{n}\right)} \quad\left(\sum_{n} p_{n}=1\right) .
$$

grand canonical dist.
$\binom{$ dist. of subsystem attached to }{ the heat a particle bark with E\&N $N}$.

$$
\Xi=\sum_{\sim} e^{-\frac{1}{K_{B} T}\left(E_{n}-\mu N_{n}\right)}
$$

Combining quantum mech. \& stat. mech,
Postulate 1')
A generic quantum system reaches equilibrium after enough time.
Postulate 2^{\prime})
An equil:brinan state is characterized by a few thermodynamic operators.
Postulate 3^{\prime}): Eigeostate thermalization hypothesis (ETH)
A (most all evengg eigenvec. are indistinguishable by macro variables.
energy eigenvec. 1

$\operatorname{Postu}\left(a+e 4^{\prime}\right)$
Properties of equilibrium state
= Properties of corresponding typical energy eigervec.

Postulate $\left.5^{\prime}\right)$
Expectation values of a macro operator X :

$$
\langle x\rangle=\frac{1}{w(E)} \sum_{i}\left(E_{i}|x| E_{i}\right\rangle
$$

the expectation value of X measured on $\mid E_{i}$).

$$
\begin{aligned}
= & \operatorname{tr}(\underbrace{\rho_{M C} X}_{\ddot{y}}) \\
& \sum_{E_{i} \in\left[E-\partial E_{i} E\right]}^{w(E)}\left|E_{i}\right\rangle\left(E_{i} \mid .\right.
\end{aligned}
$$

: microcaurarical density matrix.
$W(E)$: \# of energy eigenvec, with

$$
E_{i} \in[E-\delta E, E] .
$$

\Leftrightarrow Principle of equal prob.
$c f$.
Deasiey watrix for canowical ens.

$$
\begin{array}{ll}
\rho_{G E}=\frac{1}{z} e^{-\beta H} & H: \text { Hamiltoaian } \\
& \beta \in \mathbb{R}: \text { inverse temperatare }
\end{array}
$$

$$
\begin{aligned}
Z & =\operatorname{tr} \rho_{G E} \\
& \left.=\sum_{n} C E_{n}\left|e^{-\beta H}\right| E_{n}\right\rangle \\
& =\sum_{n} e^{-\beta E_{n}}
\end{aligned}
$$

Densiey watrix for graad canonical ens.

$$
P_{G C E}=\frac{1}{\dot{\Sigma}} e^{-\beta(H-M N)} \quad N \text { - particle namber }
$$

$\mu \in \mathbb{R}$: chemical potential

$$
\begin{aligned}
\bar{\Sigma} & =\operatorname{tr} P_{G C E} \\
& \left.=\sum_{n} C E_{n}, N_{n}\left|e^{-\beta(H-\mu N)}\right| E_{n} N_{n}\right) \\
& =\sum_{n} e^{-\beta\left(E_{n}-\mu N_{n}\right)}
\end{aligned}
$$

§ 3. Theramalization vs, integrable systems
Thermalization of generic quantum systems

E

$$
\longrightarrow \begin{aligned}
& \text { |w(t)>} \\
& =e^{-i H t} \mid \psi(0)>
\end{aligned}
$$

Thought experiment)
Let $|\underline{\psi}(\theta)\rangle=\sum_{w} C_{w}\left|E_{n}\right\rangle, E_{n} \in(E-\delta E, E]$

$$
\sum_{n}\left|c_{n}\right|^{2}=1
$$

$$
\begin{aligned}
\lim _{t \rightarrow \infty}|\Psi(t)>c \psi(t)| & =\lim _{t \rightarrow \infty} e^{-i H t}|\Psi(0)><\underline{\psi}(0)| e^{i H t} \\
& =\lim _{t \rightarrow \infty} \varepsilon_{n \rightarrow m} e^{-i\left(E_{n}-E_{m}\right) t} c_{n} c_{m}^{4}\left|E_{n}\right\rangle<E_{m} \mid \\
& \left.\neq \frac{1}{\omega(E)} \sum_{n}\left|E_{n}\right\rangle<E_{n} \right\rvert\,
\end{aligned}
$$

never reaches the MC density matrix. mired state.

* Do isolated quantum systems thermalize?

Definieions)
The sycteon shows relacation if

$$
\begin{aligned}
\delta X^{2}:= & \lim _{T \rightarrow d \infty} \frac{1}{T} \int_{0}^{T}(x)^{2}(t) d t \\
& -\left(\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T}(x)(t) d t\right)^{2} \\
c c & \underbrace{\|x\|^{2}}
\end{aligned}
$$

operater cuorm

The system ehermalizes: f

$$
\lim _{\tau \rightarrow \infty} \frac{1}{T} \int_{0}^{\tau}\langle x\rangle(t) d t=\langle x\rangle_{e f .}
$$

Remanks)
Relaration occurs for most icuitial ctates of won-reasonance syctems.

$$
\begin{aligned}
& \text { (4) }\left|Q_{2}(0)\right\rangle=\sum_{n} C_{n}\left[E_{n}\right\rangle . \quad E_{n} \in[E-\delta E, E] \text {. } \\
& \Rightarrow \delta X^{2}=\sum_{n \neq m} \sum_{k \neq l} c_{m}^{t} c_{m} C_{F} c l^{k} \overline{e^{i\left(E_{n}-E_{m}-E_{E}+E_{l}\right) t}} \\
& \left.\propto c E_{n}|x| E_{m}>\left(<E_{k}|x| E_{R}\right\rangle\right)^{*} \\
& =\sum_{n \neq m} \sum_{k \neq l} c_{n}^{k} c_{m} C_{F} c l^{k} \delta E_{n}-E_{m}, E_{\xi}-E_{l} \\
& \left.\left.\therefore c E_{u}|x| E_{m}\right\rangle\left(c E_{k}|x| E_{R}\right\rangle\right)^{*}
\end{aligned}
$$

"Nocr-reasonauce condition"

$$
\begin{aligned}
E_{n} & -E_{o n}=E_{k}-E_{l} \neq 0 \Rightarrow a=k, m>l . \\
\Rightarrow \delta x^{2} & =\left.\sum_{n, m}\left|c_{n}\right|^{2}\left|c_{m}\right|^{2}\left|C E_{n}\right| x\left|E_{m}\right\rangle\right|^{2} \\
& \left.\leq \sum_{n}\left|c_{n}\right|^{4}<E_{n}\left|x x^{+}\right| E_{n}\right\rangle \\
& \leq \sum_{n}\left|c_{n}\right|^{4}\|x\|^{2}
\end{aligned}
$$

$\approx \#$ of eigenvectors sucluded in $\mid ⿻(\mathbb{\psi}(0)$.

Suffëcient condicion for chermalization:
"Strong eigenstate ehermalization hypoehecis

$$
\begin{aligned}
& \text { (ETH) } \\
& (\Psi(t)|X| \psi(t)\rangle \\
& =\langle\underline{U}(0)| e^{i H t} \times e^{-i H t} \underbrace{\underline{\psi}(0)\rangle}_{1} \\
& \sum_{E_{a} \in\left(E-\delta E_{1} E\right)} C_{a}\left|E_{a}\right\rangle, \sum_{E_{a} \in\left(E-\delta E_{1} E\right)}\left|C_{a}\right|^{2}=1 \\
& =\sum_{\substack{E_{a}, E_{b} \\
E\left(E-\delta E_{1} E\right)}} c_{a}^{*} c_{b} e^{:\left(E_{a}-E_{b}\right) t}\left\langle E_{a}\right| x\left|E_{b}\right\rangle \\
& =\sum_{E_{a} \in\left(E-\delta E_{1} E\right)}\left|C_{a}\right|^{2}\left\langle E_{a}\right| X\left|E_{a}\right\rangle \text { : diag. } \\
& +\sum_{E_{a} \neq E_{b}} c_{a}^{*} c_{b} e^{:\left(E_{a}-E_{b}\right) t}\left\langle E_{a}\right| x\left|E_{b}\right\rangle: o f f-d=a g \text {. }
\end{aligned}
$$

- Diag. part

$$
\begin{aligned}
& \sum_{E_{a} \in\left(E-\delta E_{1} E\right)} \mid C a_{a}^{2}\left\langle E_{a}\right| x\left|E_{a}\right\rangle \\
& \left.\|: f \quad 0 a_{1}<E_{a}|x| E_{a}\right\rangle_{r_{1} c_{1}}(x)_{a_{b} b .} \\
& \left(x>_{e_{b}} \leq=\frac{1}{w[E)} \sum_{E_{a} \in\left[E-\delta E_{1} E\right]}\left(E_{a}|x| E_{a}\right\rangle\right.
\end{aligned}
$$

- Off-diag. part (fluctuation term)

$$
\left.c E_{a}|x| E_{b \neq a}\right\rangle=0
$$

ETH guarantees thermalization of the system in any initial seats $[\Psi(0)$?.

Questions)
Does strong ETH true for any quantum system? If not, when it is not true?

Quanta systems with more conserved macro op.

$$
\begin{array}{cc}
\partial^{(1)}=E, \partial^{(2)} \\
|\Psi(0)\rangle \\
t s s 1
\end{array} \begin{aligned}
& \begin{array}{l}
1 \Psi(t)\rangle \\
=e^{-i H t}
\end{array}
\end{aligned}
$$

$$
\left[\hat{\alpha}^{(2)}, \hat{H}\right]=0
$$

(:)

$$
\begin{aligned}
& \langle\mathscr{Y}(t)| \hat{\partial}^{(2)}|\Psi(t)\rangle \\
= & \left.C \Psi(\theta)\left|e^{i \hat{H} t} \hat{\partial}^{(2)} e^{-i \hat{H} t}\right| \Psi(\theta)\right\rangle \\
= & C \Psi(0)|\hat{C}(2)| \Psi(0)\rangle .
\end{aligned}
$$

Principle of equal prob. must be cited for

\because
Unless $\partial_{2}=f(H)$, macroscopic \# of $\left(E_{i}\right)$ violate strong ETH:

$$
\begin{aligned}
&\left\langle E_{i}\right| Q_{2} \mid E_{i}>{ }^{\prime} \neq \subset Q_{2} \partial_{M C}(E) \\
& \text { macro } \\
&=\frac{1}{w[E)} \sum_{E_{a} \in[E-\delta E, E]}\left(E_{a}\left|Q_{2}\right| E_{a}\right\rangle .
\end{aligned}
$$

Example)
$Q_{2}=N$ (particle number).

$$
\begin{aligned}
& \langle N\rangle_{M C[E)}=\frac{1}{w(E)} \sum_{E_{a} \in\left[E-\delta E_{1} E\right]}\left\langle E_{a}\right| \hat{N}\left|E_{a}\right\rangle \\
& =\frac{1}{w(E)} \sum_{N} \sum_{E_{a} \in[E \delta E, E]}\left(E_{a}, N_{a}|N| E_{a}, N_{a}\right\rangle \\
& \mathrm{NaE}(N-\delta N, N) \\
& =\sum_{N} \frac{w(E, N)}{w[E)}\langle N\rangle_{M C(E, N)}^{\operatorname{maCNO}} \neq\langle N\rangle_{M C(E, N)} \\
& \Rightarrow c E_{i}|N| E_{i}>\neq \underset{\operatorname{macm}}{ }\left(N>\mu_{C}(E)\right.
\end{aligned}
$$

for macroscopic \# of $\left|E_{i}\right\rangle$.

Instead,

$$
\begin{aligned}
\left\langle E_{i}, N_{i}\right| N\left|E_{i}, N_{i}\right\rangle_{\text {macro }} & =C N>_{M C}(E, N) \\
& =\frac{1}{w(E, N)} \sum_{\substack{E_{a} \in[E-S, E] \\
N_{a} \in[(N-S N, N]}}\left(E_{a}, N_{a}|N| E_{a}, N_{a}\right\rangle
\end{aligned}
$$

Integrable systems have many conserved quantities.

$$
\partial_{1}=E, \partial_{2}, \partial_{3}, \cdots
$$

$$
{ }^{\forall} G,[\partial F, H]=0
$$

We cannot define the equilibrium state since
(i) $M C\left(E, Q_{2}, Q_{3}, \cdots\right)$ ensemble cant be characterized by a fear thermodynamic var.
($E_{1} Q_{2}, \partial_{3}$, cr must be ehmormodynawic var.)
(ii) $\operatorname{MC}\left(E_{1} \alpha_{2}, \alpha_{3}, \cdots\right)$ average of a certain current becomes non-zero.
b contradicts to the def. of equilibrium state.

Questions)

- Does relaxation phenomena occur ins integrable systems?
- If so, which conserved quantities are enough to deccu:be the relaxation state?

Integrable systems with many conserved quantities
"Integrable systems"

- The systems with many conserved quantities.
- No common understanding of quantum integrability.
- Sufficicort condition: Yang-Baxtereq.

$$
\begin{aligned}
& R: \nabla \otimes \nabla \rightarrow \nabla \otimes \nabla \\
& R_{12}, R_{13}, R_{23}: \nabla \otimes \nabla \otimes \nabla \rightarrow \nabla \otimes \forall \otimes \nabla
\end{aligned}
$$

RI $\quad Z \otimes R$

$$
\begin{aligned}
& R_{12}\left(\lambda_{1}-\lambda_{2}\right) R_{13}\left(\lambda_{1}-\lambda_{3}\right) R_{23}\left(\lambda_{2}-\lambda_{3}\right) \\
& =R_{23}\left(\lambda_{2}-\lambda_{3}\right) R_{13}\left(\lambda_{1}-\lambda_{3}\right) R_{12}\left(\lambda_{1}-\lambda_{2}\right) \\
& \left(\lambda_{1}, \lambda_{2}, \lambda_{3} \in \mathbb{C}\right)
\end{aligned}
$$

Sufficient condition that decomposition of many -body scattering does not depend ow the way to decoarpose.

Many conserved quantities
(2) Commuting transfermatrices
(1) Yang-Baxter eg. (YBE)
(1)
$M_{a}(\lambda) \in E_{n d}\left(\forall_{a} \otimes \nabla^{\otimes N}\right)$: wowodromy matrix
$R_{a_{N}}(\lambda) \cdots R_{a_{2}}(\lambda) R_{a_{1}}(k)$.

$$
\begin{aligned}
& R_{a b}(\lambda-\mu) M_{a}(\lambda) M_{b}(\mu) \\
& =M_{b}(\mu) M_{a}(\lambda) R_{a b}(\lambda-\mu) \\
& Y B E
\end{aligned}
$$

$$
\begin{aligned}
& T(\lambda) \in \operatorname{Ead}\left(\nabla^{(1) N}\right) \text { : transfer matrix } \\
& +r_{a} M_{a}(k) \\
& \operatorname{tratar}_{b}\left(R_{a b}(\lambda-\mu) M_{a}(\lambda) M_{b}(\mu) R_{a b}^{-1}(\lambda-\mu)\right) \\
& =+r_{a}+r_{b}\left(M_{b}(\mu) M_{a}(\lambda)\right) \\
& R \text { is invertible } \\
& \Leftrightarrow T(\lambda) T(\mu)=T(\mu) T(\lambda) .
\end{aligned}
$$

(2) Expanding $T(h), T(\mu)$ around $\lambda=0, \mu=0$

$$
\begin{aligned}
& T(\lambda)=\sum_{r} \lambda^{r} X_{r} \\
& T(\mu)=\sum_{r^{\prime}} \mu^{r^{\prime}} X_{r^{\prime}} \\
& {[T(\lambda), T(\mu)]=0 \Rightarrow\left[X_{r}, X_{r^{\prime}}\right]=0}
\end{aligned}
$$

Conventionally, we choose

$$
\log T(k)=\sum_{r} \lambda^{n} \underbrace{}_{r}, \alpha_{1}=: H
$$

extensive conserved quantities

$$
\begin{aligned}
& \begin{array}{ll}
\pi & \pi \\
\nabla & \nabla
\end{array}
\end{aligned}
$$

$X X Z$ wodel

$$
\begin{aligned}
& H_{x x z}:=\sum_{n=1}^{N}\left(\sigma_{n}^{x} \sigma_{n+1}^{x}+\sigma_{n}^{y} \sigma_{n+1}^{y}+\Delta \sigma_{n}^{z} \sigma_{n+1}^{z}\right) \\
& \sigma_{n}^{\alpha}=1 \otimes \cdots+0 \sigma^{\alpha} \otimes 1 \otimes \cdots \otimes 1 \\
& 1, \sigma^{\alpha}: \mathbb{Q}^{2} \rightarrow 0^{2} \quad(a=x, y, z) \\
& 1=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \\
& \sigma^{x}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \sigma^{y}=\left(\begin{array}{cc}
0 & -x \\
1 & 0
\end{array}\right), \sigma^{z}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
\end{aligned}
$$

- Periodic b.c.

$$
\sigma_{N+1}^{\alpha}=\sigma_{1}^{\alpha}
$$

- Awisoeropy parameter Δ

$$
\left(\begin{array}{l}
\Delta=\cos \gamma(\gamma \in \mathbb{R}) \Rightarrow \text { gapless excitation } \\
\Delta=\cosh \eta(\eta \in \mathbb{R}) \Rightarrow \text { gapped excitation }
\end{array}\right.
$$

Alteruatively,

$$
\Delta=\frac{1}{2}\left(b+q^{-1}\right) \in \varepsilon^{"} q^{\prime \prime} \text { of } U_{q}\left(c l_{2}\right) .
$$

- "Ladder" operators $e^{i r}$ for gapless regine e^{y} for gapped regime.

$$
\begin{aligned}
& \sigma^{ \pm}:=\sigma^{x} \pm i \sigma^{y} \\
& \sigma^{+}=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), \sigma^{-}=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right) .
\end{aligned}
$$

R-matrix

The solution of the Yang - Baxter eg.
Ex.)

$$
k(k)=\left(\begin{array}{lll}
\frac{1}{2}\left(q e^{k}-q^{-1} e^{-k}\right) & & \\
& \frac{1}{2}\left(e^{\lambda}-e^{-\lambda}\right) & \frac{1}{2}\left(q-b^{-1}\right) \\
& \frac{1}{2}\left(q-q^{-1}\right) & \frac{1}{2}\left(e^{\lambda}-e^{-\lambda}\right) \\
& & \frac{1}{2}\left(q e^{\lambda}-q^{-1} e^{-k}\right)
\end{array}\right)
$$

The solution associated with $\frac{\left.U_{\text {b }} C_{5} R_{2}\right)}{" 1}$:

$$
\begin{array}{r}
\left\{S^{+}, S^{-}, K^{ \pm 1}\right\} . \\
{[R(\lambda), X]=0, x=s^{+}, S^{-}, K^{ \pm 1} .} \\
{\left[S^{+}, S^{-}\right]=\frac{K^{2}-K^{-2}}{q-b^{-1}}, K s^{ \pm} K^{-1}=q^{ \pm 1} s^{ \pm} .} \\
\Delta\left(s^{+}\right)=s^{+} \otimes K^{-2}+I \otimes s^{+}
\end{array}
$$

Equivalently,

$$
\begin{aligned}
& \Delta\left(s^{-}\right)=S^{-} \otimes 2+K^{2} \otimes S^{-} \\
& o\left(K^{ \pm i}\right)=K^{ \pm} \otimes K^{ \pm 1}
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{Rac}(\lambda) & =1 a \cdot \operatorname{sh}\left(\lambda+\frac{i r}{2} \sigma_{n}^{Z}\right) \operatorname{ch}\left(\frac{i \gamma}{2}\right) \\
& +\sigma_{a}^{Z} \cdot \operatorname{ch}\left(\lambda+\frac{i \gamma}{2} \sigma_{n}^{Z}\right) \operatorname{sh}\left(\frac{i r}{2}\right) \\
& +\sigma_{a}^{+} \cdot \frac{1}{2}\left(q-q^{-1}\right) S_{n}^{-} \\
& +\sigma_{a}^{-} \cdot \frac{1}{2}\left(q-q^{-r}\right) S_{n}^{+}
\end{aligned}
$$

$$
\operatorname{Ran}(0)=\frac{1}{2}\left(q+q^{-r}\right) \operatorname{Pan}
$$

permutation.

$$
\begin{aligned}
& \log \underbrace{T(\lambda)}_{r}=\sum_{r} \lambda^{r} \partial_{r} \\
& +r_{a}\left(R_{a N}(\lambda)-R_{a 1}(\lambda)\right) \\
& Q_{1}=\left.\frac{d}{d \lambda} \log T(\lambda)\right|_{\lambda=0}=H_{x \times z} .
\end{aligned}
$$

Conserved quantities

$$
\begin{aligned}
& \text { (} \log T(\lambda)=\sum_{r} \lambda^{r} Q_{r} \\
& \Rightarrow \forall_{r,}[H \times x z, Q r]=0
\end{aligned}
$$

conserved quantities

$$
\begin{aligned}
& \text { - } T^{(s)}(\lambda)=+r_{a} M_{a}^{(s)}(\lambda) \\
& R_{a N}^{(s)}(\lambda) \cdots R_{a c}^{(S)}(\lambda) \in \operatorname{End}\left(\nabla_{a} \otimes\left(\mathbb{C}^{2}\right)^{\otimes N}\right) \\
& \mathbb{C}^{2 \delta+1} \quad s \pm \text { (half-) } \\
& \text { integer } \\
& \mathbb{C}^{\infty} \quad s \in \mathbb{C} \\
& \text { ai nearer: } C \\
& \Rightarrow{ }_{\tau} r_{1} s,[H \times x z, \underbrace{Q_{r}^{(s)}}]=0 \\
& \text { YBE conserved quantities }
\end{aligned}
$$

$$
\text { Spin-s }(2 s+c-\text { dim. }) \text { rep. of } U_{q}\left(s l_{2}\right)
$$

$$
\begin{aligned}
& K^{ \pm r}=\sum_{r=0}^{2 \delta} q^{ \pm(s-\sigma)}(r>c r 1 \\
& s^{+}=\sum_{r=0}^{2 s-1} \frac{q^{r+1}-q^{-r-1}}{b-q^{-1}}|r>c r+1| \\
& \delta^{-}=\sum_{r=0}^{2 s-\infty} \frac{q^{2 s-r}-q^{-2 s+r}}{q-b^{-1}}|r+1>c r| \quad \text { for (half-) } \\
& \text { integer } s .
\end{aligned}
$$

$$
\begin{aligned}
& K^{ \pm 1}=\sum_{r=0}^{\infty} q^{ \pm(s-\alpha)} \quad(r>c-1 \\
& s^{+}=\sum_{r=0}^{\infty} \frac{q^{r+1}-q^{-r-1}}{b-q^{-1}}|r>c r+1| \\
& \left.\left.S^{-}=\sum_{r=0}^{\infty} \frac{q^{2 s-v}-q^{-2 s+r}}{q-b^{-1}} \right\rvert\, r+1\right) c r \mid \quad \text { for } s \in \mathbb{C} \\
&
\end{aligned}
$$

$$
\left\langle r \mid r^{\prime}\right\rangle=\delta a \cdot r^{\prime}
$$

$\{(r)\}_{r=0}^{2 s}$ spans $\mathbb{C}^{2 s+1}$.
: orchowormal basis.

Eigervalues a eigervictors of H
deteroninces the dymamics (tione cuolution)

Transfer matrix is the generaetug func. of conserved quantities (including H).
\Rightarrow Diagonalize $T(\lambda)$ instead of H.
$\left.\operatorname{Cet} \nabla_{A}=\mathbb{C}^{2}=\left\{\binom{1}{0}=:(\uparrow),\binom{0}{1}=: \mid \downarrow\right)\right\}$.

$$
M a(d)=\left(\begin{array}{ll}
A(k) & B(d) \\
C(\lambda) & D(d)
\end{array}\right)_{a}(1 \downarrow)
$$

$\mathbb{Q}^{0 N}$ with waight Mz .
(:)
For $S^{z}=\frac{1}{2} \sum_{n} \sigma_{n}^{Z},\left[H, s^{z}\right]=0$

$$
\begin{gathered}
\Rightarrow \partial Q=\bigoplus_{\mu_{z}} \partial Q_{\mu_{z},} S^{z}\left|\psi_{\mu_{z}}\right\rangle=M_{z}\left|\psi_{\mu_{z}}\right\rangle \\
\pi \\
\partial \ell_{\mu_{z}} .
\end{gathered}
$$

$$
\begin{aligned}
& Y B E \\
& \Rightarrow R_{a b}(\lambda-\mu) M_{a}(\lambda) M_{b}(\mu) \\
& \quad=M_{b}(\mu) M_{a}(\lambda) \operatorname{Rab}(\lambda-\mu)
\end{aligned}
$$

fells the algebraic (commutation) relations among A, B, C, and D.

Exacoup(es)

$$
\begin{aligned}
A(\lambda) B(\mu)= & \frac{\operatorname{sh}(\mu-\lambda+i \gamma)}{\operatorname{sh}(\mu-\lambda)} B(\mu) A(\lambda) \\
& -\frac{\operatorname{sh}(i r)}{\operatorname{sh}(\mu-\lambda)} B(\lambda) A(\mu) \\
D(\lambda) B(\mu)= & \frac{\operatorname{sh}(\lambda-\mu+i r)}{\operatorname{sh}(\lambda-\mu)} B(\mu) D(\lambda) \\
& -\frac{\operatorname{sh}(i \gamma)}{\operatorname{sh}(\lambda-\mu)} B(\lambda) D(\mu) \\
{[B(\lambda), B(\mu)]=} & 0 .
\end{aligned}
$$

Qiagoanalization of T

Reavind $T(t) \Leftrightarrow \operatorname{tra}_{a} M a(\lambda)=A(\lambda)+D(\lambda)$.
Tricual eigenvecter of $T(d)$

$$
\left|\psi_{M z}=\frac{N}{2}\right\rangle=|\uparrow \uparrow-\sim \uparrow\rangle=\bigotimes_{n=1}^{N}|\uparrow\rangle_{w} .
$$

: the highest weight state.

$$
\left|\psi \mu_{z}<\frac{N}{2}\right\rangle=\prod_{n=1}^{\frac{N}{2}-\mu_{z}} B(d n)\left|\psi_{\mu_{z}=\frac{N}{2}}\right\rangle
$$

Ramark)

$$
C \psi_{M_{q}}\left(\psi_{M_{z}^{\prime}}\right)=0 \text { unless } M_{z}=M_{z}^{\prime}
$$

The urcter $\#$ is the eigenuec. of T if

$$
\begin{align*}
& \left.T(\lambda) \prod_{n=1}^{M} B\left(\lambda_{a}\right) \left\lvert\, \psi_{M_{z}=\frac{N}{2}}\right.\right) \\
& =(A(\alpha)+D(\lambda)) \prod_{u=1}^{M} B\left(\lambda_{n}\right) \left\lvert\, \psi_{M z=\frac{N}{2}} ?\right. \\
& =\left(a(\lambda) \prod_{u=1}^{\mu} \frac{\operatorname{sh}\left[\lambda_{a}-\lambda+i \gamma\right)}{\operatorname{sh}\left[\lambda_{a}-\lambda\right)}+d(\lambda) \prod_{u=1}^{\mu} \frac{\operatorname{ch}\left(\lambda-\lambda_{a}+i r\right)}{\operatorname{sh}\left(\lambda-\lambda_{n}\right)}\right) \\
& \times B\left(\alpha_{1}\right) \cdots B\left(k_{M}\right)\left|\psi_{M_{z}=\frac{N}{2}}\right\rangle \\
& -\sum_{F=1}^{M}\left(a\left(\lambda_{k}\right) \frac{\operatorname{sh}\left(\lambda_{c}-\lambda\right)}{\operatorname{sh}(i \sigma)} \prod_{n \neq F} \frac{\operatorname{sh}\left(\lambda_{n}-\lambda_{k}+i \gamma\right)}{\sin \left(\lambda_{n}-\lambda_{F}\right)}\right. \\
& \left.+d\left(\lambda_{k}\right) \frac{\operatorname{sh}\left(\lambda-\lambda_{k}\right)}{\operatorname{sh}(i r)} \prod_{a \neq k} \frac{\operatorname{sh}\left(\lambda_{k}-\lambda_{a}+i \gamma\right)}{\operatorname{sh}\left(\lambda_{k}-\lambda_{a}\right)}\right) \\
& \times B\left(\lambda_{1}\right) \cdots \underset{j}{ } \quad \cdots(\lambda) \cdots\left(\lambda_{M}\right) \left\lvert\, \psi_{M_{z}=\frac{N}{2}}>.\right.
\end{align*}
$$

$a(\lambda) \& d(d)$ are eigecualues of $A(\lambda)$ \& $D(d)$ on $\left(\psi_{M_{8}}=\frac{N}{2}\right)$:

$$
\begin{aligned}
A(\lambda) \left\lvert\, \psi_{\mu_{2}=\frac{N}{2}}>=\right. & \underbrace{a(\lambda)}_{n} \left\lvert\, \psi_{\mu_{z}-\frac{N}{2}} \rho\right. \\
& \left(\operatorname{sun}\left(\lambda+\frac{i \gamma}{2}\right)\right)^{N} \\
O(\lambda) \left\lvert\, \psi_{\mu_{z}=\frac{N}{2}}>=\right. & \underbrace{d(\lambda)}_{0} \left\lvert\, \psi_{M_{z}=\frac{N}{2}}>\right. \\
& \left(\operatorname{sun}\left(\lambda-\frac{i \gamma}{2}\right)\right)^{N} .
\end{aligned}
$$

(**) "Bethe equations"

$$
\left(\frac{\operatorname{sh}\left(\lambda_{F}+\frac{i \sigma}{2}\right)}{\operatorname{sh}\left(\lambda_{F}-\frac{i \gamma}{2}\right)}\right)^{N}=\prod_{n} \frac{\operatorname{sh}\left(\lambda_{F}-\lambda_{n}+i \sigma\right)}{\operatorname{sh}\left(\lambda_{F}-\lambda_{n}-i \gamma\right)}, k=1,2, \cdots, M .
$$

Remarks)

- Bethe states $\prod_{u=c}^{M} \underset{\uparrow}{M}\left(K_{w}\right) \left\lvert\, V_{M_{z}=\frac{N}{2}}>\right.$ are the h.w.s. sol of the Bethe eq.

$$
S^{+} \prod_{n=c}^{M} B\left(\lambda_{w}\right)\left|U_{M z=\frac{N}{2}}\right\rangle=0 .
$$

- The other eigenvector of T (not Bethe states) are constructed by applying 5^{-}

$$
\begin{aligned}
& S^{-} \int \prod_{a=c}^{M} B\left(r_{n}\right) \left\lvert\, \psi_{M_{z}=\frac{N}{2}}>\right. \\
& S^{-} \prod_{a=c}^{M} B\left(\lambda_{n}\right)\left|\Psi_{M z=\frac{N}{2}}\right\rangle \\
& s^{-} 6 \\
& \left(s^{-}\right)^{2} \prod_{n=c}^{M} B\left(\lambda_{w}\right)\left|\Psi_{M z=\frac{N}{2}}\right\rangle \\
& s^{-1} \\
& \left(S^{-}\right)^{N-2 M} \prod_{a=c}^{M} B\left(X_{w}\right)\left|V_{M_{z}=\frac{N}{2}}\right\rangle \\
& \text { lowest weight state. }
\end{aligned}
$$

Bethe roots

Bethe equations

$$
\left(\frac{\operatorname{sh}\left(\lambda_{i}-\frac{i \gamma}{2}\right)}{\operatorname{sh}\left(\lambda_{\gamma}+\frac{i \sigma}{2}\right)}\right)^{N}=\prod_{k \neq i} \frac{\operatorname{sh}\left(\lambda_{i}-\lambda_{F}-i \gamma\right)}{\operatorname{sh}\left(\lambda_{j}-\lambda_{k}+i \gamma\right)}
$$

are Known to form "String solutions" en Large N:

Examples)
2-string solutions

$$
\begin{aligned}
& q=e^{: r}, r=\frac{\pi}{l} \quad(l=\text { coprione }) \\
& \left(\begin{array}{l}
1.2, \cdots \cdot(l-1)-\text { string col. } \\
\text { anti-sering sol. }
\end{array}\right. \\
& 0 b=e^{\eta}
\end{aligned}
$$

1.2,.. string sol.

Bethe solutions in the $N \rightarrow \infty$ (io.

Bethe eq.

$$
\begin{aligned}
& \Rightarrow \theta_{\text {kin }}\left(\lambda_{j}\right)+\frac{1}{N} \sum_{k=1}^{M} \theta_{\text {scat }}\left(\mu_{j}-\lambda_{k}\right)=\frac{2 \pi}{L} I_{j} \\
& \left\{\begin{array}{l}
\theta_{\sin (\lambda)}:=\frac{i}{N} \sum_{\alpha=1}^{N} \ln \frac{\operatorname{sh}\left(\lambda-\frac{i r}{2}\right)}{\operatorname{sh}\left(\lambda+\frac{i \gamma}{2}\right)} \\
\theta_{\operatorname{scat}}(\lambda)=i \ln \frac{\operatorname{sh}(i r+\lambda)}{\operatorname{sh}(i r-\lambda)}
\end{array} \quad \begin{array}{l}
\text { in. food } N \\
\text { half-int for even } N
\end{array}\right.
\end{aligned}
$$

when ${ }^{\forall} j \cdot \lambda_{j} \in \mathbb{R}$.
\Rightarrow A set of (Half-) integers \{I1\} ~ u n i q u e l y ~ correspond to an eigenvector.

String center of each string solutions becomes dense io the thermodynamic limit.
$N \rightarrow \infty, M / N$ fixed.
\Rightarrow "Density of Bethe roots"

$$
\begin{aligned}
& \rho(\lambda):= \frac{d}{d \lambda} \underbrace{x[\lambda]}_{i} \\
& x_{i}:=\frac{I_{i}}{N}
\end{aligned}
$$

For the ground state $\left(\forall_{i}, I_{j+1}-I_{i}=1\right)$.

Remark $) \quad W\left(\left\{p_{j}\right\}\right)$
Many micoostates could be expressed by the came Bethe root density.
$\binom{$ We only d ecus the macro quantities that are }{ insensitive to the micro feature. }
$S_{Y Y}:=W\left[L_{i j}\right):$ Yang - Yang entropy.

S4. Specific behavior of sutegrable systems
Que $=0$ existence of many concerned quantities, ineugrable aysteans show specific behaviors uncommon to normal ehermalizing system.

Ralaxation state of the $X X Z$ model
Proposition) [Rigoletal. 2008,CM2020]

$$
\varrho_{G G E}=\frac{1}{Z} e^{-\sum_{v} \operatorname{tr} \partial_{r}}
$$

The $X X Z$ model relaxes to the density matrix

$$
\begin{aligned}
& \rho_{G G E}=\frac{1}{Z} e^{-\sum_{n=1}^{\infty}\left(\begin{array}{c}
l-1 \\
5 \\
r=1
\end{array} \beta_{n}^{r} \partial_{n}^{r}+k_{n}^{s} \partial_{n, p}(s)\right), p \in Z_{2} 0} \\
& \text { (} \left.q=e^{i \frac{\pi}{l} \times n_{z}^{m}}\right)
\end{aligned}
$$

ion the thermodynamic limit.
\because
The relaxation state of the $x \notin Z$ model io r TL is completely described by $\underbrace{\left\{\rho^{(r)}(\lambda c h)\right\} r=1, \cdots l}_{u}$.

$$
\left\{D_{1}^{(r)}\left(\lambda_{\tau h}\right)\right\}_{r=0, \cdots, l-1} \cap\left\{Q_{1,0}\left(\lambda_{t h}, s\right)\right\}
$$

Linearly-irdependeat set of conserved quantities.
$X X Z$ model

- eigenvectors ior $\nabla \rightarrow \infty$

$$
\simeq\left\{\rho^{r}(\lambda)\right\}
$$

$$
\begin{gathered}
+ \\
\text { saddlo posut wethad }
\end{gathered}
$$

the steady state.

$$
\begin{aligned}
\left\{\rho^{r}(\alpha)\right\}_{v} \simeq\left\{T^{r}(\alpha)\right\}_{v} \approx & \left\{Q_{r}^{r}\right\}_{r i n} \\
& \text { conserved } \\
& \text { quacfer } \\
& \text { quatices }
\end{aligned}
$$

Conserved quautities in terons of $p^{(r)}$

$$
\begin{aligned}
& \log \underbrace{}_{\ddot{\pi}} T^{(r)}(\lambda)=\sum_{n}\left(\lambda-\lambda_{0}\right)^{n} \partial_{n}^{(r)}\left(\lambda_{0}\right) \\
& \operatorname{tr}_{a} M_{a}^{(r)}(\lambda), M_{a}^{(r)}(\lambda) \in \operatorname{End}\left(\frac{\mathbb{U}_{a}}{\mathbb{C}^{2 r+1}}\left(\mathbb{C}^{2}\right)^{\otimes N}\right) \\
& \partial_{1}^{(r)}\left(\lambda_{0}\right) \propto \sum_{\tau_{2} L}^{l} \sum_{i=1}^{\min \left(n_{i}, r\right)} \theta_{a=1}^{(1,0)} \quad\left|r-n_{j}\right|-1+2 a, v_{i} * \rho_{j}\left(\lambda_{0}\right)
\end{aligned}
$$

convolution
$\log _{n} \underbrace{T(\lambda, s)}_{\ddot{n}}=\sum_{n, m}\left(\lambda-\lambda_{0}\right)^{n}\left(s-s_{0}\right)^{m} \partial_{n, m}\left(\lambda_{0}, s_{0}\right)$

$$
\begin{aligned}
& \operatorname{tr}_{a} M a(\lambda, s), M_{a}(\lambda, s) \in \operatorname{End}(\underbrace{\nabla_{a} \circledast}_{a}\left(\mathbb{C}^{2}\right)^{\otimes N}) \\
& \mathbb{C}^{\infty}\left(\begin{array}{c}
\text { spin-s } \\
\substack{a \\
\infty} \\
\text { rep. }
\end{array}\right)
\end{aligned}
$$

ふu.m (d.s)

$$
\begin{aligned}
\propto & \sum_{i=1}^{l} \sum_{a=1}^{n_{N}} \theta_{2 S-\frac{n-1}{2}-n_{i}-l+2 a, v_{i}}^{(u, m)} * O_{i}\left(\lambda+i\left(\frac{l-1}{4}+\frac{1}{2}\right) \gamma\right) \\
& -\sum_{i=c}^{l=} \sum_{a=1}^{\min \left[n i, \frac{l-1}{2}\right)} \theta_{\left(\frac{l-1}{2}-n_{i} 1-1+2 a_{1} v_{i}\right.}^{(n, m)}+\rho_{i}\left(\lambda+i\left(\frac{l-1}{4}-s-\frac{1}{2}\right) \gamma\right)
\end{aligned}
$$

The kernels

$$
\begin{aligned}
& \theta_{u, v}^{(c .0)}(\lambda)=\frac{N}{\pi} \frac{\sin (n \gamma)}{\operatorname{ch}(2 \lambda)-v \cos (u \gamma)} \\
& \theta_{u, v}^{(0.1)}(\lambda)=\frac{v \gamma}{\pi} \frac{\operatorname{sh}(2 k)}{\operatorname{ch}(2 d)-v \cos (u r)} \\
& v= \begin{cases}+1 & \text { for string } \\
-1 & \text { for arei-string }\end{cases}
\end{aligned}
$$

satisfy

$$
\begin{aligned}
& \operatorname{arsan}(u g, 2 s e 1) \\
& \sum_{a=1}^{(c, 2 s e 1)} F_{F}\left[\theta_{\left|2 s+1-n_{j}\right|-1+2 a_{i} v_{j}(d)}^{(c, 0)}\right] \\
& +\sum_{\sum_{a=1}}^{\min \left[a_{i}, 2 s-1\right)} F_{F}\left[\theta_{\left|2 s-1-u_{p}\right|-1+2 r, v_{p}}^{(c .0)}(d)\right] \\
& =2 \cosh \left[\frac{\pi k}{2 l}\right)^{\min \left(n_{j}, 25\right)} \sum_{a=1}^{F_{E}\left[\theta_{\left(2 s-n_{p}\right)-1+2 a, n_{j}}^{(c, 0)}(\lambda)\right]-\delta_{j, 2 s}}
\end{aligned}
$$

Fourier transf.

$$
F_{k}[\rho[\lambda]]=\int_{-\infty}^{\infty} d \lambda e^{-i k \lambda} \rho(\lambda)
$$

Proposition)
Conserved quantities are expressed by the densities of string centers.
"Sering-charge duality"

$$
\begin{aligned}
& F_{K}\left[\rho^{(r)}(\lambda)\right]- \\
&=2 \operatorname{ch}\left(\frac{\gamma E}{2}\right) F_{K} l-1 F_{K}\left[\rho^{(L)}(\lambda)\right] \\
&\left.-F_{K}\left[\partial_{1}^{(\gamma)}(\lambda)\right]-Q_{K}^{(r-1)}(\lambda)\right] \\
&(r=1,2, \cdots, l-1) \\
&-F_{K}\left[\rho^{(r+1)}(\lambda)\right] \\
&+\frac{\operatorname{sh}\left[\frac{\gamma F}{2}\right)}{\operatorname{sh}\left((l-2 s-1) \frac{\gamma F}{2}\right)} E_{K}\left[Q_{1,0}(\lambda, s)\right]
\end{aligned}
$$

(emona)
Spin-flip uow-invariant changes are not linearly iudependent.

$$
\begin{aligned}
& E_{E}\left[\partial_{c .0}(\lambda, 5)\right]=\frac{\operatorname{sh}\left((l-2 s-1) \frac{\gamma F}{2}\right)}{\operatorname{sh}\left((l-2 t-1) \frac{\gamma F}{2}\right)} F_{F}\left[\partial_{1.0}(\lambda, t)\right] \\
& -\frac{\operatorname{sh}\left((2 t-2 s) \frac{\gamma F}{2}\right)}{\operatorname{sh}\left((l-2 t-1) \frac{\gamma f}{2}\right)} f_{E}\left[Q_{1}^{(l-1)}(\lambda)\right] \\
& F_{E}\left[\partial_{r .2 p}(\lambda . s)\right]=(-i k)^{r-1}(-r k)^{2 p} F_{k}\left[\partial_{1.0}\left(\lambda_{c} s\right)\right] \\
& F_{k}\left[\partial_{r, 2 p-1}(\lambda . s)\right]=(-i k)^{r-1} \frac{(-\gamma k)^{2 p-1}}{\operatorname{sh}\left((l-2 s-1) \frac{\gamma k}{2}\right)} F_{k}\left[\partial_{1}^{(l-1)}(\lambda)\right] \\
& \in\left(-:(k)^{r-1}(-\gamma k)^{2 p-1} \operatorname{coch}\left((l-2 s-1) \frac{\gamma k}{2}\right) F_{k}\left[\partial_{L .0}(\lambda, s)\right]\right.
\end{aligned}
$$

Non-zero (macroscopic) spier current

Drade creight (in linear response)

$$
\begin{aligned}
D\left(\beta=\frac{1}{F_{B} \tau}\right) & =\lim _{t \rightarrow \infty} \lim _{N \rightarrow \infty} \frac{\beta}{2 N t} \int_{0}^{t} d e^{r}<J(0), J\left(t^{f}\right)_{\beta} \\
& \geq \lim _{N \rightarrow \infty} \frac{1}{2 N} \frac{\left|c J, \partial_{F}^{2}\right|^{2}}{\left\|\partial_{k}\right\|_{\beta}^{2}}
\end{aligned}
$$

$D>0 \Rightarrow$ ballistic transport
(now-vanishing DC current)
Prop.) Drade weight for spies current is wow-zero at high temperature.

$$
\lim _{\beta \rightarrow 0} D_{s}(\beta)>0
$$

(6) Conserved operator instructed from the mochodromy matrix with the and. space of couple L_{x} - spoon rep. has finite overlap with the spin current operator

$$
\begin{aligned}
& \frac{\vdots}{2} \sum_{n}\left(\sigma_{n}^{f} \sigma_{n+1}^{\prime}-\sigma_{n}^{-} \sigma_{n+1}^{t}\right)
\end{aligned}
$$

f 4 Summary

- Ineegrable systems have many conserved quantities due to the Yang-Barter eq.
- Equilibrium state cant be defined for integrable systems (equivalently, integrable systems do not thermalize).

Instead, integrable systems relax to the steady state called "generalized Gibbs ensemble $[G G E]^{*}$.

- The $x \times Z$ anode (an example of integrable systems) shows finite spies current ever after relaxation.

