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Motivation

Schur polynomials, denoted sλ, are certain symmetric polynomials in n
variables, indexed by partitions.
In representation theory, they are characters of irreducible represenations
of the general linear group gln.
Schur polynomials form a basis for the space of all symmetric polynomials.

Any product of two Schur polynomials can be written as a sum of Schur
polynomials with non-negative coefficients (Littlewood-Richardson rule):

sλsµ =
∑
ν

cνλ,µsν .

In this talk, we will present a special case of this multiplication when all
coefficients are equal to 1.
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Partitions and Young diagrams

A partition λ = (λ1, λ2, . . . , λm) of n is a non-increasing sequence of
integers such that

∑m
i=1 λi = n. We write λ ` n if λ is a partition of n.

We can visualise partitions by drawing Young diagrams. A Young
diagram corresponding to λ is a set of boxes such that in each row i we
draw λi many boxes.

For example, take n = 16 and λ = (5, 4, 4, 2, 1). The Young diagram is
drawn below.
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Tableaux

If we fill the boxes of the Young diagram with integers, we obtain a
tableau of shape λ. We call a tableau semi-standard if entries weakly
increase along the rows and strictly increase down the columns. If they
also strictly increase along the rows, we say that the tableau is standard.

Let λ = (4, 3, 2, 2) and take

T1 = 2 3 1 4
6 7 8
3 3
5 1

T2 = 1 2 3 6
4 4 5
5 8
6 11

T3 = 1 2 3 4
5 6 7
8 9

10 11

.

Then T2 is semi-standard and T3 is standard.
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Row insertion

The algorithm row insertion takes a tableau T and inserts a positive
integer x into it, resulting in a new tableau, denoted T← x .

1. If x ≥ i for all entries i in the first row of T, add x to the end of the first row.

2. If not, find the leftmost i in the first row of T such that i > x .

3. Place x into the place of i and take i out of the tableau.

4. Repeat the process in the second row with i .

5. Keep going until the bumped entry can be placed at the end of the row it is
bumped into or until it is bumped at the bottom, in which case it forms a
new row of length 1.

1 2 2 3 4 6

2 3 5 5

4 4 6

5 7

3



Row insertion

The algorithm row insertion takes a tableau T and inserts a positive
integer x into it, resulting in a new tableau, denoted T← x .

1. If x ≥ i for all entries i in the first row of T, add x to the end of the first row.

2. If not, find the leftmost i in the first row of T such that i > x .

3. Place x into the place of i and take i out of the tableau.

4. Repeat the process in the second row with i .

5. Keep going until the bumped entry can be placed at the end of the row it is
bumped into or until it is bumped at the bottom, in which case it forms a
new row of length 1.

1 2 2 3 4 6

2 3 5 5

4 4 6

5 7

3



Row insertion

The algorithm row insertion takes a tableau T and inserts a positive
integer x into it, resulting in a new tableau, denoted T← x .

1. If x ≥ i for all entries i in the first row of T, add x to the end of the first row.

2. If not, find the leftmost i in the first row of T such that i > x .

3. Place x into the place of i and take i out of the tableau.

4. Repeat the process in the second row with i .

5. Keep going until the bumped entry can be placed at the end of the row it is
bumped into or until it is bumped at the bottom, in which case it forms a
new row of length 1.

1 2 2 3 4 6

2 3 5 5

4 4 6

5 7

3



Row insertion

The algorithm row insertion takes a tableau T and inserts a positive
integer x into it, resulting in a new tableau, denoted T← x .

1. If x ≥ i for all entries i in the first row of T, add x to the end of the first row.

2. If not, find the leftmost i in the first row of T such that i > x .

3. Place x into the place of i and take i out of the tableau.

4. Repeat the process in the second row with i .

5. Keep going until the bumped entry can be placed at the end of the row it is
bumped into or until it is bumped at the bottom, in which case it forms a
new row of length 1.

1 2 2 3 3 6

2 3 5 5

4 4 6

5 7

2

4



Row insertion

The algorithm row insertion takes a tableau T and inserts a positive
integer x into it, resulting in a new tableau, denoted T← x .

1. If x ≥ i for all entries i in the first row of T, add x to the end of the first row.

2. If not, find the leftmost i in the first row of T such that i > x .

3. Place x into the place of i and take i out of the tableau.

4. Repeat the process in the second row with i .

5. Keep going until the bumped entry can be placed at the end of the row it is
bumped into or until it is bumped at the bottom, in which case it forms a
new row of length 1.

1 2 2 3 3 6

2 3 5 5

4 4 6

5 7

2

4



Row insertion

The algorithm row insertion takes a tableau T and inserts a positive
integer x into it, resulting in a new tableau, denoted T← x .

1. If x ≥ i for all entries i in the first row of T, add x to the end of the first row.

2. If not, find the leftmost i in the first row of T such that i > x .

3. Place x into the place of i and take i out of the tableau.

4. Repeat the process in the second row with i .

5. Keep going until the bumped entry can be placed at the end of the row it is
bumped into or until it is bumped at the bottom, in which case it forms a
new row of length 1.

1 2 2 3 3 6

2 3 4 5

4 4 6

5 7

2

3

5



Row insertion

The algorithm row insertion takes a tableau T and inserts a positive
integer x into it, resulting in a new tableau, denoted T← x .

1. If x ≥ i for all entries i in the first row of T, add x to the end of the first row.

2. If not, find the leftmost i in the first row of T such that i > x .

3. Place x into the place of i and take i out of the tableau.

4. Repeat the process in the second row with i .

5. Keep going until the bumped entry can be placed at the end of the row it is
bumped into or until it is bumped at the bottom, in which case it forms a
new row of length 1.

1 2 2 3 3 6

2 3 4 5

4 4 6

5 7

2

3

5



Row insertion

The algorithm row insertion takes a tableau T and inserts a positive
integer x into it, resulting in a new tableau, denoted T← x .

1. If x ≥ i for all entries i in the first row of T, add x to the end of the first row.

2. If not, find the leftmost i in the first row of T such that i > x .

3. Place x into the place of i and take i out of the tableau.

4. Repeat the process in the second row with i .

5. Keep going until the bumped entry can be placed at the end of the row it is
bumped into or until it is bumped at the bottom, in which case it forms a
new row of length 1.

1 2 2 3 3 6

2 3 4 5

4 4 5

5 7

2

3

4

6



Row insertion

The algorithm row insertion takes a tableau T and inserts a positive
integer x into it, resulting in a new tableau, denoted T← x .

1. If x ≥ i for all entries i in the first row of T, add x to the end of the first row.

2. If not, find the leftmost i in the first row of T such that i > x .

3. Place x into the place of i and take i out of the tableau.

4. Repeat the process in the second row with i .

5. Keep going until the bumped entry can be placed at the end of the row it is
bumped into or until it is bumped at the bottom, in which case it forms a
new row of length 1.

1 2 2 3 3 6

2 3 4 5

4 4 5

5 7

2

3

4

6



Row insertion

The algorithm row insertion takes a tableau T and inserts a positive
integer x into it, resulting in a new tableau, denoted T← x .

1. If x ≥ i for all entries i in the first row of T, add x to the end of the first row.

2. If not, find the leftmost i in the first row of T such that i > x .

3. Place x into the place of i and take i out of the tableau.

4. Repeat the process in the second row with i .

5. Keep going until the bumped entry can be placed at the end of the row it is
bumped into or until it is bumped at the bottom, in which case it forms a
new row of length 1.

1 2 2 3 3 6

2 3 4 5

4 4 5

5 6

2

3

4

5

7



Row insertion

The algorithm row insertion takes a tableau T and inserts a positive
integer x into it, resulting in a new tableau, denoted T← x .

1. If x ≥ i for all entries i in the first row of T, add x to the end of the first row.

2. If not, find the leftmost i in the first row of T such that i > x .

3. Place x into the place of i and take i out of the tableau.

4. Repeat the process in the second row with i .

5. Keep going until the bumped entry can be placed at the end of the row it is
bumped into or until it is bumped at the bottom, in which case it forms a
new row of length 1.

1 2 2 3 3 6

2 3 4 5

4 4 5

5 6

7

2



Row bumping lemma

Assume that we successively insert two integers a and b (in this order)
into some T. We label the resulting new boxes in T by Ba and Bb. Then
we have the following:

◦ if a ≤ b, Ba is strictly left of and weakly below Bb,

◦ if b < a, Bb is weakly left of and strictly below Ba.



Row bumping lemma

Assume that we successively insert two integers a and b (in this order)
into some T. We label the resulting new boxes in T by Ba and Bb. Then
we have the following:

◦ if a ≤ b, Ba is strictly left of and weakly below Bb,

◦ if b < a, Bb is weakly left of and strictly below Ba.

If a ≤ b and Ba is the green node, then the possible positions of Bb are
highlighted in pink.
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Symmetric polynomials

Let x = (x1, x2, . . . , x`) be a set of variables. The monomial xa11 xa22 . . . xa``
is said to have degree n if

∑
i ai = n.

We fix a partition λ = (λ1, λ2, . . . , λm) of n where m ≤ `
The monomial symmetric polynomial corresponding to λ is given by

mλ = mλ(x) =
∑

xλ11 . . . xλ``

where the sum is over all distinct monomials having exponents λi .

For example, if λ = (2, 1) and x = (x1, x2, x3), then

m(2,1) = x21x2 + x21x3 + x1x
2
2 + x1x

2
3 + x22x3 + x2x

2
3 .
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The nth elementary symmetric polynomial (n ≤ `) is given by

en = m(n) =
∑

i1<···<in

xi1 . . . xin

and the nth complete homogeneous symmetric polynomial is given by

hn =
∑
λ`n

m(1n) =
∑

i1≤···≤in

xi1 . . . xin .

For example, if n=4 and x = (x1, x2, x3, x4, x5), then

e4 = x1x2x3x4 + x1x2x3x5 + x1x2x4x5 + x1x3x4x5 + x2x3x4x5,

h4 = x41 + x42 + · · ·+ x31x4 + x31x3 + · · ·+ x1x2x4x5 + · · · .

The polynomial en is the sum of all square-free monomials of degree n.
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Schur polynomials

To each λ = (λ1, λ2, . . . , λm), we can associate another important
symmetric polynomial sλ(x1, . . . , x`) called the Schur polynomial.

These
polynomials have an easy definition using tableaux:

sλ(x) = sλ(x1, . . . , x`) =
∑

xT

where the sum is taken over all monomials coming from semi-standard T

of shape λ filled with numbers from 1 to `.

Continuing with the previous example, if

T2 = 1 2 3 6
4 4 5
5 8
6 11

, then xT2 = x1x2x3x
2
4x

2
5x

2
6x8x11.

Observe, that if λ = (n) (a single row) or λ = (1n) (a single column), then

s(n)(x) = hn(x) and s(1n)(x) = en(x).
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Pieri rule

The following is an immediate consequence of the row bumping lemma:

Corollary (Pieri rule)

Using the insertion process from before, we obtain the following formulas:

sλs(n) =
∑
µ

sµ

where the sum is taken over all µ’s that are obtained from λ by adding n
nodes, with no two in the same column; and

sλs(1n) =
∑
µ

sµ.

where the sum is taken over all µ’s that are obtained from λ by adding n
nodes, with no two in the same row.



Example of the Pieri rule

Take λ = (4, 3, 2, 2) and ν = (3). Then using the formula from the
previous slide, we see that

sλsν = s(4,3,2,2)s(3) =
∑
µ

sµ

where µ is obtained from λ by adding 3 boxes, no two in the same column.

We see that the sum consists of the Schur polynomials corresponding to
the following tableaux:
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Supersymmetric polynomials

Let λ = (λ1, λ2, . . . , λm) be a partition of n and x = (x1, x2, . . . , x`) and
y = (y1, y2, . . . , yk) two sets of variables.

A polynomial p(x, y) is called supersymmetric if it is symmetric in both x
and y and upon substitution x1 = t and y1 = −t the resulting expression
is independent of t.

For example, x1 + x2 + x3 + y1 + y2 is supersymmetric (in 3 + 2 variables).
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Supersymmetric Schur polynomials

Characters of the Lie superalgebra gl(m|n).
Just like Schur polynomials, we can read them off from semi-standard
supertableaux:

Sλ(x/y) =
∑

xTyT.

Entries in a supertableau have even or odd parity such that

1′ < 2′ < 3′ < · · · < k < 1 < 2 < · · · < `.

Odd (primed) entries must strictly increase along the rows and even
(unprimed) entries must strictly increase down the columns.

For example, if λ = (6, 4, 4, 3, 2) and

T = 1′ 2′ 3′ 1 1 3
1′ 3′ 4′ 2
2′ 3′ 1 3
1 2 2
2 4

, then xT = y21 y
2
2 y

3
3 y4x

4
1x

4
2x

2
3x4.
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Is there an easy way to calculate SλS(n) and SλS(1n)?

Let’s try to row-insert an odd number.
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Is there an easy way to calculate SλS(n) and SλS(1n)?

Let’s try to row-insert an odd number.

1′ 2′ 2′ 1 1 3
1′ 3′ 4′ 2
2′ 3′ 1 3
1 2 2
2 4

3′

We see that simple row-insertion does not preserve the semi-standardness
of our tableau.



Mixed insertion

In his paper, Muth described a new ‘mixed’ insertion process, called
ε-insertion, which takes into account the parities of the entries in T, by
defining ε to be even or odd.

Two different algorithms:

◦ even-insertion: even numbers are inserted in the next row down and
odd numbers are inserted in the next column to the right,

◦ odd-insertion: odd numbers are inserted in the next row down and
even numbers are inserted in the next column to the right.

In order to preserve the semi-standardness of T, we modify the second step
in row-insertion. Recall that

2. If not, find the leftmost/uppermost i in the first row/column of T
such that i > x (even-ins.) or i ≥ x (odd-ins.).
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such that i > x (even-ins.) or i ≥ x (odd-ins.).
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Result

Corollary (The Pieri formulas for supersymmetric Schur polynomials)

Following the ε-insertion as defined above, we obtain the following
formulas:

SλS(n) =
∑
µ

Sµ

where the sum is taken over all µ’s that are obtained from λ by adding n
nodes, with no two in the same column; and

SλS(1n) =
∑
µ

Sµ.

where the sum is taken over all µ’s that are obtained from λ by adding n
nodes, with no two in the same row.


