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Introduction: Investigating the pathological mechanisms of developmental

disorders is a challenge because the symptoms are a result of complex and

dynamic factors such as neural networks, cognitive behavior, environment,

and developmental learning. Recently, computational methods have started

to provide a unified framework for understanding developmental disorders,

enabling us to describe the interactions among those multiple factors underlying

symptoms. However, this approach is still limited because most studies to date

have focused on cross-sectional task performance and lacked the perspectives

of developmental learning. Here, we proposed a new research method for

understanding the mechanisms of the acquisition and its failures in hierarchical

Bayesian representations using a state-of-the-art computational model, referred

to as in silico neurodevelopment framework for atypical representation learning.

Methods: Simple simulation experiments were conducted using the proposed

framework to examine whether manipulating the neural stochasticity and noise

levels in external environments during the learning process can lead to the altered

acquisition of hierarchical Bayesian representation and reduced flexibility.

Results: Networks with normal neural stochasticity acquired hierarchical

representations that reflected the underlying probabilistic structures in the

environment, including higher-order representation, and exhibited good

behavioral and cognitive flexibility. When the neural stochasticity was high

during learning, top-down generation using higher-order representation became

atypical, although the flexibility did not di�er from that of the normal stochasticity

settings. However, when the neural stochasticity was low in the learning

process, the networks demonstrated reduced flexibility and altered hierarchical

representation. Notably, this altered acquisition of higher-order representation

and flexibility was ameliorated by increasing the level of noises in external stimuli.

Discussion: These results demonstrated that the proposed method assists in

modeling developmental disorders by bridging between multiple factors, such

as the inherent characteristics of neural dynamics, acquisitions of hierarchical

representation, flexible behavior, and external environment.

KEYWORDS

autism spectrum disorder (ASD), computational psychiatry, predictive coding, flexibility,

representation learning, neural noise, Bayesian brain, neural network
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1. Introduction

Developmental disorders, such as autism spectrum disorders

(ASDs), represent various symptoms involving perceptual,

behavioral, cognitive, and social dysfunctions, and elucidating their

pathological mechanisms is a challenging task. A fundamental

difficulty in understanding developmental disorders is the fact that

their symptoms are the results of complex and dynamic processes

involving multiple factors, including neural systems, cognitive

behavior, environment, and development learning. At the levels

of cognition and behavior, in addition to their symptoms, people

with ASD were reported to show reduced performance in a wide

range of cognitive and behavioral tasks (1–4). At the level of the

neural system, there are many findings related to the pathology of

ASD, such as imbalance of neural excitations and inhibitions (5),

altered variability in neural dynamics (6, 7), alterations in alpha

oscillations (8), and abnormalities in subcortical areas including

frontolimbic circuit, brainstem including superior colliculus, and

autonomic nervous system (9–15). At the external environment

level, it has been known that cognitive-behavioral interventions,

such as structuring the environment and reducing stimulus

ambiguity, alleviate symptoms of ASD (16, 17). However, despite

the accumulation of these findings, existing theories of atypical

development remain fragmentary because the target symptoms

and the levels of explanations for each of these findings are

different (18).

To address this issue, computational study has been expected

to play a key role (18–21). This is because computational models

can provide explanations bridging multiple levels in complex

dynamical systems of the brain through quantitative simulations of

the processes of neural, cognitive, and behavioral interactions that

are difficult to observe and manipulate in actual biological systems.

One of the promising computational theories for

developmental disorders is Bayesian brain hypothesis (22),

also referred to as predictive coding theory (23, 24), Bayesian

cognitive modeling (25–27), and free energy principle (28).

In Bayesian brain hypothesis, the brain is considered to have

the hierarchical Bayesian model that reflects the probabilistic

structures in environment, and a hierarchical and probabilistic

predictive process enables adaptive cognition and behavior.

From the aspect of Bayesian brain hypothesis, it is proposed that

symptoms of ASD are failures in Bayesian inference and abnormal

acquisition of a hierarchical Bayesian model. Furthermore, the

Bayesian brain hypothesis argued that these failures in inference

and acquisition result from circular interactions between external

stimuli and the internal brain dynamics in short- and long-term

timescales (29–32). However, most ASD studies using the Bayesian

brain hypothesis have focused on cross-sectional (i.e., short-term)

behavioral measures such as reasoning and decision making,

and there have been few studies focusing on long-term effects of

environmental interactions and the acquisition/developmental

learning process. For example, some studies attempted to fit

theoretically driven hierarchical Bayesian models to behavioral

data, and group differences in estimated values of model

parameters between healthy and atypical developmental groups

were investigated (33–35). In those studies, because a hierarchical

Bayesian model has been constructed by researchers a priori, the

process of acquiring a hierarchical Bayesian representation has not

been examined.

Artificial neural networks, one of the computational modeling

methods for brain function (36–38), could help investigate the

developmental learning process because neural network models

acquired internal representation reflecting external environment

through synapse updating (39–43). In particular, a hierarchical

recurrent neural network (RNN) model (44–46) has been widely

applied for modeling higher cognitive function in the brain because

this model has high similarity to the hierarchical system of the brain

and capacity to reproduce complex dynamics. In addition to typical

development (47–49), some studies investigated developmental

disorders (50–53) and schizophrenia (54) as failures in the

hierarchical neural system using hierarchical RNNs, and examined

behavioral phenotypes and its relations to representations acquired

in neural networks. These studies, referred to as neurorobotics,

are promising for psychiatric research because they investigated

the acquisition process of higher-order representations based on

realistic and multidimensional sensorimotor sequence with the

interaction of physical environment using a humanoid robot driven

by an RNN (50–52, 54).

Recently, a neural network model that combines the properties

of a hierarchical Bayesian model and RNN, referred to as

predictive-coding-inspired variational recurrent neural network

(PV-RNN), has been proposed (55). PV-RNN can embed complex

stochastic sensorimotor signals in neural dynamics as a hierarchical

Bayesian model through the developmental learning process.

Therefore, PV-RNN can be considered a powerful tool for

investigating the Bayesian brain hypothesis. Indeed, PV-RNN

was useful for modeling uncertainty estimations (55), goal-

oriented behavior (56), sensory attenuation (57), and social

interaction (58–60).

In this study, we propose a novel and useful framework

using PV-RNN for the understanding of typical and atypical

developmental process, referred to as “in silico neurodevelopment

framework for atypical representation learning” (Figure 1).

The key point of the proposed framework is the integration

of computational theory of hierarchical Bayesian models

and neural network models as dynamical systems from the

perspective of developmental learning. Specifically, in this

framework, the developmental learning process of an agent is

simulated in which the neural system acquires a hierarchical

Bayesian representation in a self-organizing manner thorough

interacting with the environment (Figure 1A). Furthermore, by

manipulating the inherent characteristics of neural dynamics

and environmental factors, this framework can reproduce the

diversity in the developmental process, including typical and

atypical development and possible interventions (Figure 1B).

Namely, in the simulations, the environment generated observable

signals based on the unobserved hierarchical and probabilistic

generative process reflecting cognitive behavioral tasks. Through

the developmental learning in this environment, the agent is

needed to acquire hierarchical Bayesian models reflecting the

environment structures under various conditions. After this

process, the performance of the agent in the cognitive behavioral

tasks and the effects of manipulations are evaluated. In these ways,

the relationships between the inherent characteristics of neural
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FIGURE 1

The scheme of “‘in silico neurodevelopment framework for atypical representation learning” proposed in this study. (A) The agent modeled by the

hierarchical Bayesian neural network model (PV-RNN) must learn the hierarchical and probabilistic structure hidden in the observations in the

developmental learning process. (B) The inherent characteristics of neural dynamics and environmental factors are simulated as experimental

manipulation to understand divergence in the developmental process. zt and xt represent latent and observed variables, respectively.

dynamics, acquisitions of hierarchical Bayesian representation,

behavioral phenotypes, and the effects of environmental factors

including possible interventions can be quantitatively analyzed.

As a proof of concept, we conducted a simulation experiment

using the ‘in silico neurodevelopment framework for atypical

representation learning framework (Figure 2). Specifically, we

focused on the relationship between the acquisition of hierarchical

and probabilistic representations reflecting environment structures

and “reduced flexibility.” Indeed, reduced flexibility is one of

the representative cognitive-behavioral phenotypes in ASD (2,

61, 62). Although many neural foundations related to reduced

flexibility have been reported (2, 62), the mechanism between

these neural alterations and the reduced inflexibility has not

been well known. Therefore, in the simulations, we examined:

(1) whether manipulating inherent characteristics of neural

dynamics and external environment induces reduced flexibility;

(2) whether these manipulations lead to the normal/abnormal

acquisition of hierarchical Bayesian representations; (3) how the

abnormalities in hierarchical Bayesian representation are related to

reduced flexibility.

2. Materials and methods

2.1. Overview

The simulation experiments based on the proposed framework

consisted of two components including an environment (left

side in Figure 2A) and an agent (right side in Figure 2A).

The environment generated observable signals following the
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FIGURE 2

(A) The simulation experiments based on the proposed framework. In the experiments, as behavioral and cognitive task, flexibility task was used. To

understand atypical developmental process, (a) the stochasticity in neural dynamics of lower layer, (b) noise level of observation signal was

manipulated. dist. represents distribution. (B) An example of training sequences in the simulation experiments. These sequences repeated state

transitions to LEFT or RIGHT (“target state”). The probability that the transition from HOME to LEFT is likely to occur is determined by “transition bias.”

Transition bias was set to 0.76 (LEFT-biased sequences), and “signal noise” was set to low (stable environment condition) in the presented sequence.

In the test phase, the transition bias switched at the middle point in the sequence to quantify flexibility.

unobserved hierarchical and probabilistic generative process,

which is designed to measure flexibility. The agent was required

to embed the covert hierarchical structures of environment into

neural dynamics using only the observed signals through the

developmental learning process. After the learning process, the

ability of flexibility was tested in this environment. In the

experiments, stochasticity in the neural networks (i.e., agent side)

and noise level of the observation signals (i.e., environment

side) in the learning process were manipulated as inherent

characteristics and external environmental factor, respectively.

Then, we investigated whether the changes in these factors

impacted on the acquisition of hierarchical representations

and flexibility.

2.2. Environmental stimuli and task setting

The observable signals were two-dimensional trajectories of

objects that mimic reaching movements (Figure 2B) and were
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generated by three unobservable, hierarchical, and stochastic

variables: “transition bias,” “target state,” and “signal noise” (left

side of Figure 2A). Specifically, these sequences repeated the

state transitions from HOME to LEFT or RIGHT (target) and

return to HOME from LEFT or RIGHT. The transition bias

represented the probability of the transition from HOME to LEFT,

as a highest-order context in the environment. The target states

(LEFT or RIGHT) were sampled from Bernoulli distributions

parameterized by transition bias. The observable goal positions in

one reaching movement were sampled from Gaussian distributions

whose mean parameter corresponded to a central coordination

of each target state and variance parameter corresponded to

signal noise.

For the training, two sets of nine sequences (18 sequences in

total) with 512 steps were generated with nine different transition

probabilities (0.98, 0.87, 0.76, 0.65, 0.54, 0.43, 0.32, 0.21, and 0.10).

Asymmetry of transition bias was used to improve the divergence

of variances in the sequences. The agent learned to reproduce

these sequences with diverse transition probabilities through the

developmental learning process. In the test phase, the “flexibility” of

the agent was tested using unknown test sequences whose transition

bias was switched at the middle of the sequences. Namely, for the

test sequences, two sequences with different transition biases (256

steps) were connected in which the transition bias in the second

half of the test sequence was randomly sampled from the values in

opposite directions to the transition bias of the first half.

The flexibility of the agent was evaluated in terms of the

capability to perceive and follow change in the observations

and unobservable context (i.e., transition bias) in these

unknown test sequences. This quantification was inspired

by flexibility tasks, such as the Wisconsin card sorting task

(61), in which participants are required to detect changes

of a rule or context throughout the task. The flexibility of

the agent was evaluated by using two types of performance

measures: 1) how accurately the network predicted observations

(behavioral flexibility) and 2) how accurately the network

inferred unobservable transition bias of the current sequence

(cognitive flexibility). The details of the signal generation and

quantification methods are shown in Supplementary Methods 1.1,

1.2, respectively.

The task settings presented here were designed to integrate

motor control tasks and Wisconsin card sorting tasks. People

with ASD have been reported to have alterations in sensorimotor

processing (3, 4, 63), including the altered performance in

the reaching movement task (3, 63). Based on these findings,

observation signals in the current task were synthetically created to

mimic reaching behavior, including seeing an object, predicting the

movements of the object, and reaching the object. The observation

signals in our task setting correspond to the moves of the target

object, and the outputs of the neural network model correspond

to visual and proprioceptive signals. In addition, the current task

also includes a component of cognitive function measured by the

Wisconsin card sorting tasks, i.e., flexibility. Indeed, individuals

with ASD have been also reported to have reduced performance in

the flexibility task (2, 61, 62). This component was implemented in

the form that rules of object transitions (i.e., the transition bias)

were switched without any notifications, and the agent needs to

discover the switch.

2.3. Neurocognitive model

2.3.1. Architecture of PV-RNN
The task for the agent was to acquire an internal representation

that reflects the abovementioned hidden environment structure

and flexibly adapt to unknown sequences. According to the

Bayesian brain hypothesis, this problem for the agent can

be described as follows. The agent constructs the statistical

model p(x≤T) = p(x1, x2, . . . , xT) approximating the true data

distribution of the environment in which x and T represent the

observed signals and length of sequences, respectively. The model

of agent, PV-RNN (55), factorizes this distribution by introducing

two latent variables, neural dynamic units dt and probabilistic latent

state units zt (right side in Figure 2A).

p(x≤T) =

∫

· · ·

∫

p(x≤T , d≤T , z≤T)dd≤Tdz≤T

=

∫

· · ·

∫

p(x1|d1)p(d1)p(z1)

T
∏

t=2

p(xt|dt)p(dt|dt−1, zt)p(zt|dt−1)dd≤Tdz≤T

This equation indicates that the PV-RNN constructs p(x≤T)

using three components: prior distribution p(zt|dt−1), recurrent

distribution p(dt|dt−1, zt), and generative distribution p(xt|dt). In

addition, to estimate the latent states based on observations,

approximate posterior (inference) distribution q(zt|dt−1, at) was

introduced. It should be noted that adaptive variables at are

learnable parameters and save the error information about each

training sequence. For the approximate posterior, the PV-RNN (55)

uses q(zt|dt−1, at), instead of q(zt|dt−1, xt) used in the variational

recurrent neural network model (64). The use of q(zt|dt−1, at) is

inspired by the predictive coding theory (24), namely the posterior

of latent states is inferred not directly based on external inputs xt ,

but based on prediction error.

These probabilistic distributions of mapping from the inputs to

outputs were implemented in neural network models and refined

through the learning (update of synaptic weights). For example,

prior distribution p(zt|dt−1) assumed to follow the Gaussian

distribution was represented using the mean and variance units

(top-right in Figure 3). The neural network model corresponding

to prior distribution inferred the mean and variance of latent units

zt using neural dynamics of dt .

The neural network corresponding to recurrent distribution

p(dt|dt−1, zt) has a key role in the top-down and bottom-up flows

of information in a hierarchical network (bottom-right in Figure 3).

It is well known that the brain has hierarchical properties such

as differed intrinsic neural timescales and distinctive anatomical

connections, and the hierarchy may contribute to the complex

cognitive functions (65, 66). The hierarchical nature of the PV-

RNN was implemented to imitate these biological findings by

providing different time constants for each layer and restricting

the connections between the higher and lower layer units [multiple

timescale RNN: MTRNN (46, 54)]. In addition, prior distribution

p(zt|dt−1) and posterior distribution q(zt|dt−1, at) have similar

restrictions of the connections between the layers. For example,

zt units in the higher layer are inferred only using dt units in
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FIGURE 3

The graphical representation of PV-RNN architecture (left). PV-RNN constructs hierarchical generation process in which the higher layer has larger

time constant (slow neural dynamics) while the lower layer has smaller time constant (fast neural dynamics), as shown in (bottom-right). In

(top-right), the inference process of zt is illustrated. The right superscripts of symbols (i.e., p and q) are used to distinguish prior and approximate

posterior distributions. The inference of posterior latent units z
q
t is performed by propagating the errors in the reverse direction of arrows and

updating the adaptive variables at. This figure is simplified to improve readability, and detailed and accurate information of PV-RNN is shown in

Supplementary Methods 1.3, 1.4.

the higher layer. Considering this hierarchy, the data distribution

p(x≤T) constructed by PV-RNN is factorized as follows (left side in

Figure 3):

p(x≤T) =

∫

· · ·

∫

p(x1|d
1
1)

L
∏

l=1

p(dl1)

L
∏

l=1

p(zl1)

T
∏

t=2

{

p(xt|d
1
t )

{

p(d1t |d
1
t−1, d

2
t−1, z

1
t )p(d

L
t |d

L−1
t−1 , d

L
t−1, z

L
t )

L−1
∏

l=2

p(dlt|d
l−1
t−1, d

l
t−1, d

l+1
t−1, z

l
t)
}

{
L

∏

l=1

p(zlt|d
l
t−1)

}
}

dd≤Tdz≤T

In this study, the number of layers was set to three. The number

of dt neural units and zt units were set to (20, 10, 10) and (2, 2, 2),

respectively, with the time constant at (2, 8, 32). Because dt was

used as deterministic variables, the integral of dt was omitted in the

following. The detailed architecture and generative processes are

provided in the Supplementary Method 1.3.

2.3.2. Loss function in the learning and test phase
Updates of synaptic weights in the learning phase and inference

of latent states in the test phase follow the unified principle

of minimizing the loss function. In the learning phase, losses

were minimized by iteratively updating the synaptic weights and

adaptive variables at . As a result of learning, PV-RNNwas expected

to acquire efficient mapping from observed sensorimotor signals to

hierarchical Bayesian representations. On the other hand, during

the test phase, inference of latent states in posterior distribution was

performed through modification of the adaptive variables at based

on minimizing of the losses with fixing synaptic weights, called

“error regression” (49).

In mathematical terms, the model parameters, such as synaptic

weights and adaptive variables, were adjusted to maximize the

similarity between the statistical model p(x≤T) and the true data

distribution of the environment. This is achieved by minimizing

the negative of marginal log likelihood− log p(x). Using variational

inference (67),

− log p(x) ≤ −

T
∑

t=1

Eq(zt |dt−1 ,at)[log p(xt|dt)]

︸ ︷︷ ︸

Reconstruction errors

+

T
∑

t=1

DKL[q(zt|dt−1, at)||p(zt|dt−1)]

︸ ︷︷ ︸

Regularization errors

.

The right-hand side in this inequality is called variational

free energy, and its negative is equivalent to the evidence lower

bound (55, 68, 69). The first term, also called the reconstruction
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errors, is the negative log likelihood and reflects the differences

between the data observations and predictions generated by the

model. The second term, in which DKL represents Kullback-

Leibuler divergence, reflects the similarity between the prior

distribution and posterior distribution and was proposed to have

a regularization role (55). In PV-RNN, the weighting factor wl for

each hierarchy l was introduced to control the similarity between

the prior distribution and posterior distribution as follows:

Loss = −

T
∑

t=1

Eq(zt |dt−1 ,at)[log p(xt|d
1
t )]

+

T
∑

t=1

L
∑

l=1

wlDKL[q(z
l
t|d

l
t−1, a

l
t)||p(z

l
t|d

l
t−1)].

The weighting factor wl, referred to as “meta-prior,” was

considered to control the stochasticity of neural dynamics

(Supplementary Figures S1, S2) through the developmental

learning process (55). In the developmental learning process, the

neural dynamics is stochastic when the meta-prior is weak, while

that is deterministic when the meta-prior is strong. In the test

phase, the meta-prior plays a role in controlling the impact of

the prior on the posterior; That is, a high meta-prior in the test

phase leads to a strong effect of the prior on the posterior, while

a low meta-prior weakens the effect. It is noted that the effects of

meta-prior differ in the learning and test phase because synaptic

weights are fixed in the test phase, and only inferred latent units

in the posterior were updated. All parameters of PV-RNN (the

synaptic weight and adaptive variables at) were optimized using

backpropagation through time by minimizing the loss function. As

an optimizer, Adam (70) was used. The detail of loss deviation is

provided in Supplementary Method 1.4.

2.4. Simulations of diversity in neural
development

We manipulated several parameters in the simulation of

the learning phase to investigate the relationships between

inherent characteristics of neural dynamics, hierarchical Bayesian

representation, behavioral and cognitive flexibility, and external

environmental factors. First, as the inherent characteristics

of neural dynamics, the stochasticity of the network in the

developmental learning process was manipulated; This was

implemented by changing the value of the meta-prior that controls

the balance of two terms (reconstruction errors and regularization

errors) in the loss function. This manipulation was attempted based

on the previous theoretical studies suggesting that the stochasticity

of the network (high or low neural noise) contributes to autistic

symptoms (71, 72). In fact, some non-invasive studies have

reported that participants with ASD showed altered neural noise (6,

7, 73, 74). Based on these findings and hypotheses, we expected that

autistic-like phenomena, i.e., reduced flexibility, would be observed

under both weak (high stochasticity) and strong (low stochasticity)

meta-prior conditions, and the reduced flexibility would be induced

by an abnormality in acquired hierarchical Bayesian representation.

As a specific simulation setting, the meta-prior in the lower layer

was set to 0.1, 1.0, and 10 as the weak, normal, and strong meta-

prior conditions, respectively; the meta-prior in other layers was

set to 1.0.

The second manipulated parameter was the level of noises

included in the environmental stimulus during the developmental

learning process; This is motivated by the well-known observations

that reducing ambiguity in stimulations and the structuring

environment promotes learning and improve behavioral and

cognitive functions in children with ASD (16, 17). The large noise

condition and small noise condition were tested by changing

the levels of signal noise corresponding to the changes in the

ambiguity of the states (LEFT, RIGHT, and HOME). Based

on the findings related to interventions for people with ASD

(16, 17), we hypothesized that less flexibility and alterations

in the hierarchical Bayesian representations would be observed

under large noise condition (noisy environment) than small noise

condition (stable environment).

2.5. Implementation and statistical analysis

Python and PyTorch (75) were used in the experimental

simulation to generate training and test sequences and implement

the neural network model. Both R (76) and Python were used

for visualization and statistical analysis. The 20 networks were

trained in each condition. In each analysis, values outside of

1.5 times the quantile range in each condition were removed as

outliers. Therefore, the number of conditions was inconsistent in

each analysis. To compare between meta-prior conditions, analyses

of variance (ANOVA) between-subject were used (three levels,

normal, strong, and weak meta-prior). The interaction effects of

meta-prior and signal noise were analyzed using a three (meta-

prior conditions) × two (stable and noisy environments) ANOVA.

In post-hoc multiple comparison, Shaffer’s modified sequentially

rejective Bonferroni procedure was used.

3. Results

3.1. Behavioral and cognitive flexibility in
hierarchical Bayesian RNN

The representative example of generation of behavioral

sequence and neural activities with the value of meta-prior referred

to as the “normal meta-prior” condition was presented in Figure 4.

The output sequences of RNN and test sequences were seemingly

concordant not only at the observation signal (xy-coordinate) level,

but also at the state transition level (i.e., HOME/LEFT/RIGHT).

This indicated that the network successfully predicted unknown

observations and adapted to the changes in the observation signals

based on hierarchical internal representations acquired through the

developmental learning.

Qualitative inspection indicated that the hierarchical

representation of each latent unit played a different functional

role. For example, the activities of latent units of the lower

layer (unit0 and unit1) were synchronized with the y-axis in
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FIGURE 4

An example of flexibility tasks under normal meta-prior condition. In the top of figure, RNN generations and test sequence are plotted on

two-dimensional plane (left) and along time axis (right). The unit0 and unit1, unit2 and unit3, and unit4 and unit5 reflect the lower layer, middle layer,

and higher layer, respectively. The latent units coding mean parameters of Gaussian distributions are plotted in the figure rather than zt itself. In the

figure, only the 128 steps before and after switching of the transition bias are plotted.

the behavioral trajectories. In the middle layer, unit2 was active

when target states moved to RIGHT and unit3 was active in the

opposite direction. The higher layer units, such as unit4 and unit5,

appeared to be related to the probability of transitions to LEFT and

RIGHT. Specifically, unit5 was active in generating LEFT-biased

sequence (first half of Figure 4), and unit4 was active in generating

RIGHT-biased sequence (last half of Figure 4). The distinct role of

the middle layer and higher layer can be clearly observed in the

last half of Figure 4. In this period, unit4 was continuously active

because of RIGHT-biased generation even when LEFT-transition

occurred (probabilistic effect on outputs). In contrast, unit3 was

only active when LEFT-transition occurred (direct effects on

target states). These observations indicated that the PV-RNN with

normal meta-prior condition acquired hierarchical representation,

which reflected the structures of environment and were flexible

enough to adapt not only to the observable stimulus changes but

also to the unobservable context switching.

Under the strong meta-prior condition, the network failed to

accurately predict the observations in the test phase. For example,

movement timing of generated sequence did not match to a test

sequence (arrowheads in Figure 5A). In addition, the network

under strong meta-prior condition was unable to respond to

the changes in context (probability of transitions) in the target

states and repeated previous output patterns (perseveration errors;

arrows in Figure 5A). Indeed, activities of higher layer units (unit4

and unit5) did not change at the point when transition bias

switched in the test sequence. On the other hand, these failures

in behavior including perseverative errors were not observed

under the weak meta-prior condition (Figure 5B). However, neural

activities seemed to be relatively noisy and unstable, and the

functional roles of each layer of latent units were not clear

compared to the normal meta-prior.

To confirm this qualitative evaluation, two types of measure

were introduced: behavioral and cognitive flexibility. Behavioral

flexibility was the ability to accurately adapt to observable signal

changes and quantified using the percentage of the agreement

between the states of observations and the states of predictions by

the networks. On the other hand, cognitive flexibility was evaluated

using the correlations between true values of transition bias in the

test sequences and the activities of latent units in the higher layer

of the networks. Therefore, cognitive flexibility reflects the efficacy

of representation learning in terms of passive inference for higher-

order context and the “insight” for changes of higher-order hidden

context (transition bias) in the environment.

Consistent with the qualitative evaluations, the behavioral

flexibility was declined under strong meta-prior condition [F(2,51)
= 152.5871; p < 0.0001 using ANOVA, and t(51) = 15.0647; p

< 0.0001 at normal > strong, and t(51) = 14.9831; p < 0.0001

at weak > strong in post-hoc tests; Figure 6A]. Furthermore,

cognitive flexibility declined more in strong meta-prior condition

than weak and normal prior conditions [F(2,56) = 15.6619; p <

0.0001 using ANOVA, and t(56) = 4.6497; p < 0.0001 at normal

> strong, t(56) = 5.0041; p < 0.0001 at weak > strong in post-hoc

tests; Figure 6B].
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3.2. Hierarchical and probabilistic
representation for active generation

To further examine the functional role of the latent units

in each layer of PV-RNN, we adapt deep learning technique

called “latent space traversal (LST).” In the LST, the changes in

the network predictions were investigated when the activity of

single target latent unit was intentionally manipulated (77, 78).

This makes it possible to functionally, causally, and operationally

examine whether neural units code output information and to

FIGURE 5

(A) Example of flexibility tasks under strong meta-prior condition. The arrows and arrowheads represent perseveration errors and timing mismatches,

respectively. The latent units coding mean parameters of Gaussian distributions were plotted in figure rather than zt itself. (B) Example of flexibility

tasks under weak meta-prior condition. The range of color plot adjusted to activities of higher latent units although the max and min values in lower-

and middle-units surpassed the ranges of those plotted. In the figures (A, B), only the 128 steps before and after switching of the transition bias

are plotted.
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FIGURE 6

The quantitative evaluation about behavioral flexibility (A) and cognitive flexibility (B). MP represents meta-prior.

reject the possibility that the activity of higher layer units is

passively responding to bottom-up signals. Therefore, the LST

method focused on the decoding (active generation) ability

while cognitive flexibility focused on the encoding ability

(passive inference), although both were used for evaluation of

representation learning.

The LST analysis was conducted as follows. One sequence of

1,024 time steps was generated by setting the activity of the target

latent unit at a particular fixing value. This process was repeated

by changing the fixing values ranging from –1.0 to 1.0. Properties

of the generated sequences were evaluated in terms of the ratios of

time steps staying withHOME and the number of LEFT transitions,

and so on. Examples of generated sequences using LST were shown

in Supplementary Figure S3.

The LST under normal meta-prior condition demonstrated

that the lower the activities in unit0 and unit1, the more time

steps staying with HOME state (Figure 7A), suggesting that the

lower layer units (unit0 and unit1) coded the y-axis movement.

Similarly, the manipulations in the activities of middle layer units

(unit2 and unit3) and higher layer units (unit4) lead the changes

in the transition to the LEFT state, suggesting that these units

coded LEFT/RIGHT transitions (Figure 7B). Note that the slope

of the changes in the number of LEFT transitions induced by the

higher layer unit manipulations is shallower than those induced

by the middle layer unit manipulations. This observation suggests

that the activity of the higher layer unit likely codes probabilistic

information (i.e., transition bias), while the activities of middle

layer units directly were associated with target state (i.e., LEFT or

RIGHT) with an all-or-nothing manner. In addition, LST analysis

applied to the variance units demonstrated that the variances of

generated sequences increased as the activities of variance unit in

the lower layers increased (Figure 7C). This unit seemed to code

the amount of noise in the predicted signals (i.e., signal noise).

These results suggested that the PV-RNN under the normal meta-

prior condition could acquire hidden hierarchical and probabilistic

structures of the environment in terms of not only passive inference

but also active generation.

The LST analysis with different meta-prior setting conditions

demonstrated altered hierarchical representations. For example,

under the strongmeta-prior condition, lower layer units and higher

layer units did not have distinct roles, and several levels of functions

are intermingled in the middle layer. Namely, the activities of unit0

and unit1 (lower layer) did not have the effects on steps staying in

HOME state and the number of LEFT transitions (Figures 8A, B).

The activities of unit4 (higher layer) did not have clear effects on the

sequence generations (i.e., association of activities and properties

of generated sequences have several outliers) (Figure 8B). On the

other hand, changes in unit2 and unit3 (middle layer) had effects

on the time steps staying HOME state (Figure 8A) and in the LEFT

transitions (Figure 8B). These observations suggested that under

the strong meta-prior condition, the representations in each layer

were not good, which was consistent with the observations of poor

behavioral and cognitive flexibilities.

On the other hand, under the weak meta-prior condition,

unit1 and unit0 had very clear effects on the y-axis movements

(Figure 8C) and LEFT transition (Figure 8D), respectively.

However, unit2, unit3 (middle layer), unit4, and unit5 (higher

layer) had no effects on generated sequences. Therefore, under

weak meta-prior condition, it seemed that latent representations

in the lower layer were effective, but those in higher layer

were ineffective.

To quantitatively confirm these findings, we defined a measure

referred to as “generative hierarchy,” which represents the total

amount of the causal effect of a network in terms of active

generation. Namely, the latent units of the network have stronger

causal effects for output sequences when the generative hierarchy

of a network is high. The detailed procedure is as follows: first,

in the LST analysis, correlations between the manipulated values

of a particular latent unit (horizontal axis in Figures 7, 8) and

behavioral properties of generated sequences including the number

of transitions to each state, the number of stay steps in each state,

and the variance in each state (i.e., the vertical axis in Figures 7, 8)

were calculated. The maximum value of the correlations over all

properties was calculated based on the assumption that this value
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FIGURE 7

The results of latent space traversal under normal meta-prior condition. The properties of generated sequences (y-axis) changed depending on fixed

activation values (x-axis) of one particular unit. Changes in the number of steps staying with HOME states (A) and the numbers of transition to LEFT

states (B) were plotted. (C) Changes in the variances of generations were plotted when activities of units inferring variances of latent units were fixed.

Irrelevant lines are plotted in a pale color to improve readability.

represents the efficacy of each latent unit on behavioral generation.

Finally, the average of the efficacy of the latent units in each layer

was used as the generative hierarchy of each layer in one network.

Figure 9 depicts the generative hierarchy under each meta-

prior condition. As expected, to sum up all the layers, generative

hierarchy of the latent representations in normal meta-prior

conditions seemed to be better than in other conditions. On

the other hand, under weak meta-prior condition, the generative

hierarchy in the middle and higher layer was poor, although that

in the lower layer was comparable to normal meta-prior condition.

The generative hierarchy under strong meta-prior condition was

reduced in all layers compared to normal meta-prior condition

except for noise representations of variance units.

These observations were confirmed by the following statistical

analyses. The generative hierarchy was best under weak meta-

prior condition in the lower layer [Figure 9A; F(2,56) = 361.8663;

p < 0.0001, t(56) = 3.4104; p = 0.0012 at weak > normal, t(56) =

24.8918; p < 0.0001 at weak > strong, and t(56) = 21.1603; p < 0.0001

at normal > strong]. However, in the middle layer (Figure 9B),

generative hierarchy was the best in normal meta-prior condition

than strong and weak meta-prior conditions [F(2,53) = 33.5184;

p < 0.0001, t(53) = 8.1367; p < 0.0001 at normal > weak, t(53) =

3.5753; p = 0.0008 at normal > strong, t(53) = 4.7977; p < 0.0001

at strong > weak]. Similar to the middle layer, in the higher layer

(Figure 9C), the normal meta-prior condition showed the best

generative hierarchy [F(2,54) = 24.3196; p < 0.0001, t(54) = 6.9503;

p < 0.0001 at normal > weak, t(54) = 3.2721; p = 0.0019 at normal

>strong, and t(54) = 3.8371; p = 0.0003 at strong >weak]. The

differences in the generative hierarchy of variance units were not

significant [Figure 9D; F(2,57) = 0.0769; p = 0.9261].

These results suggested that the networks under a weak meta-

prior condition generated using only lower layers; it did not

have sufficient hierarchical and disentangled representations in

term of active generation, and the hierarchical representations

were effective only during passive inference. On the other hand,

the networks under a strong meta-prior condition showed the

abnormalities in hierarchical representations in terms of both active

generation and passive inference.

3.3. The bu�ering e�ect of environment on
representation learning

As an external environmental factor during the developmental

learning process, the noise level of the observation signals was
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FIGURE 8

The results of latent space traversal under strong (A, B) and weak meta-prior condition (C, D). Irrelevant lines are plotted in a pale color to improve

readability.

manipulated. This experiment is motivated by the well-known

phenomenon in education and support for children with ASD,

namely that reducing ambiguity in stimulations and the structuring

environment promote learning and improve behavioral and

cognitive functions (16, 17). In this experiment, we manipulated

the signal noise level included in the training and test sequences

and examined the interaction effect between meta-prior and noise

level on the representation learning. Figure 10A illustrated a

representative example of behavioral sequence for training under

the “noisy” environment condition in which LEFT and RIGHT

states were not clearly distinguishable, in contrast to “stable” signal

noise condition (Figure 2B).

As described earlier, strong meta-prior condition showed

reduced flexibilities (behavioral and cognitive: Figure 6) and poor

generative hierarchy (Figure 9). However, in the noisy environment

condition, the behavioral flexibility under strong meta-prior

conditions was improved (Figure 10B). Furthermore, the networks

under strong meta-prior and noisy environment condition partly

acquired the hierarchical representations, specifically in the middle

(Figure 10D) and higher layer (Figure 10E). However, noisy

environment under strong meta-prior condition did not induce

the improvement of generative hierarchy in the lower layer

(Figure 10C).

These observations were confirmed by the following statistical

analyses. There were significant main effects of meta-prior and

environment [F(2,105) = 116.4491; p < 0.0001 in meta-prior, F(1,105)
= 90.8178, p < 0.0001 in environment]. In addition, the interaction

effect between the environment and meta-prior on behavioral

flexibility was significant [interaction effect F(2,105) = 72.7390, p

< 0.0001]. Furthermore, the difference of behavioral flexibility

between environment conditions was significant under strong

meta-prior condition [the simple effect of environment on strong

meta-prior condition F(1,105) = 222.8984; p < 0.0001]. However,

the interaction effects on cognitive flexibility were not significant

[F(2,112) = 1.7649; p = 0.1759], although main effects of meta-prior

[F(2,112) = 28.7819; p < 0.0001] and noise level of environment

[F(1,112) = 5.5784; p = 0.0199] were significant. Moreover, the

strong meta-prior condition under noisy environment improved

generative hierarchy in the middle layer [interaction effect F(2,107)
= 6.3325; p = 0.0025, and simple effect of environment on strong

meta-prior F(1,107) = 16.1836; p = 0.0001] and in the higher

layer [interaction effect F(2,106) = 7.1059; p = 0.0013, and simple

effect of environment on strong meta-prior F(1,106) = 14.5995;

p = 0.0002]. The interaction effect between the environment

and meta-prior on lower representations was not significant

[F(2,111) = 0.3530, p = 0.7033].
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FIGURE 9

(A–D) The generative hierarchy under each condition. MP represents meta-prior.

Therefore, under the strong meta-prior condition, increased

signal noise improved the behavioral flexibility and acquisition of

the hierarchical Bayesian representation.

4. Discussion

In this study, we proposed a new research framework for

understanding the pathological mechanisms of the atypical

developmental process, using state-of-the-art computational

model, PV-RNN. This framework comprehensively includes

simulations of the multiple factors related to developmental

disorders, for example, the neural dynamics, hierarchical Bayesian

representation, cognitive-behavioral phenotypes, developmental

learning processes, and the environment. In this framework,

these factors could be manipulated without any restriction and

analyzed quantitatively.

As an example, in experiments using this framework,

we analyzed the relationships between inherent characteristics

of neural dynamics, hierarchical Bayesian representation, the

properties of external stimulus, and inflexibility, which is cognitive-

behavioral phenotype observed in patients with ASD. Particularly,

this study investigated: (1) whether manipulating inherent

characteristics of neural dynamics and external environment

induces reduced flexibility; (2) whether these manipulations lead

to the normal/abnormal acquisition of hierarchical Bayesian

representations; and (3) how the abnormalities in hierarchical

Bayesian representations are related to reduced flexibility. Figure 11

summarizes the results for these questions.

4.1. Reduced flexibility and pathology of
ASD

The normal and weak (high stochasticity) meta-prior

conditions did not show reduced flexibility regardless of external

environment condition. In contrast, the networks with strong

meta-prior (low stochasticity) condition showed less behavioral

and cognitive flexibility in the stable environment. On the other

hand, the noisy environment improved the behavioral flexibility

under strong meta-prior condition.

This result of reduced flexibility under strong meta-prior

condition is consistent with the finding reported by Wirkuttis and

Tani (59) that the PV-RNN with higher meta-prior had stronger
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FIGURE 10

(A) The training sequence in noisy environment condition in which transition bias was set to 0.76 (LEFT-biased sequences). (B–E) The interaction

e�ect between the environment and meta-prior. The results of statistical test were showed under only strong meta-prior condition.

intention and less flexible interaction with others because the

top-down prior belief had more effects on generated behaviors

than bottom-up sensory signals. In addition to reproducing

this finding, we found that behavioral flexibility was improved

by increasing stimulus noise under the strong meta-prior

condition. From an information theory view of PV-RNN, the
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FIGURE 11

The results of simulation experiments were graphically summarized. The networks with normal neural stochasticity were able to acquire hierarchical

representations, including higher-order representation, and exhibited good behavioral and cognitive flexibility. When the neural stochasticity was

high in the learning process, top-down generation using higher-order representation (i.e., generative hierarchy) was impaired, although the flexibility

did not di�er from that of the normal settings. On the other hand, when the neural stochasticity was low in the learning process, the networks

demonstrated reduced flexibility and abnormal hierarchical representation. However, this altered acquisition of higher-order representation and

flexibility was ameliorated by increasing the level of noises in external stimuli.

network with strong meta-prior condition underestimates the

reconstruction errors and overestimates the regularization errors

in the loss function compared to the other conditions. The

reason why the flexibility improved under noisy environment

was that increasing stimulus noise led to an increase of

reconstruction errors, resulting in amelioration of the balance

between the reconstruction and regularization errors. Therefore,

the combination of appropriate meta-prior and noise levels in the

environment seems to be important for the flexible behavior. An

alternative explanation for this amelioration effect is that increasing

stimulus noise worked similar to the machine learning techniques

to improve generalization capability such as augmentation (79) or

denoising (80).

The findings that low stochasticity dynamics was related to

reduced flexibility may provide new insights into the hypothesis

that neural noise is involved in the formation of ASD. Previous

theoretical studies have proposed conflicting hypotheses: one is

there is more noise in the brain of people with ASD (72) and

another is low noise in the brain of people with ASD (71). Our

results support the hypothesis that low neural noise is associated

with ASD. Furthermore, these results are consistent with the

experimental findings using magnetic resonance imaging and

electroencephalography that lower neural noise was associated

with worse task performance in a typical developmental group

(81, 82) and that lower neural noise was observed in ASD (73, 74).

Moreover, in the Supplementary Results 2.3, we reported that some

networks with low stochasticity dynamics generated sequences

similar to restrictive and repeated behaviors. However, some studies

have reported high neural noise in ASD (6, 7). Indeed, much

noise intuitively seemed to lead to unstable and chaotic predictions

and reduced task performance. The reason why the network with

lower stochastic dynamics did not show inflexibility is that the

flexibility task demanded to predict only one-step-ahead. For this

reason, even if the disturbance of network dynamics by neural noise

occurred, the network could sufficiently modify the predictions

using observations. If the networks were required to predict a

more longer future than one step, the noise would accumulate in

the neural network, and the performance of the task is likely to

deteriorate (55). It remains unclear why the higher neural noise

induced better task performance in typical development but more

severe symptoms in ASD, and refining experimental settings may

contribute to solve this question.

In addition, the amelioration effect of environmental noise

for flexibility was a novel finding of the current study. Indeed,

although the effects of environment in developmental learning

in ASD has been clinically well known (16, 17), there are few

studies directly testing this topic from the computational aspect.

For example, some studies discussed the environmental effects
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on mental disorders using computational theories only at the

conceptual level (30, 31, 83). Our study demonstrated empirically

that if the networks possessed risks for reduced flexibility, such as

low stochasticity in neural dynamics, they could be ameliorated by

increasing ambiguity in the external environment. On the other

hand, clinical findings suggest that structuring the environment

and removing ambiguity in stimulus were effective for people with

ASD (16, 17). Although these findings may seem contradictory, our

findings do not necessarily conflict with clinical findings, because

many exposure methods for anxiety disorders have suggested

that increasing prediction errors was important for correcting

mislearning (84). Given the hypothesis that ASDs have a higher

aversion to prediction errors, it is possible that these interventions,

such as structuring the environment, do not contribute to learning,

but only to emotional stabilization.

4.2. Acquisition of hierarchical and
probabilistic representation

The current study demonstrated that stochasticity of neural

dynamics (controlled by the level of meta-prior) was indeed

associated with acquisition of the internal representations reflecting

hierarchical and probabilistic environment structures. The neural

network model under normal meta-prior condition could acquire

the hierarchical and probabilistic representations in terms of

passive inference (cognitive flexibility) and active generation

(generative hierarchy). However, under weakmeta-prior condition,

there was an anomaly in the active decoding process rather than in

the passive encoding process; namely, cognitive flexibility showed

good performance, although the generative hierarchy in the higher

layer showed poor scores. This may be because the learning of the

prior distribution (used in the LST) did not progress as well as the

posterior distribution (used in the test phase). As the properties of

PV-RNN, the posterior distribution learns more easily and quickly

than the prior distribution because the posterior distribution can

use adaptive variables at in addition to neural dynamics units dt .

Furthermore, under weak meta-prior condition, excessive neural

noise might interfere information transmission to the higher layer

from the lower layer and inhibit learning in the higher layer.

These results of simulation experiments can provide several

insights for understanding the altered uncertainty estimation

process assumed in ASD (29–32). The current experiment

demonstrated that themean unit in PV-RNN encoded higher-order

probability (transition bias) in data sequences, and the variance

units in the lower-order layer encoded sensorimotor noises (signal

noise). This is not perfectly consistent with the predictive coding

theory suggesting that the human brain represents uncertainty

in the environment using the precision (inverse of variance) of

Gaussian distribution (24). This inconsistency may be simply

because of the fact that the higher-order hidden variables in

the environment followed Bernoulli distribution and therefore

neural networks did not need to use the variance units. However,

there is still a possibility that the role of precision, as indicated

by predictive coding theory, may be too normative. In fact,

in a hierarchical neural network, estimation of precision can

have broader effects beyond the weighting of information values

assumed in the conceptual level of predictive coding theory such

as disturbing neural dynamics observed in the weak meta-prior

condition. Investigations using neural network implementation of

predictive coding theory can contribute to further understanding

of the roles of precision estimation and its alternation in

developmental disorders.

The hierarchical Bayesian model has been treated as a very

general and rational cognitive model for performing numerous

tasks (26, 27). However, a hierarchical Bayesian model has

been constructed by researchers a priori, and acquisition of

representations reflecting the hierarchical Bayesian model have

not been sufficiently addressed in cognitive neuroscience (33–

35). In the area of machine learning and neurorobotics, although

some studies focused on acquisition of hierarchical or probabilistic

representations, these have some limitations. For example, some

studies focusing on hierarchical representations did not assume

sequential data because of using a variational auto-encoder (78, 85,

86) and did not use stochastic dynamics in RNN (42). Although

there is research investigating internal representation using PV-

RNN, the previous studies used lower-order probability (e.g.,

target state and signal noise) and did not consider explicitly

higher-order probabilistic variables such as transition bias (55–

60). The current result showing that artificial neural network

models can acquire hierarchical Bayesian representations in a self-

organizing manner is a crucial step to understanding underlying

mechanisms for embedding the hierarchical Bayesian model into

the brain system through developmental learning. Furthermore,

our proposed research framework has applicability to a wide

range of behavioral and cognitive phenotypes if its latent cognitive

processes can be described using the Bayesian method (25, 26),

for example, signal detection theory and drift-diffusion model in

decision-making tasks.

4.3. Relationships between multiple
developmental factors

It was observed that changes in the acquisition of hierarchical

Bayesian representation did not necessarily induce inflexibility.

Indeed, additional analysis demonstrated that the positive

association between hierarchical representations (generative

hierarchy) and behavioral flexibility was found only under strong

meta-prior condition (Supplementary Results 2.1). However,

under weak meta-prior condition, the behavioral and cognitive

flexibility was comparable to normal meta-prior condition, but

generative hierarchy in the higher layer was significantly lower.

This coexistence of good task performance and poor

representation in the weak meta-prior condition is remarkable

because the observable phenomena in performing tasks was

equivalent while the underlying mechanism behind performing

tasks was different between normal and weak meta-prior

conditions. This finding is conceptualized as the issue of

“equifinality” and “multifinality,” which are fundamental

difficulties in understanding neurodevelopmental disorders

(87). In particular, multiple factors leading to one developmental

disorder exist (equifinality, for example, genetically distinct

individuals may develop common social dysfunction), and
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conversely, the same cause may result in diverse and heterogeneous

phenotypes (multifinality, for example, a particular gene can be

associated with distinct psychiatric disorders).

From the aspect of equifinality, possible pathways other

than the manipulations of meta-prior and signal noise leading

to inflexibility were investigated (Supplementary Results 2.2–2.4).

Specifically, the effects of different learning lengths were tested,

motivated by the theoretical hypothesis that autistic characteristics

in perception and cognition can be understood as “over-

learning/over-fitting” (88). This additional experiment showed that

the excessive learning length led to reductions in behavioral and

cognitive flexibility (Supplementary Results 2.2, 2.3). Furthermore,

from the aspect of episodic psychiatric disorders, even after normal

development of hierarchical representation, altered flexibility can

occur. To simulate this situation, we confirmed that hyper-

and hypo-prior distributions (89) in the test phase can also

induce inflexibility (Supplementary Results 2.4). Therefore, the

reduced flexibility was caused both by alterations in the long-term

developmental learning process (alterations of meta-prior, signal

noise, and the learning length) and by abnormal prior influences

in the short-term test phase. These simulations may contribute

to constructing a unified explanation of inflexibility, which is a

transdiagnostic phenotype observed in not only developmental

disorders but also episodic mental disorders such as depression

and schizophrenia.

It is also important that the simulations under strong meta-

prior condition suggested that our proposed method can provide

computational simulation frameworks for investigating multifinal

phenomenon including treatment effects. Namely, the differences

in external environmental stimulus induced the differences in

generative hierarchy and flexibility under strong meta-prior

condition, although settings of the individual network between

environmental conditions were the same.

Equifinality and multifinality are widespread not only in

developmental disorders but also in mental disorders and threaten

the validity of the current diagnosis classification system (90).

Resolving this problem may lead to the development of an effective

intervention strategy that considers the individual differences

(precision psychiatry), and the research handling equifinal and

multifinal nature has been desirable. We are convinced that the

proposed research framework contributes to understanding the

multiple pathways leading to mental disorders.

4.4. Limitation and future directions

The simulation experiments had some limitations, which

should be investigated in future research. First, the proposed

framework is limited to ‘in silico simulation, and the findings

obtained in the proposed framework are exploratory hypotheses.

Therefore, the findings ‘in silico simulation should be verified with

real data. For example, findings in the current experiments suggest

that flexibility and/or hierarchical representation are impaired

under strong and weak meta-prior conditions, suggesting that

ASD may be a heterogeneous disorder. Given that flexibility

was significantly reduced and hierarchical representation learning

was impaired under the strong meta-prior condition, the

neural dynamics with severe ASD may be low stochastic

(highly deterministic). Conversely, mild ASD individuals, whose

performance in flexibility task are close to the typical development

group and who do not explicitly exhibit restrictive and repeated

behaviors, may have high stochasticity in neural dynamics and

may have problems with top-down predictions. These exploratory

hypotheses could be verified using real data to refine the

proposed framework.

The proposed framework has the potential to be extended

for more diverse experimental settings beyond the simulations

conducted in this study. For example, as mentioned above,

cognitive-behavioral tasks other than the flexibility task are also

applicable to the proposed framework. Furthermore, the direct

effects of altered biological features other than meta-prior must

be investigated in our framework as prior works on ASD and

schizophrenia using neural network model utilized various virtual

lesion to neural system (51–54). Moreover, the sequential data also

has room for improvement. In the current study, the sequential

data was two-dimensional and insufficient to reflect the real

environment and sensorimotor signals. To overcome this problem,

using neurorobotics experiments in which humanoid robots are

used to interact with the external world to collect sensorimotor

(e.g., vision and proprioception) signals would be useful (51, 52,

54, 91). Although the simulation experiments were still simple

and were not sufficient to describe the interactions between

multiple factors, these extended experiments based on the proposed

framework will contribute to a deeper understanding of complex

developmental processes.

In the simulation experiments, there were several technical

issues. For example, the meta-prior, which was manipulated in

experiments, was used as the hyper-parameter, which controls the

stochasticity in neural dynamics. The relationship between meta-

prior and stochasticity was confirmed in prior research (55) and

in our simulations (Supplementary Figures S1, S2). However, meta-

prior affects neural dynamics through mediating loss function

rather than directly. Therefore, the process that meta-prior affected

neural dynamics was more complex, and the roles of manipulating

meta-prior required more careful discussion.

It was also unclear how to decide the meta-prior in the test

phase, which affected the strength of prior belief. These values

were decided by experimenter’s trial and error in our study. The

experimental results suggest that appropriate prior strength is

required for good performance in both behavioral and cognitive

flexibility (Supplementary Results 2.4); This is probably because it

is better to ignore the prior information and use a copy of the last

observations to enhance only behavioral flexibility. On the other

hand, when inferring latent states, such as cognitive flexibility,

both higher-order prior knowledge and observation are important

to avoid adapting to accidental changes rather than true context

switching. Therefore, there was a trade-off between behavioral and

cognitive flexibility, and the system controlling exact prior strength

may exist in humans and animals. Mathematically, this calculation

may be automatically executed using Bayesian optimization or the

prediction errors in the previous time step, such as deep active

inference (39).

Furthermore, the variances of metrics, particularly cognitive

flexibility and generative hierarchy, were big even in the same

condition. The unstable results of learning were reported in the
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deep learning domain and often observed in the representation

learning (92). Reducing these high variances is a new and important

topic that needs to be discussed in both artificial neural networks

and cognitive neuroscience domains.

4.5. Conclusion

In this study, to understand the relationships among

hierarchical Bayesian representation, neural dynamics, the

environment, and behavioral phenotype in developmental

disorders, we proposed a new framework combining PV-RNN and

the environment with hierarchical generative process. Through

the experiments using this framework, we investigated whether

inflexibility resulted from various factors (e.g., stochasticity

in neural dynamics and the level of noises included in the

environmental stimulus) with focus on hierarchical Bayesian

representation learning. As a result, we found that the networks

with normal stochastic dynamics acquired hierarchical and

probabilistic representation reflecting the environmental

structures and adapted flexibly to the new environment.

Furthermore, we found that even if the networks possessed

risks for reduced flexibility, such as low stochasticity in neural

dynamics, they could be ameliorated by increasing ambiguity

in the external environment. The networks with high stochastic

dynamics had the hierarchical representations in terms of

passive inference but did not have sufficient hierarchical and

disentangled representations in terms of active generation.

Therefore, our proposed method is useful for understanding

atypical development such as reduced flexibility observed

in ASD by bridging multiple factors including the neural

dynamics, acquisitions of hierarchical representation, and the

external environment.
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