Intuitive explanation of FEP related to cognitive neuroscience and developmental disorders

Yuichi Yamashita

Department of Information Medicine National Center of Neurology and Psychiatry, Tokyo, Japan

ICDL2024 Tutrial@May20, 2024

- Theory of computational rule of the brain explaining the process of *learning*, *perception/ cognition*, and *behavior*.
- Proposed as independent studies using Bayesian inference models (Rao 1999, Friston 2011, etc.) and neural network models (Tani 2003).

Rao RP, Ballard DH (1999) Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptivefield effects. Nat Neurosci. 2: 79-87. Friston K, Mattout J, Kilner J. Action understanding and active inference. Biol Cybern. 2011 Feb;104(1-2):137-60. Tani J (2003) Learning to generate articulated behavior through the bottom-up and the top-down interaction processes. Neural Networks 16: 11-23.

"Unconscious Inference"

Our perceptions are not direct reflections of the world, but rather inferences made by our brain based on sensory inputs.

 Brain is a "predictive machine" based on internal model of the world.

 Interacting with the world via computational rule of "prediction error (PE) minimization"

• Three ways to minimize prediction error

• When there is prediction error...

• Internal model might be wrong...

• Update internal model (brain structure)...

• PE minimization can be achieved through the modifications of internal model (learning).

• When there is prediction error...

• Prediction might be wrong...

• Change the prediction via updating brain states

 PE minimization can be achieved through the modifications of internal/brain states (perception/cognition)

• When there is prediction error...

• External world might be wrong...

• Change the external world through action...

• PE minimization can be achieved through the modifications of sensor (change the world via action).

Predictive processing

• Explaining wide range of brain functions including the learning, perception/cognition and action based on the prediction error minimization.

Illustration by Taiki Kobayashi

Rao, 1999, Tani 2003, Friston 2011, Yamashita 2012 etc.

"Precision" is important

"Precision" in predictive processing

- Estimation of precision works as an important parameter in PE minimization process.
- For example...
 - Estimate low sensory precision (high variability) => PE should be ignored
 - ✓ Estimate high sensory precision (low variability) => PE should be respected

Psychiatric disorders as altered predictive processing:

A major theory in "Computational Psychiatry"

Computational psychiatry is rising to prominence

- Novel area of psychiatric research drawing researchers' attentions.
- New specialist journal "Computational Psychiatry" has been opened (2017).
- Director of NIMH listed computational psychiatry as one of the "three particular areas of interest" in psychiatry

Review Sciences Review Special Issue: Cognition in Neuropsychiatric Disorders Computational psychiatry	Home My	Online Accou	Activate your online accession of the search	National Institute of Mental Health	Transforming the understanding and treatment of mental illnesses. Search the NUMH website Search N OUTREACH RESEARCH PRIORITIES FUNDING LABS AT NUMH NEWS ABOUT US gic Plan Offices and Divisions Careers@NUMH Advisory Boards and Groups Suff Directories Getting to NUMH
P. Read Montague ^{1,2} , Raymond J. Dolan ² , Karl J. Friston ² and Peter Dayan ³ ¹ Virginia Tech Carlion Research Institute and Department of Physics, Virginia Tech, 2 Riverside Circle, Roanoke, VA 24016, USA ³ Vivelicome Trust Centre for Neuroimaging, University College London, J. 20 duen Spauer, London, WC1N 34R, UK ³ Gatisty Computational Neuroscience Unit, Alexandra House, 17 Queen Square, London, WC1N 3AR, UK THE LANCET Psychiatry Review	cpsy	CON PS 450	MPUTATIONAL YCHIATRY	Home + Abod MME + - Joshua A. Corto	DITZECTOTZ'S MESSAGE Joshua A. Gordon, M.D., Ph.D. Director of Nillet N.D. Ph.D. Director of Nillet - Director's Messages 1501 2017
	Continuous Publication 8 1/2 x 11 Founded: 2017 E-ISSN: 2397-6227 Inside the Journal Advertising Info Author Publication Agreement Editorial Info Contact	400 350 300 250 200 150	Number of hits for "computational psychiatr in Google scholar (every year)	' Y"	Computational Neuroscience: Deciphering the Complex Brain Joshua Gordon on Pebruary 7, 2017 Interior in my welcome message about my priorities. First, we need to fund excellent science. Second, we should augoor studies that will yield benefits on short, medium, and long-term Imrescules. Jato have three particular areas for interest. Twenut actional and theoretical psychiatry, and succide prevention. Here full discuss computational and theoretical approaches to mental health research. These approaches can be appleed across the entire NIMH portfolio, and have the potential to yield benefits in the short, medium, and nog-term.
¹ Dependment of Neuroscietogy, Yate University School of Medicine, 33D Conder Street, New York, CT 60500, USA ¹ Quopartment of Phytothysis, Yate University School of Medicine, 33D Conder Street, Star 800, New York, CSO, USA ¹ Control Neuroscience Division, VA National Center for PTSD, VA Connecticut Healthcare System, West Heven, CT 06516, USA ¹ Control Neuroscience Division, VA National Center for PTSD, VA Connecticut Healthcare System, West Heven, CT 06516, USA ¹ Control Neuroscience Division, VA National Center for PTSD, VA Connecticut Healthcare System, West Heven, CT 06516, USA ¹ Control Neuroscience Division, VA National Center for PTSD, VA Connecticut Healthcare System, West Heven, CT 06516, USA ¹ Control Neuroscience Division, VA National Center for PTSD, VA Connecticut Healthcare System, West Heven, CT 06516, USA ¹ Control Neuroscience Division, VA National Center for PTSD, VA Connecticut Healthcare System, West Heven, CT 06516, USA ¹ Control Neuroscience Division, VA National Center for PTSD, VA Connecticut Healthcare System, West Heven, CT 06516, USA ¹ Control Neuroscience Division, VA National Center for PTSD, VA Connecticut Healthcare System, West Heven, CT 06516, USA ¹ Control Neuroscience Division, VA National Center for PTSD, VA Connecticut Healthcare System, West Heven, CT 06516, USA ¹ Control Neuroscience Division, VA National Center for PTSD, VA Connecticut Healthcare System, West Heven, CT 06516, USA ¹ Control Neuroscience Division, VA National Center for PTSD, VA N		100 50 0	2000 2001 2003 2006 2005 2006 2009 2009 2010 2011	2013 2014 2015 2016 2017	

Autism spectrum disorder (ASD) as altered predictive processing:

Autism spectrum disorder (ASD): DSM-5 criteria

Many recent studies of ASD focus on the non-social symptoms.

- A. Persistent difficulties in the social use of verbal and nonverbal communication
- B. Restricted, repetitive patterns of behavior, interests, or activities,
- Stereotyped or repetitive motor movements, use of objects, or speech
- Insistence on sameness, inflexible adherence to routines, or ritualized patterns of verbal or nonverbal behavior
- Highly restricted, fixated interests that are abnormal in intensity or focus
- Hyper- or hyporeactivity to sensory input or unusual interests in sensory aspects of the environment

Perception as Bayesian inference

$p(S|I) \propto p(I|S) p(S)$

Probability that object shape is **S** given sensory input **I** (p(S|I)) is determined by the integration of the likelihood of sensory inputs given object shape **S** (p(I|S)) and prior expectation of object shape (p(S)).

Pellicano E, Burr D. When the world becomes 'too real': a Bayesian explanation of autistic perception. Trends Cogn Sci. 2012 Oct;16(10):504-10.

Aberrant precision accounts for ASD

- Reduced precision of prior leads to high reliability of sensor inputs.
- Similar phenomenon can be expected by increased sensory precision.

Explaining characteristic symptoms of ASD

For example...

- More accurate perception
- Lack of advantage using prior
- Hyper sensitivity (sensory overload)
- Reduced spontaneous perceptual shift
- Reduced cognitive flexibility
- Reduced capacity for generalization

There's also a completely opposite explanation... Hyper-prior hypothesis for ASD

 Inflexibility or slow-updating of internal state observed in ASD can be considered as "hyper-prior" (strong topdown/resistance to PE).

• Lieder I, Adam V, Frenkel O, Jaffe-Dax S, Sahani M, & Ahissar M (2019) Perceptual bias reveals slow-updating in autism and fast-forgetting in dyslexia. Nature Neuroscience 22: 256-264.

• Vishne G, Jacoby N, Malinovitch T, Epstein T, Frenkel O, & Ahissar M (2021) Slow update of internal representations impedes synchronization in autism. Nature Communications 12: 5439.

Aberrant precision account for schizophrenia (SZ)

Hallucinations result from the overestimation of the precision of prior beliefs

Hyper-prior precision hypothesis for hallucination

Hyper-sensory precision leads to impaired sensory attenuation and mis attribution of agency

Hyper-sensory precision (hypo-prior) hypothesis for altered sense of agency

Karl J. Friston. Hallucinations and perceptual inference Behavioral and Brain Sciences 28 (6):764-766 (2005) Brown H, Adams RA, Parees I, Edwards M, Friston K.Active inference, sensory attenuation and illusions. Cogn Process. 2013 Nov;14(4):411-27. Adams RA, Stephan KE, Brown HR, Frith CD and Friston KJ (2013) The computational anatomy of psychosis. *Front. Psychiatry* **4**:47.

Aberrant precision account for schizophrenia (SZ)

Karl J. Friston. Hallucinations and perceptual inference Behavioral and Brain Sciences 28 (6):764-766 (2005) Brown H, Adams RA, Parees I, Edwards M, Friston K.Active inference, sensory attenuation and illusions. Cogn Process. 2013 Nov;14(4):411-27. Adams RA, Stephan KE, Brown HR, Frith CD and Friston KJ (2013) The computational anatomy of psychosis. *Front. Psychiatry* **4**:47.

Altered AiF process of neurorobots

Yuichi Yamashita

Department of Information Medicine National Center of Neurology and Psychiatry, Tokyo, Japan

ICDL2024 Tutrial@May20, 2024

Predictive processing: A major theory in "Computational Psychiatry"

There is hope that the pathology of ASD and SZ can be explained as altered predictive processing.

However....

- Similarity of the pathologies postulated in SZ and ASD (altered prior)
- Opposing mechanistic hypotheses for SZ and ASD (hypo-prior vs hyper-prior hypothesis)

Controversy in aberrant predictive processing in ASD

- Reduced precision of prediction (hypo-prior hypothesis)
 - ✓ More accurate perception, hyper-sensitivity, reduced generalization
- Slow-updating of prediction (hyper-prior hypothesis)
 - ✓ Reduced cognitive flexibility

Pellicano E, Burr D. When the world becomes 'too real': a Bayesian explanation of autistic perception. Trends Cogn Sci. 2012 Oct;16(10):504-10.

Vishne G, Jacoby N, Malinovitch T, Epstein T, Frenkel O, & Ahissar M (2021) Slow update of internal representations impedes synchronization in autism. Nature Communications 12: 5439.

Controversy in aberrant predictive processing in SZ

 Excessive precision at the sensory level = reduced precision of prediction (hypo-prior hypothesis)

✓ Abnormal response to PE (misattribution of beliefs, aberrant salience)

- Excessive precision of prediction (hyper-prior hypothesis)
 - ✓ Reduced response to PE (perceptions/beliefs not based on external stimuli (hallucinations and delusions))

Symptom	Feature	Theory	Literature	Controversy	
Hallucinations	Percepts without external stimulus	Strong perceptual priors	Powers et al. (120)	Entails weak and strong prior	
	Speech from external agents	Weak corollary discharge	Thakkar <i>et al.</i> (86)	beliefs—for perception and action—in the same brain at the same time	
Delusions	Delusional mood/aberrant salience	Weak perceptual priors	Corlett et al. (121)	Necessitates a transition from	
	Fixed in the face of contradictory evidence	Strong memory reconsolidation/ strong conceptual priors	Corlett <i>et al.</i> (103); Schmack <i>et al.</i> (72)	weak to strong priors as delusions form, foment, and become ingrained	

Table 1. Predictive Coding and Positive Symptoms: Theory and Controversy

Sterzer, P., Adams, R. A., Fletcher, P., Frith, C., Lawrie, S. M., Muckli, L., Petrovic, P., Uhlhaas, P., Voss, M., & Corlett, P. R. (2018). The Predictive Coding Account of Psychosis. Biological Psychiatry, 84(9), 634–643.

Our perspective

Need for a unified framework that can deal with

- Developmental *persistent trait* and impact of *episodic change*
- Detailed consideration of hierarchy of precision
- => Developmental neurorobotics approach!!

Part1:

Functional disconnection as acute episode (SZ)/inherent characteristics (ASD)

Episodic change simulation (Normal learning => Functional disconnection simulation) [Yamashita2012]

Model of

normal behavior

Modification of

model parameters

Yamashita Y, Tani J (2012) Spontaneous Prediction Error Generation in Schizophrenia. PLoS ONE 7(5): e37843.

Functional disconnection after normal learning can induce

- Seemingly normal behavior (1)
- Spontaneous prediction error generation (2)
- Aberrant higher-level modulation (3)
- =>Miss-attribution of behavioral intention? (delusion of control/passivity symptoms: Sz-like)

Yamashita Y, Tani J (2012) Spontaneous Prediction Error Generation in Schizophrenia. PLoS ONE 7(5): e37843.

Developmental learning simulation (Functional disconnection simulation => Network Learning) [Idei2021]

Variance

estimate

Precision weighted Prediction error

Action

 \hat{v}_{t+1}

Sensory

feedback

X,

Sensory

prediction

 \hat{x}_{t+1}

Functional disconnection was applied during developmental learning...

Learning phase

Left

Right

Adaptation phase

Steps 0-100

Steps 100–200 (environmental change)

Steps 200–300

Environment

Idei H, Murata S, Yamashita Y, Ogata T (2021) Paradoxical sensory reactivity induced by functional disconnection in a robot model of neurodevelopmental disorder. Neural Networks 138, 150-163.

Developmental learning simulation (Functional disconnection simulation => Network Learning) [Idei2021]

Development under functional disconnection leads to ASD-like features including...

- Reduced estimation of sensory precision (1)
- Reduced precision (vague behavioral representation) at higher levels (2)

 Coexistence of hyper- and hypo-reactivities to sensations (3)

Estimation of sensory variance

(inverse precision)

0.2

Severe

disconnection

Reduced flexibility of behavior (4)

Estimated sensory variance

0.003

0

Normal

disconnection

Idei H, Murata S, Yamashita Y, Ogata T (2021) Paradoxical sensory reactivity induced by functional disconnection in a robot model of neurodevelopmental disorder. Neural Networks 138, 150-163.

Normal

Part2

Hierarchy of precision and traits for SZ and ASD

Sensory attenuation (SA)

• Phenomenon in which the level of perception/neural activity is diminished when generated by oneself, compared to that generated externally.

Martikainen et al., 2004, Cereb Cortex

Sato, 2008, Conscious Cogn.

Developmental learning simulation (Modulate intrinsic relative impact of prior between hierarchy =>Traits in cognition and sensory attenuation) [Idei2022, Idei2023]

- Free energy (FE) minimization model with hierarchical latent state precisions
- Self/non-self action generation conditions

Idei H, Ohata W, Yamashita Y, Ogata T, Tani J (2022) Emergence of sensory attenuation based upon the free-energy principle. Sci Rep 12, 14542. Idei H, and Yamashita Y (2023) Elucidating Multifinal and Equifinal Pathways to Developmental Disorders by Constructing Real-world Neurorobotic Models. Neural Networks (in press)

Developmental learning simulation (Modulate intrinsic relative impact of prior between hierarchy =>Traits in cognition and sensory attenuation) [Idei2022, Idei2023]

- Free energy (FE) minimization model with hierarchical latent state precisions
- Self/non-self action generation conditions

Idei H, Ohata W, Yamashita Y, Ogata T, Tani J (2022) Emergence of sensory attenuation based upon the free-energy principle. Sci Rep 12, 14542. Idei H, and Yamashita Y (2023) Elucidating Multifinal and Equifinal Pathways to Developmental Disorders by Constructing Real-world Neurorobotic Models. Neural Networks (in press)

Developmental learning simulation(Modulate intrinsic relative impact of prior between hierarchy =>Traits in cognition and sensory attenuation) [Idei2022, Idei2023]

Through the experience of self/non-self conditions

- Self-organized temporally dynamic changes in precisions of latent states (1)
- Emergence of "sensory attenuation (SA)" phenomenon (2)

Multiple and the sensory attenuation Multiple and the sensory attenuation Multiple and the sensory attenuation [Idei2022, Idei2023]

Difference in the "intrinsic" relative influences of prior between hierarchies (*W*-value) results in SZ-like and ASD-like phenotype including...

- Weak associative level prior
 > Over-fitting, reduced flexibility(A1),
 intact SA(A2) (ASD-like)
- Strong associative level prior
- => Spontaneous recognition switch(S1), reduced SA(S2) (SZ-like)

Take-home messages

- Functional disconnection in hierarchical predictive processing system can result in distinct symptom formations of SZ and ASD.
- By considering detailed hierarchical and developmental learning aspects, distinct sets of primary and secondary alterations of hierarchical precision estimation might capture differences between SZ and ASD.
- Developmental neurorobotics approaches may serve as a complementary research framework for computational psychiatry with the predictive processing theory.

Neural Networks

Available online 6 October 2023 In Press, Journal Pre-proof (?) What's this? 7

Elucidating multifinal and equifinal pathways to developmental disorders by constructing real-world neurorobotic models

Hayato Idei, Yuichi Yamashita 🝳 🖂					
Show more 🗸					
+ Add to Mendeley 😪 Share 🍠 Cite					
https://doi.org/10.1016/j.neunet.2023.10.005 🏹	Get rights and content 🛪				
Under a Creative Commons license 🛪	 open access 				

Idei, H., & Yamashita, Y. (2024). Elucidating multifinal and equifinal pathways to developmental disorders by constructing real-world neurorobotic models. Neural Networks, 169, 57–74.

Thank you for your attention.

Computational Psychiatry Research Map

Collaborators

- Jun Tani (OIST)
- Tetsuya Ogata (Waseda Univ.)
- Shingo Murata (Keio Univ.)
- Hayato Idei (NCNP)

https://ncnp-cpsy-rmap.web.app/

We are looking for researchers, research associates, and students who are interested in computational psychiatry!

Contact: yamay@ncnp.go.jp

Grants: JSPS KAKENHI (JP20H00625, JP24H00076, JP24K00499) JST CREST (JPMJCR21P4), JST Moonshot R&D (JPMJMS2031) Intramural Research Grant (4-6, 6-9) for Neurological and Psychiatric Disorders of NCNP