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“Predictive processing” in a broad sense

* Theory of computational rule of the brain
explaining the process of learning, perception/

cognition, and behavior.

* Proposed as independent studies using Bayesian
inference models (Rao 1999, Friston 2011, etc.)
and neural network models (Tani 2003).

Rao RP, Ballard DH (1999) Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-

field effects. Nat Neurosci. 2: 79-87.
Friston K, Mattout J, Kilner J. Action understanding and active inference. Biol Cybern. 2011 Feb;104(1-2):137-60.

Tani J (2003) Learning to generate articulated behavior through the bottom-up and the top-down interaction processes.

Neural Networks 16: 11-23.



History of key concepts

“Unconscious Inference”
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Hermann von Helmholtz

(1821 — 1894)

Our perceptions are not direct
reflections of the world, but

rather inferences made by our
brain based on sensory inputs.



History of key concepts

“Unconscious Inference”

“Internal model”

DEUTSCHE BUNDESPOST

Hermann von Helmholtz
(1821 — 1894)
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History of key concepts

“Unconscious Inference”
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“Predictive coding”, “Bayesian Brain”,
“Free energy principle”

The World The Estimator
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The brain is constantly making ~ =~ I ( id’ =)
predictions about incoming i
sensory data and updating Rao 1999, Tani 2003, Doya2007,
these predictions based on the Friston2006, etc

actual sensory input.



History of key concepts

“Unconscious Inference”
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“Predictive coding”, “Bayesian Brain”,
“Free energy principle”
The World 'l;he Estlmntc;r .
“Active inference” o Al
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“Predictive processing” in a broad sense

* Brainis a “predictive machine” based on internal model of
the world.
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Rao, 19b9, Tani 2003, Friston 2011, Yamashita 2012 etc



“Predictive processing” in a broad sense

* Interacting with the world via computational rule of
“prediction error (PE) minimization”
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“Predictive processing” in a broad sense

* Three ways to minimize prediction error

Action

Learning

lllustration by Taiki Kobayashi



* When there is prediction error...

Precllgthn error!

,,,,,, \W,t Internal model
4 W: brain structure

lllustration by Taiki Kobayashi



* Internal model might be wrong...

lllustration by Taiki Kobayashi



e Update internal model (brain structure)...

h!

lllustration by Taiki Kobayashi



* PE minimization can be achieved through the
modifications of internal model (learning).

Illustration by Taiki Kobayashi



* When there is prediction error...

Precllgthn error!

,,,,,, \W,t Internal model
4 W: brain structure

lllustration by Taiki Kobayashi



* Prediction might be wrong...

lllustration by Taiki Kobayashi



* Change the prediction via updating brain states

N

lllustration by Taiki Kobayashi



 PE minimization can be achieved through the
modifications of internal/brain states
(perception/cognition)

Illustration by Taiki Kobayashi



* When there is prediction error...

Pre{g_LictiQQY | error!
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lllustration by Taiki Kobayashi



* External world might be wrong...

lllustration by Taiki Kobayashi



* Change the external world through action...

Aa=-a, %
oa

lllustration by Taiki Kobayashi



* PE minimization can be achieved through the
modifications of sensor (change the world via action).

Illustration by Taiki Kobayashi



Predictive processing

* Explaining wide range of brain functions including the
learning, perception/cognition and action based on the
prediction error minimization.
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“Precision” is important



“Precision” in predictive processing

e Estimation of precision works as an important parameter in PE minimization
process.

* For example...

v Estimate low sensory precision (high variability) => PE should be ignored
v’ Estimate high sensory precision (low variability) => PE should be respected

Reliable senses Unreliable senses OK to be rough

Need to be precise



Psychiatric disorders
as altered predictive processing:

A major theory in “Computational Psychiatry”



Computational psychiatry is rising to prominence

* Novel area of psychiatric research drawing researchers’ attentions.

* New specialist journal “"Computational Psychiatry” has been opened (2017).

* Director of NIMH listed computational psychiatry as one of the “three
particular areas of interest” in psychiatry
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Autism spectrum disorder (ASD)
as altered predictive processing:



Autism spectrum disorder (ASD):
DSM-5 criteria

Many recent studies of ASD focus on the non-social symptoms.

A. Persistent difficulties in the social use of verbal and nonverbal
communication

gRestricted, repetitive patterns of behavior, interests, or activities, \
« Stereotyped or repetitive motor movements, use of objects, or speech
* Insistence on sameness, inflexible adherence to routines, or ritualized
patterns of verbal or nonverbal behavior
* Highly restricted, fixated interests that are abnormal in intensity or
focus
e Hyper- or hyporeactivity to sensory input or unusual interests in

K sensory aspects of the environment /




Perception as Bayesian inference

posterior (integrated /perception)

0

) 7 Typical

I‘_I

likelihood (bottm-up /
sensory evidence)

prior (top-down/cause,
object shape)

Likelihood

p(s]l) e<p(l]s)

Probability that object shape is S given sensory input I (p(S//)) is determined
by the integration of the likelihood of sensory inputs given object shape §
(p(1]S)) and prior expectation of object shape ( ).

Pellicano E, Burr D. When the world becomes ‘too real’: a Bayesian explanation of autistic perception. Trends Cogn Sci. 2012
Oct;16(10):504-10.



Aberrant precision accounts for ASD

* Reduced precision of prior leads to high reliability of sensor inputs.
* Similar phenomenon can be expected by increased sensory precision.

=

Typical : :.(_:

integrated: |

Likelihood

Primary impairment in

Primary impairment in E | p bottom-up
pror (top-down) | | e AN sensory process (bottom-up)

G5

T . Reduced sensory noise
Hypo-prior

Likelihood
Likelihood

T T
TRENDS in Cognitive Sciences

*  “Hypo-prior (Increased variance of * “Reduced variance of sensory noise”:

prior)”: Pellicano & Burr, 2012 Brock, 2012
* “High and inflexible precision of PE”:
Van de Cruys et al., 2014
« prediction error  “Reduced endogenous neural noise”:
prior belet Davis, 2015

Balance??

1:)1'(—3(3]81(‘)1'11Ilput

Abelief o

precision

* “Imbalance of the precisions of prior belief
vs. sensory evidence”: Lawson et al., 2014



Aberrant predictive processing for ASD
Hypo-prior (hyper-sensory precision) hypothesis
* Underdeveloped abstract

. representation
nodellevels Diminished higher-level

prediction
Internal
model
P
] o ~
Enhanced PE spoken
K % language
* Sensitive to minor sensory
discrepancies due to
enhar.mce.d PE o  Prefer sensation to prediction
(leading to reduced precision)

generalization

Adapted from “Haker H, Schneebeli M, Stephan KE. Can Bayesian Theories of Autism Spectrum Disorder Help Improve Clinical Practice?
Front Psychiatry 7:107, 2016. “



Aberrant predictive processing for ASD
Hypo-prior (hyper-sensory precision) hypothesis

Explaining characteristic symptoms
of ASD

For example...

* More accurate perception

* Lack of advantage using prior

* Hyper sensitivity (sensory overload)

model levels

Iﬁgg’;‘]’“ * Reduced spontaneous perceptual
, shift
o~ * Reduced cognitive flexibility
Enhanced spoken * Reduced capacity for generalization
PE r\\ _ P language

Adapted from “Haker H, Schneebeli M, Stephan KE. Can Bayesian Theories of Autism Spectrum Disorder Help Improve Clinical Practice?
Front Psychiatry 7:107, 2016. “



Aberrant predictive processing for ASD
Hypo-prior (hyper-sensory precision) hypothesis

* Underdeveloped abstract representation
* Diminished higher-level prediction

Perfect
\\\4 | - ' B prediction!
N eurorice < ’
nhancedPE * e
N’

Complex/dynamic social interaction

* Prefers objects that allow for

: accurate prediction
(surprise, stress) » : ,
e Urge for repetitive actions in

familiar environments

* Larger prediction errors

Adapted from “Haker H, Schneebeli M, Stephan KE. Can Bayesian Theories of Autism Spectrum Disorder Help Improve Clinical Practice?
Front Psychiatry 7:107, 2016. “



Aberrant predictive processing for ASD
Hypo-prior (hyper-sensory precision) hypothesis

* Underdeveloped abstract representation
* Diminished higher-level prediction

Perfect
prediction!

\ { pC Vg B

nhancedPE *

Stable

. . . . v
Complex/dynamic social interaction

* Desire to sameness
* Repetitive/restricted behavior
e Autistic social interaction

Adapted from “Haker H, Schneebeli M, Stephan KE. Can Bayesian Theories of Autism Spectrum Disorder Help Improve Clinical Practice?
Front Psychiatry 7:107, 2016. “



There's also a completely opposite explanation...
Hyper-prior hypothesis for ASD

* |nflexibility or slow-updating of internal state observed in
ASD can be considered as “hyper-prior” (strong top-

down/resistance to PE).
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e Lieder I, Adam V, Frenkel O, Jaffe-Dax S, Sahani M, & Ahissar M (2019) Perceptual bias reveals slow-updating in
autism and fast-forgetting in dyslexia. Nature Neuroscience 22: 256-264.

e Vishne G, Jacoby N, Malinovitch T, Epstein T, Frenkel O, & Ahissar M (2021) Slow update of internal
representations impedes synchronization in autism. Nature Communications 12: 5439.



Aberrant precision account
for schizophrenia (S2)

Hyper-sensory precision leads to
impaired sensory attenuation and
mis attribution of agency

Hallucinations result from the
overestimation of the precision of

prior beliefs

Hyper-sensory precision (hypo-prior)

Hyper-prior precision
hypothesis for altered sense of agency

hypothesis for hallucination

Maximum
likelihood s X
estimate 5= E =| it +0,
- - - - L e Jd
5 X a Tx] [v-%x]
S_‘s_.'_'xzo\‘,' s A x=| "= ", |te
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rior x=x,=0()-%x +0,
expectation S, < \ v= ! +0,
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A1+ e o
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L .. X, v, o, ~N(0,¢"])
Percept Hallucination
Conditional Conditional oS moss

expectation expectation

Karl J. Friston. Hallucinations and perceptual inference Behavioral and Brain Sciences 28 (6):764-766 (2005)
Brown H, Adams RA, Parees |, Edwards M, Friston K.Active inference, sensory attenuation and illusions. Cogn Process. 2013 Nov;14(4):411-27

Adams RA, Stephan KE, Brown HR, Frith CD and Friston KJ (2013) The computational anatomy of psychosis. Front. Psychiatry 4:47.



Aberrant precision account
for schizophrenia (S2)

Controversiall?
Hyper-prior precision Hyper-sensory precision (hypo-prior)
hypothesis for hallucination hypothesis for altered sense of agency
;iﬂ estimate S=—J;—=— . —‘w a ‘-1:1_.::::?1- (]
. el ™ o A P p M
" . ~N 0,71 ’ . L]
©, ~N 0. S, <R 0, ~N(.6°]

X1+ A
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o, ~N (0,671

Generative process Generative model

\ 4

Percept Hallucination
Conditional Conditional
expectation expectation

Karl J. Friston. Hallucinations and perceptual inference Behavioral and Brain Sciences 28 (6):764-766 (2005)
Brown H, Adams RA, Parees |, Edwards M, Friston K.Active inference, sensory attenuation and illusions. Cogn Process. 2013 Nov;14(4):411-27.
Adams RA, Stephan KE, Brown HR, Frith CD and Friston KJ (2013) The computational anatomy of psychosis. Front. Psychiatry 4:47.



Altered AiF process of neurorobots
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Predictive processing:
A major theory in “Computational Psychiatry”

There is hope that the pathology of ASD and SZ can be
explained as altered predictive processing.

However....

* Similarity of the pathologies postulated in SZ and ASD
(altered prior)

* Opposing mechanistic hypotheses for SZ and ASD
(hypo-prior vs hyper-prior hypothesis)



Controversy in aberrant predictive processing in ASD

* Reduced precision of prediction (hypo-prior hypothesis)
v More accurate perception, hyper-sensitivity, reduced generalization

* Slow-updating of prediction (hyper-prior hypothesis)
v’ Reduced cognitive flexibility
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Pellicano E, Burr D. When the world becomes ‘too real’: a Bayesian explanation of autistic perception. Trends Cogn Sci. 2012
Oct;16(10):504-10.

Vishne G, Jacoby N, Malinovitch T, Epstein T, Frenkel O, & Ahissar M (2021) Slow update of internal representations impedes
synchronization in autism. Nature Communications 12: 5439.



Controversy in aberrant predictive processing in SZ

* Excessive precision at the sensory level = reduced precision of prediction
(hypo-prior hypothesis)
v' Abnormal response to PE (misattribution of beliefs, aberrant salience)

* Excessive precision of prediction (hyper-prior hypothesis)

v Reduced response to PE (perceptions/beliefs not based on external
stimuli (hallucinations and delusions))

Table 1. Predictive Coding and Positive Symptoms: Theory and Controversy

Symptom Feature Theory Literature Controversy
Hallucinations Percepts without external stimulus Strong perceptual priors Powers et al. (120) Entails weak and strong prior
Speech from external agents Weak corollary discharge Thakkar et al. (86) beliefs —for perception and

action—in the same brain
at the same time

Delusions Delusional mood/aberrant salience Weak perceptual priors Corlett et al. (121) Necessitates a transition from

Fixed in the face of Strong memory reconsolidation/ Corlett et al. (103); weak to strong priors as

contradictory evidence strong conceptual priors Schmack et al. (72) delusions form, foment, and
become ingrained

Sterzer, P.,, Adams, R. A., Fletcher, P, Frith, C., Lawrie, S. M., Muckli, L., Petrovic, P., Uhlhaas, P., Voss, M., & Corlett, P.
R. (2018). The Predictive Coding Account of Psychosis. Biological Psychiatry, 84(9), 634—643.



Our perspective

Need for a unified framework that can deal with

 Developmental persistent trait and impact of
episodic change

* Detailed consideration of hierarchy of precision

=> Developmental neurorobotics approach!!

Predictive Neurorobotics system with Episodic change simulation
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Partl:

Functional disconnection as
acute episode (SZ)/inherent characteristics (ASD)



\_1 Episodic change simulation (Normal learning =>
)" Functional disconnection simulation) [Yamashita2012]

~______Goal/Intention Functional disconnection
‘ was applied after normal
learning...

wdls = w + U(|Kwl|) Task that requires

switching actions
depending on the
situation

Sensory
prediction

R .
unpredictable
perturbation

Yamashita Y, TaniJ (2012) Spontaneous Prediction Error Generation in Schizophrenia. PLoS ONE 7(5): e37843.



Model of Chang
model bel

? Episodic change simulation (Normal learning =>
===l {3” Functional disconnection simulation) [Yamashita2012]

Functional disconnection after normal learning can induce
* Seemingly normal behavior (1)
* Spontaneous prediction error generation (2)
- Aberrant higher-level modulation (3)
=>Mliss-attribution of behavioral intention?

(delusion of control/passivity symptoms: Sz-like) (2)

T
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Yamashita Y, TaniJ (2012) Spontaneous Prediction Error Generation in Schizophrenia. PLoS ONE 7(5): e37843.



e 27 simulation => Network Learning) [Idei2021]

learning process)

. Functional disconnection was applied
wds = w + U(|Kw|) | during developmental learning...

Learning phase

N
Variance ASensorv
feedback

estimate
x Left

Sensory
prediction

N
Xt+1

Steps 100-200
(environmental change)

Steps 0-100 Steps 200-300

T©) | (\‘(.s) _ \Aj.\))g
Jt,i S0
Low = l_[ 1_[ l_[ B) exp(——7 o )
v, :

sels t=1ielp /2mv,;

Idei H, Murata S, Yamashita Y, Ogata T (2021) Paradoxical sensory reactivity induced by functional disconnection in a robot model of
neurodevelopmental disorder. Neural Networks 138, 150-163.



gﬁ Developmental learning simulation (Functional disconnection

‘) simulation => Network Learning) [Idei2021]

ing pro cess}

: : : Higher level representation
Development under functional disconnection & P

] . . Normal setting Disconnection
leads to ASD-like features including... 10 oona 0.003
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Idei H, Murata S, Yamashita Y, Ogata T (2021) Paradoxical sensory reactivity induced by functional disconnection in a robot model of
neurodevelopmental disorder. Neural Networks 138, 150-163.



Part2

Hierarchy of precision and traits for SZ and ASD



Sensory attenuation (SA)

* Phenomenon in which the level of perception/neural activity is diminished
when generated by oneself, compared to that generated externally.

Ex) Force matching, tickling, self-generated voice * Reduced SA in SZ
* Intact SAin ASD
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Through the experience of self/non-self conditions

* Self-organized temporally dynamic changes in precisions of
latent states (1)

* Emergence of “sensory attenuation (SA)” phenomenon (2)
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Take-home messages

* Functional disconnection in hierarchical predictive processing
system can result in distinct symptom formations of SZ and ASD.

* By considering detailed hierarchical and developmental learning
aspects, distinct sets of primary and secondary alterations of
hierarchical precision estimation might capture differences
between SZ and ASD.

* Developmental neurorobotics approaches may serve as a
complementary research framework for computational
psychiatry with the predictive processing theory.
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