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Through brain-inspired modeling studies, cognitive neurorobotics aims to resolve 24 

dynamics essential to different emergent phenomena at the level of embodied agency in 25 

an object environment shared with human beings. This paper is a review of ongoing 26 

research focusing on model dynamics associated with human self-consciousness. It 27 

introduces the free energy principle and active inference in terms of Bayesian theory 28 

and predictive coding, then discusses how directed inquiry employing analogous models 29 

may bring us closer to representing the sense of self in cognitive neurorobots. The first 30 

section quickly locates cognitive neurorobotics in the broad field of computational 31 

cognitive modeling. The second section introduces principles according to which 32 

cognition may be formalized, and reviews cognitive neurorobotics experiments 33 

employing such formalizations. The third section interprets the results of these and other 34 

experiments in the context of different senses of self, both “minimal” and “narrative” 35 

self. The fourth section considers model validity and discusses what we may expect 36 

ongoing cognitive neurorobotics studies to contribute to scientific explanation of 37 

cognitive phenomena including the senses of minimal and narrative self. 38 
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1. Prospectus 51 

 52 

The following paper proceeds in four movements. The first very briefly introduces 53 

cognitive neurorobotics (CNR). The second section reviews a series of humanoid CNR 54 

experiments designed to elicit specific cognitive phenomena in emergent dynamics, and 55 

the third section interprets this review in the context of minimal and narrative self. The 56 

fourth section emphasizes the potential for CNR studies of this sort to contribute to 57 

inquiry into embodied cognition and mind. 58 

 59 

1.1 Introducing Cognitive Neurorobotics 60 

 61 

The main motivation of cognitive neurorobotics (CNR) is to elucidate essential 62 

mechanisms underlying embodied cognition through synthesis of analogous dynamics 63 

in various robotics experiments. CNR calls on diverse interdisciplinary knowledge 64 

including from fields of cognitive science, psychology, ethology, neuroscience, 65 

complex systems, AI & deep learning, artificial life and many others. Primarily, CNR 66 

can be considered as a marriage of two research fields. One is cognitive robotics (e.g., 67 

Levesque and Lakemeyer, 2008) which aims to develop human level intelligence in 68 

robots using a rather conventional symbolism approach, and the other is neurorobotics 69 

which puts more emphasis on the realization of adaptive behaviors of biological 70 

systems using neuroscience inspired models or neuromorphic schemes. 71 

 72 

Initially, cognitive robotics studies proceeded with a strong conviction that formal 73 

logical descriptions of the world and rational computation for reasoning, planning, and 74 

inference could provide for human-level cognitive competency in artificial agents 75 

including robots. However, such early expectations were betrayed by the results of 76 

projects such as SRI’s SHAKEY (Nilsson, 1984) which demonstrated the problems 77 

associated with the rigors of applying formal logic to real robots. Part of the reason for 78 

the trouble is that representation of the world using symbols as arbitrary tokens cannot 79 

be grounded smoothly with real world phenomena which are fundamentally given to 80 

experience in terms of continuous sensory-motor patterns. This is the point of Harnad’s 81 

(1990) famous symbol grounding problem.  82 

 83 

Already by the end of the 1980s, a paradigm shift had been taking place in AI and 84 

robotics research with the introduction of behavior-based robotics by Rodney Brooks 85 

(Brooks, 1990; 1991). Brooks considered that even simple insect-like robots can exhibit 86 
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extremely complex and intelligent behaviors by establishing a direct coupling between a 87 

robot’s reflex-type controllers and sensations from the environment. His seminal paper, 88 

“Intelligence without representation” (Brooks, 1991) represents this thought -- no 89 

representation and thus no grounding problem. 90 

 91 

Neurorobotics in general is a growing field of especially fruitful inquiry employing 92 

biological system inspired algorithms in a range of applications, from prosthetics with 93 

brain-machine-interface technologies (Millan et al., 2010; Moxon and Foffani, 2015) to 94 

independently embodied robots with autonomous locomotion, learning, memory, value 95 

and action selection systems (Doya et al., 2002; Kuniyoshi and Sangawa, 2005; Kaplan, 96 

2008; Krichmar, 2018). The degree of biological precision in selection of neuronal and 97 

kinematic models depends on the degree of realism required to represent target 98 

phenomena. Extreme realism is represented in the Human Brain Project (HBP). 99 

Neurorobotics is considered a “strategic pillar” of the HBP through which biologically 100 

inspired algorithms representing levels of organization from molecular mechanism to 101 

modular function to unified cognitive architecture can be tested in simulation and then 102 

deployed in physically embodied robots sharing physical space with human beings 103 

(Knoll and Gewaltig, 2016). In general, however, more specific studies replicate focal 104 

operations in fine detail while rendering other aspects more abstract. Recognizing the 105 

impossibility of analyzing all levels of activity simultaneously for instance, Krichmar 106 

and Edelman (2002) focus on how cortical and subcortical levels interact in real-time 107 

using a relatively simple embodied robot, Darwin VII. 108 

 109 

There has been a group of researchers who have emphasized advantages of studying so-110 

called “minimum cognition”. These researchers have focused on phenomena emerging 111 

during system-level interaction with the environment using relatively simple neuronal 112 

adaptive controllers (e.g., Beer, 2000; Nolfi and Floreano, 2000; Iizuka and Di Paolo, 113 

2007; Froese and Ziemke, 2009; Silberstein and Chemero, 2013; Barandiaran and 114 

Chemero, 2006). Beer (2000) viewed an agent’s nervous system, its body and its 115 

environment as coupled dynamical systems. By focusing on the unfolding trajectory of 116 

the agent’s system state as shaped by both forces internal to the agent and external from 117 

the environment, he attempts to extract the essential dynamic structures accounting for 118 

minimal cognition. Since most neurorobotics studies inherit the aforementioned 119 

thoughts of the behavior-based robotics, current research tends to stay close to the 120 

realization of biologically plausible adaptive behavior, focusing on sensory-motor level 121 
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processing and hesitating to explore mechanisms associated with higher cognition in 122 

human beings. 123 

 124 

On the other hand, one of the main motivations of CNR studies is to consider possible 125 

principles, algorithms, and implementation designs which can bridge the gap between 126 

higher cognition and the lower sensory-motor processing of robots. Hybrid models (e.g. 127 

Sun, 2002) attempt to combine these two levels, extracting symbolized rules and 128 

associations at one level from sensory-motor patterns of activity at another (cf. 129 

Kotseruba and Tsotsos, 2018). However, such an enterprise may suffer again from the 130 

symbol grounding problem (Harnad, 1990) since these two levels do not share the same 131 

metric space required for the dense interactions between top-down and bottom-up 132 

processes that are associated with subjective experience including the sense of self. 133 

 134 

Recently, deep learning schemes in robots show promise in attacking this problem. It 135 

has been known that various types of deep learning networks can develop hierarchical 136 

information processing in collective spatio-temporal activities of the neural units 137 

through end-to-end learning of sensory-motor patterns. Actually, such trials have been 138 

conducted by various research groups including the authors’ (Yamashita and Tani, 139 

2008; Levine et al., 2016; Yamada et al., 2016; Heinrich and Wermter, 2018). 140 

Developmental robotics (Meta et al., 2008; Asada et al., 2009; Cangelosi and 141 

Schlesinger, 2015) is another indispensable approach to address this problem. In 142 

developmental robotics, cognitive competencies of artificial agents or robots develop 143 

gradually, supported by human tutors, with scaffolding from one level to next level 144 

according to fundamental theories in child development (e.g., Piaget, 1953; Vygotsky et 145 

al., 1962). 146 

 147 

Some CNR research attempts to expose connections between the phenomenology of 148 

subjective experience and embodied sensory-motor processing. Holland (2007) 149 

conjectured that building human-like bodies for robots and developing internal models 150 

for predicting body dynamics is essential for developing “machine consciousness”. 151 

Prescott and Camilleri (2019) considers that the sense of self can be characterized as a 152 

transient process, analogous to Tani’s (1998) consideration that self becomes an object 153 

of consciousness when prediction error for the actional outcome momentarily increases 154 

(as will be described later, in section 3). Lanillos and colleagues (2017) proposed that 155 

prediction error generated by a body’s forward model should come with the sense of 156 

what they call “enactive self” in the differentiation between inbody and other sources. 157 
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And, Hafner and colleagues (Lang et al., 2018; Schillaci et al., 2016) conducted a set of 158 

robotics experiments also examining the sense of agency wherein they observed 159 

attenuation of sensory inputs to self-generated movements (in terms of prediction error 160 

minimization) but not to those of others (as these were unpredictable). Keeping this 161 

research in mind, it is becoming more crucial that the problems of cognition and of 162 

subjective experience should be investigated inseparably in order to gain a better 163 

understanding of the minds of both humans and artifacts.   164 

 165 

The CNR experiments reviewed in the next section aim to uncover such structural 166 

dynamics by using an approach analogous to the free energy minimization principle 167 

(FEP) proposed by Friston (2005). The FEP approach can be interpreted in terms of 168 

Marr’s three levels (Marr, 1982) wherein first the computational level might be 169 

represented by the FEP itself, in which the goal of computation is minimizing the free 170 

energy. Second, the representation and algorithmic level might be represented by the 171 

schemes of predictive coding (Rao and Ballard, 1999; Friston, 2005; Clark, 2015) and 172 

active inference (Friston et al., 2011; Hohwy, 2013; Clark, 2015). Finally, the 173 

implementation level might be represented by neurophysiology in biological brains or 174 

artificial neural network programs put in the robot’s head. The next section starts with a 175 

brief review of the FEP, predictive coding, and active inference, and then reviews a set 176 

of CNR experiments conducted by Tani’s group employing analogous principles. Their 177 

validity as evidence for explanations in cognitive science is recalled in section 4. 178 

 179 

 180 

2. Models and CNR experiments  181 

First, we provide a brief introduction of the free energy minimization principle (FEP) 182 

(Friston, 2005). Then, some neural network models developed by Tani’s group similar 183 

to this principle are introduced along with cognitive neurorobotics (CNR) experiments 184 

using those models. These detailed descriptions of technical aspects may help to 185 

understand how this and similar ongoing research may contribute to inquiry into 186 

phenomena such as self, as explored in section 3 and as proposed in section 4. 187 

 188 

2.1 The free energy minimization principle 189 

The FEP states that any self-organizing system at dynamic equilibrium with its 190 

environment must minimize its free energy in order to maintain this equilibrium and 191 

thereby its organization in the face of otherwise disintegrative forces. The FEP is an 192 

application of Bayesian theory. Bayes’ general idea was that we can calculate the 193 
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probability of something being true (before we have evidence and rather than directly 194 

testing for it), and to do so we may use what we have already observed to predict what 195 

we should perceive next. By applying this principle to adaptation mechanisms in brains, 196 

Friston considers that all essential cognitive mechanisms including perception, action 197 

generation, and learning can be explained.  198 

 199 

It may help to illustrate with an intuitive image of the FEP at work. Consider a 200 

snowflake with wings, fluttering about. As long as it stays in a certain conditional zone 201 

– not too turbulent, freezing air - then it continues fluttering about and is able to 202 

maintain its unique structure. If it falls out of this zone, then its integrity is lost and it 203 

dissipates. If its situation becomes too hot, then it melts, for example. In the simplest of 204 

terms, the FEP (along with active inference, also introduced below) tells us that the 205 

snowflake will do what it can to stay in this zone. As an application of Bayesian theory, 206 

the FEP attempts to describe how biological brains update beliefs (or hypotheses, what 207 

we think is the case) in light of new information, so that organisms can act on this new 208 

information towards what they wish to be the case, like snowflakes countering gusts of 209 

wind to stay in their comfort zones by anticipating from which direction the likeliest are 210 

to come next.  211 

 212 

Formally, the relationship between the likelihood of an observation after we have 213 

experiential evidence, with what we thought that the likelihood might have been before 214 

we had such evidence, is represented in a mathematical formula, Bayes’ theorem. 215 

Bayes’ theorem updates prior probabilities (original hypotheses) with new evidence to 216 

produce new (posterior, after the evidence is gathered) probabilities that are then useful 217 

to guide the next iteration of action, e.g. the snowflake’s next wing-flap. The FEP tells 218 

us that biological brains do this to stay alive (like the snowflake does to maintain its 219 

unique organization), so they (in general) perceive what they need to perceive to inform 220 

beliefs that they need to believe to inform action that they need to enact in order to 221 

maintain their integrity in the face of dissipative change. With its brain optimized 222 

accordingly, an organism aims to minimize the difference between what it expects to 223 

happen and what it perceives, especially concerning those parameters that bear on its 224 

integrity; e.g. in order to stay in that comfort zone. In the end, it is this adaptive 225 

updating of hypotheses in light of new information that is the focus of the CNR 226 

experiments reviewed below, and it is the temporal hierarchy characterizing biological 227 

brains grounding the anticipatory nature of the experience that their focal architectures 228 

reflect.  229 
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 230 

In terms of these robotics experiments, Bayes’ theorem is shown in formula 1. By 231 

applying this formula, the robots are able to infer the hidden cause z of a sensory 232 

observation X. 233 

 234 

𝑝(𝑧|𝑋) =  
𝑝(𝑋|𝑧)𝑝(𝑧)

𝑝(𝑋)
                     (1)  235 

 236 

P(z|X) is the posterior distribution of hidden cause z with given observation X and p(X|z) 237 

is the likelihood which relates the sensory observation X to the hidden causes Z. P(z) is 238 

the prior distribution of (probability density of) or belief in z as the latent cause before 239 

observation X. P(X) is the marginal likelihood which is obtained by marginalizing 240 

p(X|z) for all z. P(X) is obtained by considering the probabilities of X for all possible 241 

hidden causes. There is a practical problem, however, in that the direct computation of 242 

p(X) is often intractable with current methods. Simply too many possibilities must be 243 

considered in practice. 244 

 245 

Since p(X) is necessary for the computation of the posterior distribution p(z|X), rather 246 

than directly compute over all of these possibilities, the variational free energy approach 247 

derives an approximation of p(z|X). This scheme optimizes an auxiliary probability 248 

distribution q(z), referred to as the recognition density, in approximation of the true 249 

posterior p(z|X) by minimizing the Kullback-Leibler divergence (KL divergence) 250 

between the two (formula 2). 251 

𝑫𝑲𝑳[𝒒(𝒛) ∥ 𝒑(𝒛|𝑿)] = ∫𝒒(𝒛)𝒍𝒏
𝒒(𝒛)

𝒑(𝒛|𝑿)
𝒅𝒛252 

= 𝑭 + 𝒍𝒏𝒑(𝑿)             (𝟐) 253 

 254 

Free energy F is defined as 255 

 256 

𝐹 = ∫𝑞(𝑧)𝑙𝑛
𝑞(𝑧)

𝑝(𝑧, 𝑋)
𝑑𝑧                      (3) 257 

 258 

Since the marginal likelihood p(X) in the second term on the right-hand side in (2) is 259 

independent of the recognition density q(z), minimization of the KL divergence between 260 

the recognition density and the true posterior can be achieved by minimization of the 261 
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free energy in (3) respect to q(z). This makes q(z) as an adequate practical 262 

approximation of the true posterior p(z|X).  263 

 264 

The free energy F to be minimized can thus be rewritten in a computationally tractable 265 

form in terms of q(z). In this equation, 𝛗 and 𝛉 are model parameters (formula 4): 266 

 267 

𝐹 = −𝐸𝑞𝜑(𝑧)[ln𝑝𝜃(X|z)] + 𝐷𝐾𝐿[𝑞𝜑(𝑧)||𝑝(𝑧)]     (4) 268 

 269 

The first term on the right side of the equation, the accuracy term, represents the 270 

expectation of log-likelihood with respect to the approximate posterior, which 271 

represents reconstruction of the sensory observation with the approximate posterior by 272 

generative models. The second term, the complexity term, is represented by KL 273 

divergence between the approximate posterior and the prior, which serves to regularize 274 

the model according to prior expectation. 275 

 276 

Free energy F can be minimized with respect to 𝑞𝜑(𝑧) as 277 

 278 

𝑞𝜑(𝑧) = argmax𝐹                         (5) 279 

 280 

Here, we may put the preceding in terms of predictive coding (Rao and Ballard, 1999; 281 

Friston, 2005; Clark, 2015). For a given sensory observation, the posterior inference of 282 

the latent variable (“latent” means hidden, so this is what is hypothesized to be the 283 

hidden cause) is carried out by means of minimizing the error between the sensation 284 

expected by the generative model for the latent variable, and its observation under the 285 

constraint of the prior distribution of that latent variable. The idea here again is to 286 

minimize the difference between what was predicted, and what is perceived.  287 

 288 

Free energy F integrated for the predicted future time period is the expected free energy 289 

𝐹𝐸 of a given model. We aim to minimize this value in respect to an action a by 290 

assuming a forward model that represents the likelihood of an action causing an 291 

observation given the cause z, as shown in formulae (6) and (7). 292 

 293 

𝐹𝐸 = −𝐸𝑞𝜑(𝑧)[𝑙𝑛𝑝𝜃(𝑋(𝑎)|𝑧)]                     (6) 294 

 295 

𝑎 = 𝑎𝑟𝑔𝑚𝑎𝑥 𝐹𝐸                                (7) 296 

 297 
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Note that the expected free energy does not involve the KL divergence between the 298 

posterior and the prior (as in formula 4) because KL divergence is independent of 299 

sensation (evidence, X) and thus of action.  300 

 301 

The preceding process represents action generation by active inference (Friston et al., 302 

2011; Hohwy, 2013; Clark, 2015) whereby actions are selected such that the expected 303 

free energy is minimized.1 This stands for action generation by active inference (Friston 304 

et al., 2011; Hohwy, 2013; Clark, 2015) where actions are selected such that the 305 

expected free energy is minimized. (Later we introduce a more recent update of active 306 

inference (Kaplan and Friston, 2018) considering the epistemic value.) More intuitively, 307 

to minimize the error between the expected or preferred sensory outcome and the actual 308 

one, the actual one is modified to become closer to the preferred one by acting 309 

adequately on the environment. Finally, perception by (5) and action generation by (7) 310 

are carried out simultaneously for closing the loop between action and perception 311 

(Baltieri and Buckley, 2017). Here, it is considered that the enactive cognition is a 312 

continuing trial for minimizing the conflictive error between the top-down intention 313 

projected from the latent variables and the bottom-up perception from the reality 314 

through iterative acts of changing the external environment as well as modifying the 315 

intention within (Tani, 2016). 316 

 317 

2.2 Recurrent neural network with parametric biases 318 

Tani and colleagues (Tani, 2003; Tani et al., 2004) developed the recurrent neural 319 

network with parametric biases (RNNPB) independently from the FEP. Since that time, 320 

the RNNPB has turned out to be one possible neural network implementation of the 321 

FEP (with some simplification as detailed later). Although there have been variations of 322 

the RNNPB specific to different applications, the following describes a typical version.  323 

 324 

(A) Model description:  325 

In the RNNPB, the following objective function for a time series of L time steps is 326 

minimized (formula 8): 327 

 328 

                                                 
1 It is interesting in this context to consider Bruineberg et al. (2018) who modeled foraging agents 

learning most efficient paths to prior-specified goals, “desire paths”. These models extended the FEP and 

active inference to show that expectations are shaped by changes to the environment, resulting in reduced 

free energy for the agent-environment system. 
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𝑂𝑏𝑗(𝑝𝑏1..𝑇 ,𝑊) =
1

2
∑(

1

𝑁𝑜𝜎2
‖𝑋𝑡̅̅ ̅ − 𝑋𝑡(𝑊)‖

2 +
1

𝑁𝑝𝑏
𝑝𝑏𝑡

2)    (8)

𝐿

𝑡=1

 329 

 330 

In (8), 𝑋𝑡̅̅ ̅ and 𝑋𝑡(𝑊) are the sensory observation and the prediction outputs for the 331 

sensory observation as a function of the learning parameters W with their 332 

dimensionality 𝑁𝑜. Sensation may consist of exteroception such as vision 𝑣𝑡 and 333 

proprioception 𝑝𝑡 in a robotics application as shown in Figure 1 (a). In (8), 𝑝𝑏1..𝑇 is a 334 

latent variable of 𝑁𝑝𝑏 dimensions.  335 

 336 

This objective function (8) becomes equal to the free energy defined in (4) with  337 

 338 

Figure 1: A robot controlled by an RNNPB model. During movement, PB values are 339 

updated by backpropagation in the direction of minimizing error (a); predicting the 340 

future by inferring the most likely past with black and red arrows representing the 341 

generative and error back-propagation processes during prediction and postdiction, 342 

respectively (b). 343 

 344 

assumptions2 that the prior of the latent variable is represented by a unit Gaussian 345 

distribution, the posterior by a Gaussian distribution with its mean 𝑝𝑏𝑡 and its standard 346 

                                                 
2 In the interests of simplicity, we neglect here discussion of merits of variational Bayes models such as 

those representing the strength of belief or an estimate of precision in prediction. Recent developments 
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deviation of 1.0, and the sensory prediction outputs with a Gaussian distribution with its 347 

mean 𝑋𝑡 and its standard deviation 𝜎. Then, this objective function can be minimized 348 

with respect to 𝑝𝑏1..𝑇 given fixed learning parameters W by the deterministic dynamics 349 

described in the following difference equations (formulas 9a-9d): 350 

 351 

{
 
 
 
 

 
 
 
 

𝐶𝑡+1
𝑖 = 𝑔(∑𝑤𝑖𝑗

𝑐 𝐶𝑡
𝑗

𝑗

+∑𝑤𝑖ℎ
𝑝𝑏𝑃𝐵𝑡,𝑛

ℎ

ℎ

+ 𝑏𝑖
𝑐)    (9𝑎)

𝑝𝑏𝑡,𝑛+1
ℎ = 𝛼 (−𝑝𝑏𝑡,𝑛

ℎ − ∇𝐸(𝑝𝑏𝑡,𝑛
ℎ )) + 𝑝𝑏𝑡,𝑛

ℎ         (9𝑏)

𝑃𝐵𝑡,𝑛
ℎ = 𝑔(𝑝𝑏𝑡,𝑛

ℎ )                           (9𝑐)

𝑋𝑡+1
𝑜 = 𝑔(∑𝑤𝑜𝑗

𝑜𝑢𝑡𝐶𝑡
𝑗

𝑗

+ 𝑏𝑜
𝑜𝑢𝑡)              (9𝑑)

 352 

 353 

In (9a), 𝐶𝑡 represents the activation of internal units with recurrence at time step t. 354 

𝑃𝐵𝑡,𝑛 represents the outputs of sigmoid function 𝑔() applied to the latent variable 355 

𝑝𝑏𝑡,𝑛 during the nth epoch iteration at time step t. The latent variable 𝑝𝑏 is inferred at 356 

each time step through N epochs of iterations of the internal computation loop. Its value 357 

is updated in the direction of minimizing prediction error in the output by following 358 

∇𝐸(𝑝𝑏𝑡,𝑛
ℎ ) which is the gradient of the mean square error E of the prediction outputs for 359 

all time steps while also considering a unit decay effect of this value as represented in 360 

the first term on the right-hand side of (9b). 𝑤𝑐 , 𝑤𝑝𝑏 , 𝑤𝑜𝑢𝑡, 𝑏𝑐, and 𝑏𝑜𝑢𝑡 are elements 361 

of the learning parameters W. 362 

 363 

The actual computation of (9) is carried out for N epochs iterated in the forward 364 

computation of L time steps, with backward error regression computed for the same L 365 

time steps using a past window storing all temporal variables from time step t-L+1 to 366 

the current time step t as illustrated in Figure 1(b). In the forward computation, values 367 

of the internal units as well as those of the prediction outputs from time step t-L+1 to 368 

the next (anticipated future) time step t+1 are computed using the PB values updated for 369 

each time step. In the backward error regression, the prediction error at each time step is 370 

back-propagated through time (BPTT) (Werbos, 1990; Rumelhart et al, 1986) from the 371 

current time step t to time step t-L+1 (at the onset of the past window). The latent 372 

                                                 

using RNN models by the author’s group (Murata et al., 2015; Ahmadi and Tani, 2019) address these 

issues.  
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variable 𝑝𝑏𝑡−𝐿+1..𝑡 in the window is updated by using the error gradient information 373 

obtained by BPTT at each time step according to (9b).  374 

 375 

The predicted proprioception at time step t+1 is sent to the robot PID (proportional-376 

integral-derivative) controller as target joint angles for the next time step of the robot, 377 

and the robot moves accordingly. For instance, actuators receive the motor commands a 378 

generated by the PID controller, move according to these commands, and this 379 

movement generates new visual and proprioceptive (bottom-up) sensations and their 380 

(top-down) prediction errors at time step t+1 again with the aim to minimize these 381 

errors. The PID controller thereby instantiates the idea of active inference since action a 382 

is generated in order to minimize the error between the actual and the predicted joint 383 

angles (proprioception) (Baltieri and Buckley, 2018).  384 

 385 

Finally, the learning of the RNNPB can be carried out by minimizing objective function 386 

(8) with respect to both the learning parameters W and the latent variable 𝑝𝑏1..𝑇  387 

𝑊𝑛+1 = −𝛽∇𝐸(𝑊𝑛)      (10) 388 

 389 

W is updated at each epoch using the gradient information computed by BPTT with the 390 

learning rate 𝛽. 391 

 392 

(B) Robotics experiment using RNNPB 393 

To evaluate the RNNPB in a robotics experiment, a humanoid robot was used which 394 

consists of three subsystems: an onboard sensory processing module with a head-395 

mounted video camera, an RNNPB module running on an external computer, and an 396 

onboard motor control module. So configured, the RNNPB could predict two types of 397 

sensory inputs, proprioception in terms of joint angles in both arms of the robot and 398 

visual features representing target object position (X-Y-Z) at each time step.  399 

 400 

During ball manipulation experiments (Ito et al., 2006), human tutors trained this robot 401 

to manipulate a ball in two different sequences: repetitively pushing the ball from left to 402 

right and right to left, and repetitively grasping the ball at the center position, lifting it 403 

up and then dropping it. After the training of the network wherein PB values adapted 404 

differently for each action sequence, the robot was tested to generate these sequences 405 

autonomously (without external help). During testing, the robot switched from one to 406 

the other intermittently, with an example presented in Figure 2 (also see a video: 407 

https://youtu.be/a_auIoksGN0.) In this instance, the robot initially pushed the ball from 408 

https://youtu.be/a_auIoksGN0
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left and right repeatedly until the ball bounced off of one hand too much, rolling to the 409 

center position. This unexpected movement caused prediction error. To minimize this 410 

error, the robot adopted the PB value for grasping and dropping the ball, and its 411 

behavior changing accordingly. Here, we see that the top-down intention to act with the 412 

ball, represented by the PB, shifted autonomously during iterative interaction with the 413 

bottom-up percept of the ball position from one behavioral reparatory to another in the 414 

course of minimizing the error. 415 

 416 

 417 

Figure 2: Dynamic generation and switching of two learned ball handling behaviors. 418 

Top row: measured ball position. Second and third rows: predicted ball position and 419 

robot joint angles generated by the RNNPB, respectively. Bottom row: the PB as it 420 

switches from one movement sequence to another. Redrawn from (Ito et al., 2006). 421 

 422 

Importantly, the continuous sensory flow was segmented during the error minimization 423 

process as the robot optimized coordination with the target object through autonomous 424 

shifts in PB values. Shifting PB values served as bifurcation parameters to induce 425 

transitions, effectively steering the system from one learned behavioral pattern to the 426 

other. This same mechanism for the segmentation and chunking of the continuous 427 
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perceptual flow had been observed during an earlier RNNPB experiment on human-428 

robot interaction (Ito and Tani, 2004) wherein a robot and a human participant 429 

attempted to synchronously imitate one another’s primitive movement patterns using 430 

prediction based on prior learning. With robot and human participant movements 431 

synchronized according to one of the prior learned patterns, if the human participant 432 

suddenly shifts the current movement pattern to another learned one, the 433 

synchronization breaks down thereby generating prediction error bottom-up in the 434 

RNNPB. In effort to minimize this error, the PB value is updated, and enactive 435 

synchrony with the present pattern achieved. Looking at the data from these 436 

experiments, segmentation of sensory flow from one habituated pattern (with 437 

corresponding expectations) to another can also be observed.  438 

 439 

Observation of these phenomena suggests a general mechanism for the segmentation 440 

and chunking of the continuous sensory flow. Confirming a core tenet of predictive 441 

coding, that cognition aims to minimize prediction error in the process of interacting 442 

with changing environments, perceived error should be essential to mechanisms 443 

underwriting the segmentation of the continuous bottom-up sensory flow during online 444 

cognition in biological models, as well. Moreover, such mechanisms should provide for 445 

the development of compositionality in cognition, subject of the next section, because 446 

this competency requires segmentation of sensory flow into a set of reusable objects 447 

which can be mentally manipulated for combinatory operations.  448 

 449 

Here, it is intriguing to note that the error regression scheme for the past window in the 450 

RNNPB could provide a possible mechanism for “postdiction” (Shimojo, 2014). 451 

Postdiction is a process that is recognizable during perceptual phenomena wherein the 452 

percept of a stimulus presented earlier is affected by another stimulus presented later. 453 

Postdiction is apparent during various backward perception phenomena including 454 

classic examples of backward masking (Raab, 1963) or the cutaneous rabbit illusion 455 

(Geldard and Sherrick, 1972). Such phenomena may be explained by the error 456 

regression mechanism assumed in the RNNPB as a model of predictive coding.  457 

 458 

The cutaneous rabbit involves tactile stimuli (taps, small electric shocks) presented to a 459 

human subject, typically on the forearm (due to this area’s relatively poor spatial acuity 460 

as mapped to the somatosensory cortex). In the simple case, three stimuli are presented 461 

with equal temporal intervals between each. The cutaneous rabbit illusion appears when 462 

these stimuli occur with very short durations between them (less than 300 milliseconds) 463 
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and when the first and the second are given in the same position, but with the third 464 

given in a distant position (which may extend past the physical body, Miyazaki et al., 465 

2010). The subject mis-locates the second tap in the direction of the third tap, whereas 466 

the subject will not mis-locate it if the third tap is given in the same position with the 467 

first or second ones.  468 

 469 

In backward masking, the consciousness of a target presented immediately before a 470 

masking stimulus (typically something driving urgent attention, such as something 471 

scary) can be suppressed, such that subjects are unable to report having seen the first 472 

stimulus. This phenomenon may be intuitively explained given two assumptions, one 473 

that the world as we experience it usually doesn’t change so rapidly, and two that 474 

optimal implicit internal models of such a world should operate according to the 475 

expectation that a visual stimulus given a moment ago will be retained for a while. This 476 

gives rise to the idea that there may be two pathways operative in backward masking, 477 

one for normal operations over longer timespans, and one for surprising situations that 478 

respond rapidly to changes in the environment. In case that a stimulus presenting minor 479 

changes in the world is suddenly followed by a surprising stimulus presenting more 480 

important changes in the world, an expectation error should be generated that 481 

effectively diminishes the previous stimulus as the agent recenters activity around the 482 

implications of the later stimulus. Thus, in the course of minimizing the error between 483 

what is expected and what is sensed, the experience of the stimulus presented in the past 484 

is “masked” by one that comes later.  485 

 486 

The case of the cutaneous rabbit can be explained similarly. After the first and the 487 

second (series of) taps are provided in the same position, an internal model implicitly 488 

expects that the third should come in the same position after the same temporal interval. 489 

However, when the third is presented in a distant position, an expectation error is 490 

generated. To minimize the error, the experience of the second tap is relocated to the 491 

midpoint between the first and the third tap positions (by means of regressing a linear 492 

model predicting position and timing for succeeding stimuli). In sum, postdictive 493 

phenomena can be explained in terms of inference and consequent rewriting of past 494 

experience by means of the error minimization principle.3 495 

 496 

                                                 
3 Here, we may understand “inference” specifically, as search for an optimal latent variable to minimize 

the error between the expected sensation and the actual one 
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2.3 Multiple timescale RNN for development of compositionality 497 

The RNNPB experiments reviewed above demonstrate that cognitive phenomena such 498 

as segmentation of the undifferentiated perceptual flow into reusable chunks occurs by 499 

minimizing conflicts between bottom-up perception and top-down intention. This 500 

section briefly reviews experiments intended to expose the role of such dynamics in the 501 

composition of novel patterns in coordination with novel task environments before 502 

turning to how these fundamental dynamics may contribute to accounts of self. 503 

 504 

Compositionality is the ability to combine parts into wholes, evident for example in the 505 

abilities to determine the meanings of sentences from the structured relations between 506 

constituent parts (Evans, 1982; Costello and Keane, 2000) and to enact diverse goal-507 

directed actions by sequentially combining reusable primitives (Arbib, 1981; Pastra and 508 

Aloimonos, 2012). Yamashita and Tani (2008) proposed a predictive RNN model 509 

characterized by multiple time constraints at different levels, the multiple timescale 510 

recurrent neural network (MTRNN) to investigate how neural networks in biological 511 

brains develop compositionality and thereby generate novel actions. The MTRNN has 512 

been used to investigate various aspects related to development of compositionality 513 

including co-development of skills between human tutors and robots (Nishimoto and 514 

Tani, 2009), goal-directed creative compositions of primitives (Arie et al., 2009), cases 515 

analogous to schizophrenic pathology including the delusion of control (Yamashita and 516 

Tani, 2012), and imitative human-robot interactions (Hwang et al., 2019). Next, we 517 

review the MTRNN in greater detail. 518 

 519 

(A) Model description:  520 

The MTRNN has layers of RNNs each characterized by a different timescale constraint 521 

(see Figure 3(a) for a typical architecture). Neural activity in higher layers is slower 522 

with larger timescale constraints, while lower layers are faster with smaller timescale 523 

constraints. In the MTRNN, the following objective function for a time series of L time 524 

steps is minimized as analogous to (9) in the case of the RNNPB: 525 

 526 

𝑂𝑏𝑗(𝑐1,𝑊) =
1

2
∑(

1

𝑁𝑜𝜎2
‖𝑋𝑡̅̅ ̅ − 𝑋𝑡(𝑊)‖

2 +
1

𝑁𝑐
𝑐1
2)    (11)

𝐿

𝑡=1

 527 

In (11), 𝑁𝑜 and 𝑁𝑐 represent the dimensions of the output and the internal units, 528 

respectively. (11) differs from (9) in that c1 - which represents the potential value of 529 
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the internal units with recurrence at the initial time step in (9) - plays the role of latent 530 

variable in (11).  531 

 532 

 533 

 534 

Figure 3: (a) an example of an MTRNN architecture with 3-layers, and (b) illustration 535 

of compositionality of different action plans in an MTRNN. Redrawn from (Tani, 536 

2016). 537 

 538 

Assuming fixed learning parameters of W, this objective function can be minimized 539 

with respect to 𝑐1 by way of the following difference equations (12a-12d): 540 

 541 
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In this series of equations, 𝐶𝑡 represents activation of the internal units with recurrence 544 

at time step t. 𝜏𝑖 is the time constant for each internal neural unit, and is different at 545 

each layer (in comparison, the time constant for all internal units in the RNNPB was 546 

assumed to be 1.0.) By assigning the higher layer with a larger value for the time 547 

constant, the higher layer is dominated by slower dynamics; by assigning a smaller time 548 

constant to the lower layer, it is dominated by faster dynamics. It is also noted that a 549 

bottleneck type connectivity constraint was applied to the network wherein the internal 550 

units in the higher layer were connected only with those in the intermediate layer which 551 

were again connected with only those in the lower layer. 552 

 553 

Here, we may note that the latent variables represented as the initial states of the internal 554 

units 𝑐1 determines the time development of the whole network, including later 555 

prediction outputs, due to the sensitivity to initial conditions that is characteristic of the 556 

deterministic RNN model. Therefore, for minimizing the reconstruction error for all 557 

time steps, the optimal values of the initial states are inferred by using the gradient 558 

information computed by BPTT through iterations of the internal computation loop 559 

using the past window in a similar way with the RNNPB case. 560 

 561 

(B) Robotics experiment:  562 

A robotics experiment using an MTRNN in a task of developmental tutoring of 563 

compositional object manipulation is briefly reviewed. During this experiment 564 

(Nishimoto and Tani, 2009), a Sony QRIO (as in Figure 1) controlled by an MTRNN 565 

was tutored on multiple task sequences each composed of different series of primitive 566 

actions. For example, one tutored sequence proceeded as follows. The tutor moved both 567 

of the robot’s hands toward an object located at an arbitrary position on a table, then 568 

using the hands grasped it, lifted it up and down a few times, and placed it back on the 569 

table. Another sequence involved touching the object with the left and right hands in 570 

turn, grasping the object, rotating it, and placing it back on the table. Sensors on the 571 

robot delivered simplified visual features and proprioceptive information (as in 572 

experiments described above). Tutoring proceeded gradually, i.e., the robot was tutored 573 

on some tasks, then tested, and if performance was unsatisfactory, tutoring was repeated 574 

(the corresponding video can be seen at https://youtu.be/n9NYcG8xlYs). It is important 575 

to emphasize that tutors directly guided the robot’s hands by feeling and correcting the 576 

“intent” of the robot with their own hands. After training, the robot was able to reliably 577 

perform all task sequences successfully and layer-specific neural regions were analyzed. 578 

https://youtu.be/n9NYcG8xlYs
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It was found that each layer played a different role in action compositionality (see 579 

Figure 3 (b)). 580 

 581 

Yamashita and Tani (2008) speculated that the multiple timescale property imposed on 582 

network dynamics resulted in the emergence of a functional hierarchy in which the 583 

higher layer generated different slowly changing neural activation patterns 584 

corresponding to a scenario or plan for each task sequence, whereas the lower layer 585 

developed precise skillful control for each behavior primitive. Recalling experiments 586 

involving the RNNPB, the slowly changing neural activity from the higher layer served 587 

as a source of bifurcation parameters, steering activity in the lower layer, while the 588 

faster lower layer learned to develop a set of behavior primitives, e.g. grasping, lifting 589 

up, or moving the object left and right, in complementary ways. After the development 590 

of these dynamics through learning, the MTRNN-driven robot became able to generate 591 

different ways of combining behavior primitives. Yamashita and Tani (2008) 592 

interpreted these results by hypothesizing that the robot developed compositionality in 593 

generating actions as its functional hierarchy self-organized. In order to test this 594 

interpretation, they manipulated the timescale parameters of the MTRNN in order to 595 

explore the role of the multiple timescales in structuring cognitive dynamics. 596 

Compositional representations (layer-specific stable structural dynamics) could not be 597 

developed when all layers shared the same time constant. The same results were 598 

repeatedly confirmed in other robotics experiments conducted under more complex 599 

conditions, for example while using pixel level vision (Hwang et al., 2018). 600 

 601 

2.4 Goal-directed planning 602 

With this understanding of compositionality as achieved through the segmentation of 603 

fluid experience, predictive coding and active inference (see section 2.1) can be applied 604 

also to the problem of the goal-directed planning of action sequences by robots.  605 

 606 

Tani (1996) conducted experiments on the goal-directed navigation of a mobile robot, 607 

Yamabico, which was equipped with a range sensor using a single layer RNN. 608 

Yamabico was developed with a lower-level automatic control scheme using range 609 

sensors which can perceive range images of 24 angular directions covering the front of 610 

the body to travel smoothly in a collision-free manner in a workspace. Basically, it 611 

moves toward the largest open space in a forward direction by maneuvering between 612 

obstacles on its left and right sides. When a new open space appears, a decision is made 613 



 

21 

 

on whether to pursue the current open space direction or to branch to the new one. This 614 

branching decision is made by the RNN in the higher cognitive level as described next.  615 

 616 

In the experiment, Yamabico explored the obstacle workspace under collision-free 617 

maneuvering control during daytime for the purpose of gathering sensory-action data. 618 

When it encountered a branching point, a branching decision was made arbitrarily (with 619 

an equal chance for either option) by the experimenter. At this time, the sensory inputs 620 

in terms of the range image, the travel distance (as indicated on the odometer) from the 621 

previous branching point to the current one, and the action in terms of the branching 622 

decision, were recorded. Yamabico explored the environment experiencing around 200 623 

successive branches until its battery was depleted. This resulted in a sampling of a 624 

sensory-action sequence of around 200 branching steps. During nighttime while the 625 

battery was charging, the RNN was trained in the form of the forward model (Miall and 626 

Wolpert, 1996; Kawato, 1999) so that it could predict the sensory input at a next 627 

branching step 𝑋𝜏+1 when presented with current sensory input 𝑋𝜏 and branching 628 

action 𝑎𝜏+1 by developing an adequate dynamic structure for the latent state transition 629 

from 𝑍𝜏 to 𝑍𝜏+1 based on the branching scheme using the sampled sensory-action 630 

sequence. 631 

 632 

After this training, a test of goal-directed planning was conducted through the following 633 

procedure. First, Yamabico traveled for several steps by randomly branching out from 634 

an arbitrary position for the purpose of inferring the latent state by way of the observed 635 

sensory sequence.4 Several branching steps of travel were necessary because this 636 

navigation problem involves the sensory aliasing problem; the current sensory inputs 637 

cannot uniquely identify the current latent state. Then, after inference of the latent state 638 

in the current branching step, Yamabico generated goal-directed planning under the 639 

constraint of minimum travel distance to reach a branching point specified as a goal by 640 

its expected sensory inputs.  641 

 642 

Analogous with active inference as in (7), an optimal action sequence minimizing the 643 

error between the preferred and the predicted sensory outcomes was identified, 644 

                                                 
4 This process can be related to the process of perception by predictive coding shown in (5). However, in 

this case, the latent variable is not inferred by minimizing prediction error. Instead, the latent variable is 

updated by means of the entrained (learned) sensory input sequence which turns out to minimize the 

prediction error. 
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specifically minimizing the error between the goal range image (image of the goal as it 645 

is ideally achieved) and the predicted one in the distal (final) goal step (given the 646 

current action plan) while also minimizing the predicted travel distance at each 647 

branching step. This can be carried out by means of BPTT applied to the trained RNN 648 

as illustrated in Figure 4. In the test experiment, a set of possible action sequence plans 649 

was searched (including sub-optimal ones) through iterative computation. Generated 650 

action plans were actually executed by the robot. 651 

 652 

 653 

Figure 4: Goal-directed planning using RNN. The future action sequence 𝑎𝜏..𝑇−1 is 654 

optimized for minimizing the expected travel distance 𝑑𝜏+1..𝑇 at each branching step as 655 

well as the error between the goal range image at the distal step 𝑟𝜏̂ and its expected 656 

value 𝑟𝜏. The both errors for the travel distance at each step 𝑒𝜏+1..𝑇
𝑑  and the goal range 657 

image at the distal step 𝑒𝜏
𝑟 are back-propagated through steps. 658 

 659 

Results of goal-directed plan generation are shown in Figure 5. Figure 5 (a) shows the 660 

designated starting position and the goal position. Figure 5 (b)-(d) shows the actual 661 

trajectories generated by executing 3 different action sequence plans, with Figure 5 (b) 662 

showing the optimal trajectory that minimizes the travel distance, and Figure 5 (c-d) 663 

showing suboptimal plans. Especially, it is noted that the robot had never enacted the 664 

trajectory in Figure 5 (d) during the exploration phase before learning. This result 665 

implies that Yamabico became capable of mentally imaging novel compositions of 666 

experienced parts of trajectories by extracting the hidden structure of the environment 667 

through consolidative learning of diverse sensory-action trajectories sampled.  668 

 669 



 

23 

 

To examine the internal structure developed by the RNN, a phase space analysis was 670 

conducted. The RNN generates mental simulations of thousands of consecutive steps of 671 

random branching sequences. Figure 5 (e) shows the phase space plot wherein each 672 

point represents an internal state (projected in 2-dimensional space) when visiting a 673 

particular branching point. It can be seen that the points are all clustered into a set of 674 

segments. It was found that each segment corresponds to a particular branching point, 675 

and that the points inside each segment form a Cantor set-like assembly. These 676 

observations inform us how the compositionality is represented in the internal state of 677 

the RNN. When the robot moves from one branching point to another by choosing a 678 

particular branching action, the internal state transits from one segment to another. 679 

Therefore, a graph-like state transition structure can be seen by considering those 680 

segments as nodes of a state transition diagram. 681 

 682 

 683 

Figure 5: Trajectories generated by goal-directed planning and the phase plot. (a) shows 684 

staring and goal positions (b-d) 3 different trajectories generated by Yamabico based on 685 

different action plans. (e) The phase plot of the internal state projected in a two-686 

dimensional space. 687 

 688 
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Importantly, each node is represented not by a point, but by an assembly of points in the 689 

continuous state space of the RNN, because each point within a segment can have a 690 

different history of branching in arriving there. If two points are neighboring each other, 691 

two branching sequences of reaching these two points may be exactly the same for a 692 

long past history. On the other hand, if two points are distant in the same segment, two 693 

branching sequences reaching these points will be quite different in the immediate past 694 

history. Since an infinite number of different branching sequences can be composed to 695 

reach a branching point, and all points corresponding to those different compositions 696 

should be embedded in a segment of finite length, Cantor set-like assembly is organized 697 

within each segment. Cantor sets are interesting in this context because they represent 698 

boundary points. They are perfect sets, meaning that a set is equal to its derivative set, 699 

which means that it is equal to its limit points. These findings are analogous to what 700 

Elman (1991) and Pollack (1991) showed in investigating the capability of RNNs to 701 

learn word or symbol sequences regulated by grammar. 702 

 703 

Further analysis revealed that the whole assembly of points in the phase plot represents 704 

an invariant set of a global attractor. When mental simulation is perturbed with external 705 

noise added to the network activity, prediction goes wrong and the internal state falls 706 

out of the invariant set.5 However, if the noise is removed, the predictability can be 707 

recovered after several steps of mental simulation, and the trajectory of the internal state 708 

returns back to the invariant set. In this way, the invariant set may represent the 709 

boundary of cognition (Maturana and Varela, 1991) which is structurally stable against 710 

perturbation due to the nature of an attractor.  711 

 712 

One drawback in this study (Tani, 1996) is that the exploration of the environment was 713 

conducted randomly, independent of the process of learning about the environment in 714 

order to satisfy a purpose. Human infants or artificial agents may explore the world by 715 

seeking some intrinsic rewards such as novelty in interacting with their environments 716 

(Schmidhuber, 1991; Oudeyer et al., 2007; Tschantz et al., 2020). Tani and Yamamoto 717 

(2002) extended the study in Tani (1996) in order to investigate the issue of intrinsic 718 

motivation by adding a novelty rewarding mechanism as a drive for seeking novel 719 

experiences during exploration. The exploration and the learning phases of this 720 

experiment were interleaved, with each happening after the other. In the exploration 721 

phase, action plans for branching sequences were generated and executed such that the 722 

                                                 
5 The network loses its “grip” cf. Bruineberg et al., 2014. 
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sum of expected prediction error at each branching point was maximized (rather than 723 

minimized). And in the learning phase, the training of the network was conducted by 724 

using two types of sensory-action sequence data. One was the sequence which had been 725 

experienced in the last travel and which had been stored in the short-term memory, and 726 

the other was the set of rehearsed sequences generated by using the same planning 727 

scheme for maximizing the novelty (in which the sum of expected prediction error at 728 

each branching point was maximized). By extending the model thusly, Yamamoto and 729 

Tani showed that compositionality - in terms of the number of different combinations of 730 

branching - increases both in the physically generated trajectories and in the rehearsed 731 

sequences during the learning phase over the course of development. Finally, a phase 732 

space analysis of the internal state at each stage of development indicated that a 733 

segment-wise invariant set similar to the one shown in Figure 5 (e) appeared, but only 734 

during the end period of the development, when the robot had completely learned about 735 

all possible branching consequences. Such dynamics illustrate how the aforementioned 736 

boundary of cognition might emerge during developmental processes similarly 737 

motivated by exploration in biological models including human beings, as well. 738 

 739 

Recently, Friston and colleagues (Kaplan and Friston, 2018) took a generic Bayesian 740 

perspective on the exploration-exploitation trade-off by considering that the expected 741 

free energy is comprised of novelty, salience and prior preferences which together 742 

constitute optimal beliefs on policies guiding action. On this scheme, novelty and 743 

salience represent intrinsic values where novelty is for epistemic gain, as described 744 

previously, saliency is for the gain of certainty about the latent state, and prior 745 

preferences serve the role of extrinsic values, such as for achievement of predefined 746 

rewards or goals. As such, Kaplan and Friston (2018) assumes that actions are selected 747 

both in order to gain knowledge about the world and to achieve predefined preferences. 748 

One point of interest in this context, however, is the relatively high computational cost 749 

required in order to optimize such action plans. In reality, it is not necessary to always 750 

compute optimal action plans, since action can typically be generated according learned 751 

routine, or habit. On this point, Maisto et al. (2019) proposed that an active inference 752 

agent caches the probabilities of policies from previous trials in memory as habits in 753 

order to reduce the computational costs for re-calculating them at each new trial. Simply 754 

put, a probability is only re-calculated when encountering a new context, and is then 755 

kept cached as long as the context does not change. Testing this sort of idea in robots 756 

should be practically beneficial in for example reducing real-time computational 757 

burdens of robots in operational contexts. 758 
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 759 

3. The sense of self 760 

Building from the preceding introduction, this section speculates on how such cognitive 761 

robotics experiments employing fundamental principles may contribute to ongoing 762 

inquiry into the sense of self and related psychological phenomena. Although the problem 763 

of self has been addressed in various ways, such as Neisser’s (1988) five different types 764 

of selves or Kohut's (2013) bipolar self from psychoanalysis, the current paper focuses 765 

on two distinct types of self, minimal self and narrative self. This section begins with 766 

Gallagher’s (2000) concept of the minimal self, and then examines how his notions may 767 

corresponded to the phenomena observed in CNR experiments such as those introduced 768 

in the preceding section. 769 

 770 

3.1 The minimal self  771 

Gallagher (2000) argues that after all of the unessential features of experience are stripped 772 

away, we still have a feeling of a basic, immediate, or primitive ‘something’ that we can 773 

call the “minimal self”. He further contemplates that this sort of non-reflective self is 774 

associated with two different types of senses, one is a sense of ownership and the other is 775 

a sense of agency. According to Gallagher (2000), the sense of ownership is the sense 776 

that I am the one who is undergoing an experience. For example, a sense that this is my 777 

body moving regardless of whether the movement is caused by me or others. The sense 778 

of agency, on the other hand, refers to congruence between an agent’s intention or belief 779 

in an action and its anticipated outcome, which endows the agent with the sense that “I 780 

am the one generating this action”.  781 

 782 

Both cases may be explained in terms of internal models for predicting perceptual 783 

outcomes. For example, Hohwy (2013) showed that the sense of body ownership in the 784 

rubber hand illusion (Botvinick and Cohen, 1998) can be explained by using predictive 785 

coding that models the probabilities of the dummy hand being mine or another’s. During 786 

the rubber hand illusion, experience of the temporally synchronized multimodal sensation 787 

of touching, one from a tactile stimulus and the other from visual observation, results in 788 

a causal inference that these two occur at the same location even though they actually do 789 

not. This is because the temporal correlation entails more dominant effects on the 790 

inference than the spatial one does (Hohwy, 2013: Limanowski and Blankenburg, 2013). 791 

This leads to the illusion of the dummy hand being mine.   792 

 793 
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Concerning the sense of agency, Gallagher (2000) suggests that a possible underlying 794 

mechanism may be conceivable by considering neurocognitive models accounting for 795 

some cases of schizophrenia such as discussed by Feinberg (1978) and Frith (1992). They 796 

proposed that the delusion of control as a characteristic of schizophrenia may occur when 797 

a mismatch takes place between an intended state and the anticipated state produced by 798 

the forward model. As the forward model is informed by the motor efference copy, they 799 

proposed that the mismatch may be caused by either the failure of the forward model, or 800 

due to the fact that the efference copy cannot be sent to the forward model because the 801 

motor controller is disconnected from it. Gallagher (2000) suggested that the sense of 802 

agency, which remains implicit in a normal condition, can be disturbed in such a case, 803 

resulting in the feeling that ‘somebody is controlling me’ which is common to self-reports 804 

in some cases of schizophrenia. 805 

 806 

The RNNPB robotics experiments (reviewed in section 2) may help to account for the 807 

emergence of minimal self accordingly. Minimal self should develop implicitly as an 808 

aspect of the sense of agency derived from causality between an agent’s intention driving 809 

action (encoded in the PB) and the affected perceptual reality, similarly to the sentiment 810 

expressed in Hohwy (2007, page 5): “mineness is the feeling of already being familiar 811 

with the movement’s sensory consequences when they actually occur, we are so to speak 812 

already ‘at home’ in the movement because the incoming signals are predicted through 813 

habituation, and therefore it is regarded as an implicit sense of self.” Accordingly, when 814 

a robot’s prediction was accurate, action proceeded smoothly and automatically without 815 

distinction between synchronized embodied self and the external objects with which it 816 

was interacting, such as a ball or human counterpart.  817 

 818 

Our proposal in the context of minimal self is that, when such synchrony breaks down 819 

due to miscellaneous unpredictable influences including noise in the physical system or 820 

a human participant’s sudden intentional change, the otherwise implicit sense of minimal 821 

self becomes an object of consciousness. This is because the consequent effort required 822 

to minimize the reconstruction error in the immediate past window, by inferring an 823 

optimal intention state in the PB, is accompanied by a focal awareness of the gap between 824 

embodied routines and the capacity for embodied routines to successfully meet 825 

environmental demands. At this very moment of the unified structure breaking down, the 826 

independence of each element becomes noticeable. Consequently, this experience of self 827 
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is formally articulated as minimal self-consciousness (Tani, 1998; 2016, pages 169-172).  828 

 829 

Moreover, on this account, the sense of minimal self should intermittently shift between 830 

an unconscious phase (predictable phase, when intention guides action without undue 831 

error) and a conscious phase (unpredictable phase, when error forces reformulation of 832 

intentions guiding action going forward) as had been observed in a vision-based robot in 833 

Tani (1998), as well as in the humanoid robot experiments involving ball handling 834 

described in section 2. Why do those system dynamics once converged into an attractor 835 

basin, such as a predictable or routine interaction in a region, get destabilized again and 836 

move out to another basin of attractor? One possibility is the inherently indeterministic 837 

nature of embodied cognitive systems due to the circular causality established in the 838 

enactment loop (Tani, 1998; 2009).  839 

 840 

Circular causality describes the embedded and embodied agent’s situation. An agent acts 841 

on the world, and a sequence of causes and effects returns back to the original cause with 842 

possibly altering it whereby another sequence is produced in on ongoing interactive 843 

feedback loop. For example, in the case of the ball handling humanoid robot, when a 844 

prediction error is generated for the ball position, the intention of the robot in terms of the 845 

PB value is updated in the direction of minimizing the error. This intention generates the 846 

next step prediction of proprioception which, in the case of tracking a ball, turn out to be 847 

new target joint angles. These angles are fed into the robot motor controllers. Then, both 848 

hands of the robot move to push the ball further, for example.  849 

 850 

When every process in this loop proceeds ideally, the whole system dynamics stay always 851 

in the same attractor basin by successfully minimizing prediction error, unless 852 

exceptionally large noise comes from the external world. However, in reality under 853 

resource bounded situations, this cannot be guaranteed. Inherent indeterminism will 854 

appear. The predictability of the neural network is limited, because it is trained with only 855 

a finite amount of the sensory-motor experience. The inference of the PB values cannot 856 

be guaranteed to be optimal in a real time situation, and physical movements of the robot 857 

body as well as the resultant movement of the ball should contain some margin of 858 

unpredictability because of nonlinearity in both static and dynamic friction and contact 859 

dynamics. All of these contingencies (to a very large degree) are due to embodiment. 860 

They provide potential instability to the system dynamics.  861 
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 862 

In fact, two flows in opposing directions coexist. One is the inflow converging to 863 

attractors or thermodynamic equilibria by minimizing prediction error (or free energy), 864 

and the other is the outflow destabilizing the convergence by means of embodiment and 865 

circular causality. In a macroscopic sense, the coexistence of inflow and outflow in the 866 

phase space makes attractors only marginally stable, wherein the state trajectories tend to 867 

visit multiple pseudoattractors one by one itinerantly (known as chaotic itinerancy, Tsuda 868 

et al., 1987; Kaneko, 1990). This may correspond to the “momentary self” contemplated 869 

by William James (1890) who wrote that: “When we take a general view of the wonderful 870 

stream of our consciousness, what strikes is the pace of its parts. Like a bird’s life, it 871 

seems to be an alternation of flights and perchings (p. 243).”6 872 

 873 

Such unsteady dynamics resulting from potential indeterminism provides an inherent 874 

autonomy to the minimal self in terms of its spontaneous shifts between its unconscious 875 

phase (staying inside basins of attractors or habitual regions) and conscious phase 876 

(transition to another attractor passing through less familiar regions). Froese and Taguchi 877 

(2019) present an analogous argument that artificial as well as living agents may make 878 

sense of their interactions with the world provided that there is some room for 879 

indeterminism or incompleteness in the causal closure of these interactions. One 880 

difference, however, between Froese and Taguchi’s (2019) and our consideration is that 881 

they attribute the origin of indeterminacy to quantum mechanics at the micro level, which 882 

is supposed to be amplified through the enactment loop at the macroscopic level. On the 883 

contrary, we presume that the sensitivity to the initial state caused by chaos, or the 884 

structural instability observed in chaotic itineracy, may account for the origin of 885 

indeterminacy without resorting to (what currently remain) mystic propositions.  886 

 887 

3.2 Narrative self  888 

Gallagher (2000) considers narrative self as “a more or less coherent self (or self-image) 889 

that is constituted with a past and a future in the various stories that we and others tell 890 

                                                 
6 In terms of compositionality, this image also recalls Plato’s aviary from the Thaetatus, in which a 

person collects birds in the cage of the mind (where they may be imagined to flit from perch to perch), 

representing expressions of knowledge that can be taken when the knowledge is useful, or mistaken when 

the knowledge is not, cf. discussion beginning 197d, Plato, 1997, page 218. 
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about ourselves” (p.15). He contrasts two distinct ways of representing such a sense of 891 

narrative self. One is offered by Dennett (1992) who characterizes self as the constant 892 

locus of experience and center of “narrative gravity”. The other is a more distributed 893 

model inspired by Paul Ricoeur’s (1984) philosophy of narrative self. Ricoeur considers 894 

a hermeneutic cycle of movements from prefiguration of phenomena in the world to their 895 

refiguration or restoration back into the real world through (communicative) action via 896 

configuration of interpreted narratives, with configuration of narratives playing the role 897 

of mediation between prefiguration and refiguration, and the three together constituting a 898 

process through which the agent gains a better understanding of its self and its place in 899 

the social and natural world. Especially, he considers the human experience of aporia, 900 

when phenomena in the world are experienced as incomprehensibly contradictory. 901 

Ricoeur emphasizes that human beings compose fictive as well as true narratives in order 902 

to reconcile this feeling of aporia. Furthermore, he considers that one’s own self-903 

narratives are configured in a way that they are intermingled with those communicated 904 

by others. Following Ricoeur, Gallagher (2000) proposes that narrative self might be 905 

developed as a mixing of stories about one’s self, including conflictive and irresolvable 906 

ones which an individual might tell about her/himself or others might tell about her/him 907 

(cf. “pernicious misunderstandings” in Gallagher and Allen, 2018, pages 14-15) Thus on 908 

Gallagher’s account, the sense of narrative self might be considered as a center of 909 

narrative gravity that is more distributed, representing the reconciliation of narratives 910 

normalized in communication with others in interaction with the shared object 911 

environment.  912 

We can find some analogy with what Ricoeur and Gallagher consider narrative, 913 

including this more distributed sense of narrative self, in the results of the CNR 914 

experiments described previously. In effect, the robots used in experiments by Tani and 915 

colleagues were frequently confronted with incomprehensible and irresolvable 916 

situations during tutoring. For example, the humanoid robot implemented with the 917 

MTRNN (see section 2.3) was tutored to generate inconsistent primitive movement 918 

sequences, e.g. after grasping an object, it was tutored to lift the object up in one 919 

instance, and in another it was tutored to rotate the same object after grasping it. The 920 

mobile robot Yamabico was tutored to branch to the left during one trial, and during 921 

another to branch right at the same branching point. Each tutoring trajectory never 922 
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repeated exactly the same sensory-motor sequence pattern as another, even though the 923 

tutors attempted to do so, due to noise and fluctuation – indeterminacy (cf. Tani, 1998; 924 

Froese and Taguchi, 2019) – inevitable during embodied interaction with the physical 925 

world. In light of Gallagher and Ricoeur’s insights into narrative self, we may say that 926 

these robots could develop compositionality for generating diverse actions because it 927 

was necessary to deal with the inconsistency presented in the tutoring trajectories. 928 

Through consolidative learning, the RNNs could self-organize finite state machine-like 929 

state transition structures in their latent state space by extracting relational structures 930 

from among the tutored set of inconsistent sequences. 931 

 932 

The segmentation and chunking of the continuous sensory flow observed in robotic 933 

experiments using the RNNPB and MTRNN are mechanized by means of the error 934 

regression employed in order to minimize the error signal generated in prediction and 935 

reconstruction at the moment of transition from one primitive to another. The 936 

inconsistency brought to the robots especially by human tutors in demonstration and 937 

tutoring of movement patterns plays an important role here, also. If we tutor the robots 938 

with a continuous sensory flow consisting of a primitive sequence like A → B → C, 939 

repeated without inconsistencies, this sensory flow will be learned as a big chunk 940 

without segmentation into primitives. But, if the robots are tutored with a set of sensory 941 

flows consisting of inconsistent primitive sequences like A → B → C, A → B → A, and 942 

A → C → B, these sensory flows are learned as compositions of reusable primitives with 943 

each of them segmented. We presume that the cognitive competency of 944 

compositionality for segmenting the continuous sensory flow into a set of reusable 945 

primitives and composing and decomposing a whole action sequence using these 946 

primitives can provide a basis for development of the narrative self.  947 

 948 

Furthermore, some robots (or more generally agents) (Schmidhuber, 1991; Tani and 949 

Yamamoto, 2002; Oudeyer 2007; Kaplan and Friston, 2018) are motivated to learn to 950 

predict unpredictable situations by seeking novelty, with the objective of which also 951 

seeming rather contradictory or conflictive at first glance. And, in order to reconcile 952 

such conflicts, agents seem to be required to generate creative or fictive mental images 953 

accounting for the hidden causal structure in the world. Here, we might note some 954 

analogy between the compositionality developed by means of a self-organizing finite 955 

state machine-like structure in distributed neural activation in the RNN during such 956 

conflictive situations, and the sense of narrative self which develops distributedly, with 957 

the mixing of diverse inputs including inconsistent ones from the outside as described 958 
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above. The compositionality developed in the robots enables them to mentally simulate 959 

future actions, including counter factual or fictional ones, as well as to rehearse what 960 

has been experienced in the past in order to prepare for the uncertain future. 961 

 962 

At this point, it is natural to consider that the development of narrative requires 963 

linguistic competency for telling stories. On this front, there have been some efforts in 964 

attempting to ground linguistic expressions in sensory-motor modalities by using 965 

RNNPB and MTRNN architectures by some groups (Sugita and Tani, 2005; Peniak et 966 

al., 2011; Yamada et al., 2016; Heinrich and Wermter, 2018). With a vision-based 967 

mobile robot using the predictive coding framework, Sugita and Tani (2005) showed 968 

that an RNNPB can learn to bind a set of simple imperative sentences consisting of 969 

verbs and nouns, e.g. Point-Red, Push-Blue, Hit-Green, with corresponding sensory-970 

motor behavioral patterns. An analysis on the experimental results of learning and 971 

action generation for given imperative sentences showed that the compositionality in 972 

combining verbs and nouns in the linguistic modality and the one in combining actions 973 

and objects developed as a unified structure in the RNNPB. Peniak et al. (2011) and 974 

Heinrich and Wermter (2018) showed scaling of such language-behavior binding using 975 

extended MTRNN models. Also extending the MTRNN, Yamada et al. (2016) 976 

presented a continuing human-robot interaction experiment using both linguistic and 977 

behavioral modalities. These experimental results revealed that the contextual flow 978 

corresponding to successive human-robot interactions was represented in the higher-979 

level latent variables in the MTRNN. These results suggest that the internal structures 980 

developed in the latent space in these RNN models, via continuing human-robot 981 

interaction using both linguistic and behavioral modalities, bring us closer to realizing a 982 

narrative self as articulated by Ricoeur and by Gallagher and colleagues in an embodied 983 

cognitive neurorobot. 984 

 985 

4. Discussion  986 

 987 

The preceding paper introduced cognitive neurorobotics, the principles of prediction 988 

error minimization and backpropagation as implemented in different RNN architectures, 989 

related these with free energy and active inference, and reviewed selected cognitive 990 

neurorobotics experiments employing these principles in greater detail. In terms of 991 

Marr’s (1982) three levels introduced in section 1, the error minimization principle 992 

appears at the computational level, prediction and active inference at the algorithm 993 

level, and RNNs embodied by robots at the implementation level as an example. This 994 
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leaves open questions, for instance how these implementations can be validated, and 995 

then to what extent we may expect them to contribute to scientific explanation of 996 

cognitive phenomena including the senses of minimal and narrative self as reported by 997 

human beings. 998 

 999 

First, in the review of the CNR experiments using the RNNPB (Ito and Tani, 2004; Ito 1000 

et al., 2006), we explained that the RNNPB learns multiple behaviors in the course of 1001 

prediction error minimization as embedded in different attractor basins which represent 1002 

habitual regions for the robot. It was also explained that behavior patterns of the robots 1003 

shift from a learned one, by means of the error regression accompanied by segmentation 1004 

of continuous sensory-motor flows. to another due to either external forces or internal 1005 

fluctuation  1006 

 1007 

Next, in the review of the CNR experiments using the MTRNN (Yamashita and Tani, 1008 

2008; Nishimoto and Tani, 2009), it was explained that compositionality as a cognitive 1009 

competency for composing/decomposing the whole action from/into behavior 1010 

primitives can develop gradually in the course of iterative tutoring of the robot by using 1011 

the error minimization principle. We explained that such compositionality can develop 1012 

by means of self-organization of functional hierarchy using the prior constraints applied 1013 

to the network, including layer-wise timescale difference and the information 1014 

bottlenecks in the connectivity between layers.  1015 

 1016 

In the review of experiments on goal-directed planning in robot navigation tasks, it was 1017 

explained that robots can learn compositional structures latent in the obstacle 1018 

environment through either supervised tutoring (Tani, 1996) or self-exploration (Tani 1019 

and Yamamoto, 2002). Further, it was noted that such compositional structures develop 1020 

by self-organizing global attractors of Cantor set-like assembly in the latent state phase 1021 

space. Although its appearance seems analogous to finite state machines at first glance, 1022 

these two are crucially different. As for the attractors developed in the latent state phase 1023 

space, they represent the boundary of cognition (Maturana and Varela, 1991) wherein 1024 

prediction goes well as habituated within the invariant set of the attractors, and 1025 

prediction goes wrong once the state trajectory goes out of the invariant by possible 1026 

permutation. However, the state trajectory can come back to the invariant set as long as 1027 

it is formed as a global attractor. On the other hand, in the case of a finite state machine, 1028 

there is no mechanism for such auto-recovery unless some external programs for this 1029 

purpose are provided. The CNR experiments reviewed above demonstrate that robots 1030 
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can generate both fictional and factual action plans by using compositional structures 1031 

developed in both goal-directed planning and novelty rewarding schemes.  1032 

 1033 

Further analysis contemplated possible accounts for subject experience including senses 1034 

of minimal and narrative self. First, let us revisit our account of the sense of minimal 1035 

self. When action goes smoothly and an agent remains in habitual regions by 1036 

minimizing the prediction error, the sense of minimal self is present but only implicitly. 1037 

However, a breakdown of such a steady phase comes inevitably because of the inherent 1038 

indeterminacy due to the circular causality established in the enactment loop. In such an 1039 

instance, the minimal self should become an object of conscious awareness with the 1040 

effort to return from unfamiliar regions to a routine one by minimizing prediction error. 1041 

We see the structure of the minimal self in this autonomy of spontaneous shifts between 1042 

unconscious and conscious phases analogous with James’ (1890) "wonderful stream of 1043 

our consciousness". 1044 

 1045 

Next, let us revisit the sense of narrative self. We found a good analogy in the results of 1046 

the CNR experiments with what Ricoeur and Gallagher’s socially distributed sense of 1047 

narrative self. Robotic experiments using the RNNPB and MTRNN showed that 1048 

compositionality can be naturally developed provided that the robots are tutored with a 1049 

set of inconsistent sensory-motor sequences, corresponding with Ricoeur's thought that 1050 

humans compose both fictive and true narratives in the process of resolution of 1051 

aporia. Indeed, the CNR experiments reviewed in the current paper showed that these 1052 

robots can generate both fictive and factual compositions of primitive action both in 1053 

physical execution and in mental planning and rehearsing. And, by briefly introducing 1054 

the on-going research on embodied language using various RNN models, discussion 1055 

extended to possibilities of how such narratives initially represented in distributed 1056 

neural activation patterns can be transformed into linguistic representations for sharing 1057 

stories.  1058 

 1059 

Although space forbids present review, other ongoing work “breaks” these and 1060 

complimentary architectures (cf. Glennan, 2005), tests them against biological models 1061 

in similar abnormal conditions and in this way aims to inform accounts of psychiatric 1062 

conditions e.g. schizophrenia and autism understood as self-disturbances (Yamashita 1063 

and Tani, 2012; Idei et al., 2018). It is expected that such research contributes to our 1064 

understanding of otherwise difficult to resolve cognitive phenomena in two directions. 1065 

For one, emergent dynamics when analogous with biological model behavior may 1066 
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inform researchers working at lower levels of organization about how different 1067 

operations may be related, e.g. temporally. In such an instance, prediction error 1068 

minimization inspires neural network algorithm design (backpropagation, error 1069 

regression, etc.). With successful demonstration of functional dynamics in a real-world 1070 

context, such a synthetic architecture can be correlated with biological models (e.g., the 1071 

higher, intermediate, and the lower level correspond to the PFC, parietal, and 1072 

S1+V1+M1) in exploration of possible explanations for (normal and abnormal) 1073 

biological structural dynamics. An example of such work includes the HBP’s 1074 

neurorobotics group’s effort to render a computational model of an embodied mouse 1075 

that may replace biological models in psychological studies (Falotico et al., 2017). 1076 

 1077 

On the other hand, the neurorobotics studies reviewed in this paper target invariant 1078 

structures arising in what Sun et al. (2005) call the “causal nexus” between top-down 1079 

and bottom-up processes, e.g. selves, internal world-models. Informed by 1080 

phenomenological and neurocognitive research, these studies aim to contribute to 1081 

explanations in cognitive science by articulating architectures which generate target 1082 

emergent phenomena through their dynamic interaction with the world. In such an 1083 

experiment for example, the prediction error minimization principle shapes the 1084 

cognitive architecture according to biological and psychological constraints. This 1085 

architecture is tested in robot experiments, and emergent phenomena are recorded. 1086 

Correspondences to phenomenology (e.g., minimal-self), to neuroscience (e.g. mirror 1087 

neurons), and to psychiatry (e.g. autism) are considered. Limitations of the model 1088 

inform ongoing inquiry, and insights drawn from these studies are offered.  1089 

 1090 

Although physical robot experiments might be replaced by simulations in some 1091 

contexts, it must be stressed that embodied humanoid robots are important to the 1092 

success of the CNR research such as that reviewed in section 2. Practically, the results 1093 

of physical robot experiments are more robust than simulated variants. Because 1094 

simulation experiments typically employ thousands of trials that establish optimal 1095 

parameters within narrow ranges, the resulting networks often become too rigid to 1096 

perform in real-world embodied robots because robots themselves are quite noisy (in 1097 

the informational sense) in their mechanics and physical interactions. With this in mind, 1098 

we may point to an epistemic upshot to embodied robotics experiments over simulated 1099 

variants. Humanoid CNR experiments open phenomena to investigation which remain 1100 

inaccessible to simulations, especially those which emerge through direct human 1101 

interaction as in the experiments. During these experiments, trajectories of every 1102 
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learned movement are co-developed by tutor and robot through their interaction. 1103 

Accordingly, we speculate that successful results were achieved not only due to 1104 

essential structural dynamics captured by biologically inspired cognitive architectures, 1105 

but also due to the intuitive interaction afforded human tutors with both tutor and 1106 

humanoid robot aiming to minimize error in the embodied manipulation of common 1107 

objects – including each other - in a shared space of action. Such phenomena cannot be 1108 

(easily) simulated. And, given the fundamental role of interaction with others in the 1109 

development of self (cf. Bolis and Schilbach, 2020), the socially situated nature of 1110 

embodied humanoid cognitive neurorobotics experiments presents special potential for 1111 

ongoing inquiry into phenomena associated with self in human beings. 1112 

 1113 

4. Conclusion 1114 

 1115 

Guided by the intuition that higher-level cognitive phenomena including different 1116 

senses of self should emerge from the effort to minimize conflicting interactions 1117 

between top-down and bottom-up information processes, Tani and colleagues have been 1118 

refining cognitive neurodynamic models since the mid-1990s to articulate structural 1119 

dynamics native to living systems in artificial ones. The preceding paper reviewed 1120 

synthetic neurorobotics experiments using analog devices (RNNs) directly sharing the 1121 

same analog metric space with human beings with the expectation that such continuous 1122 

spatio-temporal dynamics can both avoid the notorious symbol grounding problem 1123 

(Harnad, 1990) as well as inform our understanding of cognitive phenomena such as 1124 

self in human beings.  1125 

 1126 
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