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Abstract

Through brain-inspired modeling studies, cognitive neurorobotics aims to resolve
dynamics essential to different emergent phenomena at the level of embodied agency in
an object environment shared with human beings. This paper is a review of ongoing
research focusing on model dynamics associated with human self-consciousness. It
introduces the free energy principle and active inference in terms of Bayesian theory
and predictive coding, then discusses how directed inquiry employing analogous models
may bring us closer to representing the sense of self in cognitive neurorobots. The first
section quickly locates cognitive neurorobotics in the broad field of computational
cognitive modeling. The second section introduces principles according to which
cognition may be formalized, and reviews cognitive neurorobotics experiments
employing such formalizations. The third section interprets the results of these and other
experiments in the context of different senses of self, both “minimal” and “narrative”
self. The fourth section considers model validity and discusses what we may expect
ongoing cognitive neurorobotics studies to contribute to scientific explanation of
cognitive phenomena including the senses of minimal and narrative self.

Keywords: [cognitive robotics, cognitive architecture, neurorobotics, free energy,
predictive coding, active inference, the sense of self]
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1. Prospectus

The following paper proceeds in four movements. The first very briefly introduces
cognitive neurorobotics (CNR). The second section reviews a series of humanoid CNR
experiments designed to elicit specific cognitive phenomena in emergent dynamics, and
the third section interprets this review in the context of minimal and narrative self. The
fourth section emphasizes the potential for CNR studies of this sort to contribute to
inquiry into embodied cognition and mind.

1.1 Introducing Cognitive Neurorobotics

The main motivation of cognitive neurorobotics (CNR) is to elucidate essential
mechanisms underlying embodied cognition through synthesis of analogous dynamics
in various robotics experiments. CNR calls on diverse interdisciplinary knowledge
including from fields of cognitive science, psychology, ethology, neuroscience,
complex systems, Al & deep learning, artificial life and many others. Primarily, CNR
can be considered as a marriage of two research fields. One is cognitive robotics (e.g.,
Levesque and Lakemeyer, 2008) which aims to develop human level intelligence in
robots using a rather conventional symbolism approach, and the other is neurorobotics
which puts more emphasis on the realization of adaptive behaviors of biological
systems using neuroscience inspired models or neuromorphic schemes.

Initially, cognitive robotics studies proceeded with a strong conviction that formal
logical descriptions of the world and rational computation for reasoning, planning, and
inference could provide for human-level cognitive competency in artificial agents
including robots. However, such early expectations were betrayed by the results of
projects such as SRI’s SHAKEY (Nilsson, 1984) which demonstrated the problems
associated with the rigors of applying formal logic to real robots. Part of the reason for
the trouble is that representation of the world using symbols as arbitrary tokens cannot
be grounded smoothly with real world phenomena which are fundamentally given to
experience in terms of continuous sensory-motor patterns. This is the point of Harnad’s
(1990) famous symbol grounding problem.

Already by the end of the 1980s, a paradigm shift had been taking place in Al and
robotics research with the introduction of behavior-based robotics by Rodney Brooks
(Brooks, 1990; 1991). Brooks considered that even simple insect-like robots can exhibit
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extremely complex and intelligent behaviors by establishing a direct coupling between a
robot’s reflex-type controllers and sensations from the environment. His seminal paper,
“Intelligence without representation” (Brooks, 1991) represents this thought -- no
representation and thus no grounding problem.

Neurorobotics in general is a growing field of especially fruitful inquiry employing
biological system inspired algorithms in a range of applications, from prosthetics with
brain-machine-interface technologies (Millan et al., 2010; Moxon and Foffani, 2015) to
independently embodied robots with autonomous locomotion, learning, memory, value
and action selection systems (Doya et al., 2002; Kuniyoshi and Sangawa, 2005; Kaplan,
2008; Krichmar, 2018). The degree of biological precision in selection of neuronal and
kinematic models depends on the degree of realism required to represent target
phenomena. Extreme realism is represented in the Human Brain Project (HBP).
Neurorobotics is considered a “strategic pillar” of the HBP through which biologically
inspired algorithms representing levels of organization from molecular mechanism to
modular function to unified cognitive architecture can be tested in simulation and then
deployed in physically embodied robots sharing physical space with human beings
(Knoll and Gewaltig, 2016). In general, however, more specific studies replicate focal
operations in fine detail while rendering other aspects more abstract. Recognizing the
impossibility of analyzing all levels of activity simultaneously for instance, Krichmar
and Edelman (2002) focus on how cortical and subcortical levels interact in real-time
using a relatively simple embodied robot, Darwin VII.

There has been a group of researchers who have emphasized advantages of studying so-
called “minimum cognition”. These researchers have focused on phenomena emerging
during system-level interaction with the environment using relatively simple neuronal
adaptive controllers (e.g., Beer, 2000; Nolfi and Floreano, 2000; lizuka and Di Paolo,
2007; Froese and Ziemke, 2009; Silberstein and Chemero, 2013; Barandiaran and
Chemero, 2006). Beer (2000) viewed an agent’s nervous system, its body and its
environment as coupled dynamical systems. By focusing on the unfolding trajectory of
the agent’s system state as shaped by both forces internal to the agent and external from
the environment, he attempts to extract the essential dynamic structures accounting for
minimal cognition. Since most neurorobotics studies inherit the aforementioned
thoughts of the behavior-based robotics, current research tends to stay close to the
realization of biologically plausible adaptive behavior, focusing on sensory-motor level
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processing and hesitating to explore mechanisms associated with higher cognition in
human beings.

On the other hand, one of the main motivations of CNR studies is to consider possible
principles, algorithms, and implementation designs which can bridge the gap between
higher cognition and the lower sensory-motor processing of robots. Hybrid models (e.g.
Sun, 2002) attempt to combine these two levels, extracting symbolized rules and
associations at one level from sensory-motor patterns of activity at another (cf.
Kotseruba and Tsotsos, 2018). However, such an enterprise may suffer again from the
symbol grounding problem (Harnad, 1990) since these two levels do not share the same
metric space required for the dense interactions between top-down and bottom-up
processes that are associated with subjective experience including the sense of self.

Recently, deep learning schemes in robots show promise in attacking this problem. It
has been known that various types of deep learning networks can develop hierarchical
information processing in collective spatio-temporal activities of the neural units
through end-to-end learning of sensory-motor patterns. Actually, such trials have been
conducted by various research groups including the authors’ (Yamashita and Tani,
2008; Levine et al., 2016; Yamada et al., 2016; Heinrich and Wermter, 2018).
Developmental robotics (Meta et al., 2008; Asada et al., 2009; Cangelosi and
Schlesinger, 2015) is another indispensable approach to address this problem. In
developmental robotics, cognitive competencies of artificial agents or robots develop
gradually, supported by human tutors, with scaffolding from one level to next level
according to fundamental theories in child development (e.g., Piaget, 1953; Vygotsky et
al., 1962).

Some CNR research attempts to expose connections between the phenomenology of
subjective experience and embodied sensory-motor processing. Holland (2007)
conjectured that building human-like bodies for robots and developing internal models
for predicting body dynamics is essential for developing “machine consciousness”.
Prescott and Camilleri (2019) considers that the sense of self can be characterized as a
transient process, analogous to Tani’s (1998) consideration that self becomes an object
of consciousness when prediction error for the actional outcome momentarily increases
(as will be described later, in section 3). Lanillos and colleagues (2017) proposed that
prediction error generated by a body’s forward model should come with the sense of

what they call “enactive self” in the differentiation between inbody and other sources.
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And, Hafner and colleagues (Lang et al., 2018; Schillaci et al., 2016) conducted a set of
robotics experiments also examining the sense of agency wherein they observed
attenuation of sensory inputs to self-generated movements (in terms of prediction error
minimization) but not to those of others (as these were unpredictable). Keeping this
research in mind, it is becoming more crucial that the problems of cognition and of
subjective experience should be investigated inseparably in order to gain a better
understanding of the minds of both humans and artifacts.

The CNR experiments reviewed in the next section aim to uncover such structural
dynamics by using an approach analogous to the free energy minimization principle
(FEP) proposed by Friston (2005). The FEP approach can be interpreted in terms of
Marr’s three levels (Marr, 1982) wherein first the computational level might be
represented by the FEP itself, in which the goal of computation is minimizing the free
energy. Second, the representation and algorithmic level might be represented by the
schemes of predictive coding (Rao and Ballard, 1999; Friston, 2005; Clark, 2015) and
active inference (Friston et al., 2011; Hohwy, 2013; Clark, 2015). Finally, the
implementation level might be represented by neurophysiology in biological brains or
artificial neural network programs put in the robot’s head. The next section starts with a
brief review of the FEP, predictive coding, and active inference, and then reviews a set
of CNR experiments conducted by Tani’s group employing analogous principles. Their
validity as evidence for explanations in cognitive science is recalled in section 4.

2. Models and CNR experiments

First, we provide a brief introduction of the free energy minimization principle (FEP)
(Friston, 2005). Then, some neural network models developed by Tani’s group similar
to this principle are introduced along with cognitive neurorobotics (CNR) experiments
using those models. These detailed descriptions of technical aspects may help to
understand how this and similar ongoing research may contribute to inquiry into
phenomena such as self, as explored in section 3 and as proposed in section 4.

2.1 The free energy minimization principle

The FEP states that any self-organizing system at dynamic equilibrium with its
environment must minimize its free energy in order to maintain this equilibrium and
thereby its organization in the face of otherwise disintegrative forces. The FEP is an
application of Bayesian theory. Bayes’ general idea was that we can calculate the



194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229

probability of something being true (before we have evidence and rather than directly
testing for it), and to do so we may use what we have already observed to predict what
we should perceive next. By applying this principle to adaptation mechanisms in brains,
Friston considers that all essential cognitive mechanisms including perception, action
generation, and learning can be explained.

It may help to illustrate with an intuitive image of the FEP at work. Consider a
snowflake with wings, fluttering about. As long as it stays in a certain conditional zone
— not too turbulent, freezing air - then it continues fluttering about and is able to
maintain its unique structure. If it falls out of this zone, then its integrity is lost and it
dissipates. If its situation becomes too hot, then it melts, for example. In the simplest of
terms, the FEP (along with active inference, also introduced below) tells us that the
snowflake will do what it can to stay in this zone. As an application of Bayesian theory,
the FEP attempts to describe how biological brains update beliefs (or hypotheses, what
we think is the case) in light of new information, so that organisms can act on this new
information towards what they wish to be the case, like snowflakes countering gusts of
wind to stay in their comfort zones by anticipating from which direction the likeliest are
to come next.

Formally, the relationship between the likelihood of an observation after we have
experiential evidence, with what we thought that the likelihood might have been before
we had such evidence, is represented in a mathematical formula, Bayes’ theorem.
Bayes’ theorem updates prior probabilities (original hypotheses) with new evidence to
produce new (posterior, after the evidence is gathered) probabilities that are then useful
to guide the next iteration of action, e.g. the snowflake’s next wing-flap. The FEP tells
us that biological brains do this to stay alive (like the snowflake does to maintain its
unique organization), so they (in general) perceive what they need to perceive to inform
beliefs that they need to believe to inform action that they need to enact in order to
maintain their integrity in the face of dissipative change. With its brain optimized
accordingly, an organism aims to minimize the difference between what it expects to
happen and what it perceives, especially concerning those parameters that bear on its
integrity; e.g. in order to stay in that comfort zone. In the end, it is this adaptive
updating of hypotheses in light of new information that is the focus of the CNR
experiments reviewed below, and it is the temporal hierarchy characterizing biological
brains grounding the anticipatory nature of the experience that their focal architectures
reflect.
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In terms of these robotics experiments, Bayes’ theorem is shown in formula 1. By
applying this formula, the robots are able to infer the hidden cause z of a sensory
observation X.

p(X|2)p(2)

p(X) D)

p(zlX) =

P(z|X) is the posterior distribution of hidden cause z with given observation X and p(X|z)
is the likelihood which relates the sensory observation X to the hidden causes Z. P(z) is
the prior distribution of (probability density of) or belief in z as the latent cause before
observation X. P(X) is the marginal likelihood which is obtained by marginalizing
p(X|z) for all z. P(X) is obtained by considering the probabilities of X for all possible
hidden causes. There is a practical problem, however, in that the direct computation of
p(X) is often intractable with current methods. Simply too many possibilities must be
considered in practice.

Since p(X) is necessary for the computation of the posterior distribution p(z|X), rather
than directly compute over all of these possibilities, the variational free energy approach
derives an approximation of p(z|X). This scheme optimizes an auxiliary probability
distribution g(z), referred to as the recognition density, in approximation of the true
posterior p(z|X) by minimizing the Kullback-Leibler divergence (KL divergence)
between the two (formula 2).

_ q(z)
Dgilq(2) I p(z|X)] = jq(z)lnp(zlx) dz
=F + Inp(X) (2)
Free energy F is defined as
_ q(z)
F _jQ(Z)lnp(z,X) dz 3)

Since the marginal likelihood p(X) in the second term on the right-hand side in (2) is
independent of the recognition density g(z), minimization of the KL divergence between
the recognition density and the true posterior can be achieved by minimization of the
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free energy in (3) respect to q(z). This makes q(z) as an adequate practical
approximation of the true posterior p(z|X).

The free energy F to be minimized can thus be rewritten in a computationally tractable
form in terms of q(z). In this equation, ¢ and 0 are model parameters (formula 4):

F = —Eq,[Inpe(X|2)] + Di.[q4 (2)1Ip(2)] 4

The first term on the right side of the equation, the accuracy term, represents the
expectation of log-likelihood with respect to the approximate posterior, which
represents reconstruction of the sensory observation with the approximate posterior by
generative models. The second term, the complexity term, is represented by KL
divergence between the approximate posterior and the prior, which serves to regularize
the model according to prior expectation.

Free energy F can be minimized with respect to q,,(z) as
qy(z) = argmax F (5

Here, we may put the preceding in terms of predictive coding (Rao and Ballard, 1999;
Friston, 2005; Clark, 2015). For a given sensory observation, the posterior inference of
the latent variable (“latent” means hidden, so this is what is hypothesized to be the
hidden cause) is carried out by means of minimizing the error between the sensation
expected by the generative model for the latent variable, and its observation under the
constraint of the prior distribution of that latent variable. The idea here again is to
minimize the difference between what was predicted, and what is perceived.

Free energy F integrated for the predicted future time period is the expected free energy
FE of a given model. We aim to minimize this value in respect to an action a by
assuming a forward model that represents the likelihood of an action causing an
observation given the cause z, as shown in formulae (6) and (7).

FE = —Eg »linpe (X (a)|2)] (6)

a = argmax FE (7)
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Note that the expected free energy does not involve the KL divergence between the
posterior and the prior (as in formula 4) because KL divergence is independent of
sensation (evidence, X) and thus of action.

The preceding process represents action generation by active inference (Friston et al.,
2011; Hohwy, 2013; Clark, 2015) whereby actions are selected such that the expected
free energy is minimized.! This stands for action generation by active inference (Friston
etal., 2011; Hohwy, 2013; Clark, 2015) where actions are selected such that the
expected free energy is minimized. (Later we introduce a more recent update of active
inference (Kaplan and Friston, 2018) considering the epistemic value.) More intuitively,
to minimize the error between the expected or preferred sensory outcome and the actual
one, the actual one is modified to become closer to the preferred one by acting
adequately on the environment. Finally, perception by (5) and action generation by (7)
are carried out simultaneously for closing the loop between action and perception
(Baltieri and Buckley, 2017). Here, it is considered that the enactive cognition is a
continuing trial for minimizing the conflictive error between the top-down intention
projected from the latent variables and the bottom-up perception from the reality
through iterative acts of changing the external environment as well as modifying the
intention within (Tani, 2016).

2.2 Recurrent neural network with parametric biases

Tani and colleagues (Tani, 2003; Tani et al., 2004) developed the recurrent neural
network with parametric biases (RNNPB) independently from the FEP. Since that time,
the RNNPB has turned out to be one possible neural network implementation of the
FEP (with some simplification as detailed later). Although there have been variations of
the RNNPB specific to different applications, the following describes a typical version.

(A) Model description:
In the RNNPB, the following objective function for a time series of L time steps is
minimized (formula 8):

L It is interesting in this context to consider Bruineberg et al. (2018) who modeled foraging agents
learning most efficient paths to prior-specified goals, “desire paths”. These models extended the FEP and
active inference to show that expectations are shaped by changes to the environment, resulting in reduced

free energy for the agent-environment system.

10
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Ob](pbl..TrW)=§Z(W”Xt_xt(w)” +prt) (8)

t=1

In (8), X, and X, (W) are the sensory observation and the prediction outputs for the
sensory observation as a function of the learning parameters W with their
dimensionality N°. Sensation may consist of exteroception such as vision v, and
proprioception p; in a robotics application as shown in Figure 1 (a). In (8), pb, r isa
latent variable of NP? dimensions.

This objective function (8) becomes equal to the free energy defined in (4) with

Error regression for past Prediction for future

< >

Past window

P Update ! Update PB i
PBi_3 :PBH PBi—y PB.I PB.,;= PB,
I
C;: internal neural Ct_3—I+CtT—l2—<LCtT—117_ I{%—» Cri1
activity I I
Robot VP}_g,:VP[{Z VPTil VT,i: VP}H

VO T
IR

—
VP, 3 \VP, VP, VP,
|

_________ 4

a;: action
Controller

Error  Error
/A I P, 1 Proprioception

<

Vision ' Time-step

(@) (b)

Figure 1: A robot controlled by an RNNPB model. During movement, PB values are
updated by backpropagation in the direction of minimizing error (a); predicting the
future by inferring the most likely past with black and red arrows representing the
generative and error back-propagation processes during prediction and postdiction,
respectively (b).

assumptions? that the prior of the latent variable is represented by a unit Gaussian
distribution, the posterior by a Gaussian distribution with its mean pb; and its standard

2 In the interests of simplicity, we neglect here discussion of merits of variational Bayes models such as

those representing the strength of belief or an estimate of precision in prediction. Recent developments

11
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deviation of 1.0, and the sensory prediction outputs with a Gaussian distribution with its
mean X, and its standard deviation o. Then, this objective function can be minimized
with respect to pb;  given fixed learning parameters W by the deterministic dynamics
described in the following difference equations (formulas 9a-9d):

(
Cly=g z weCl + Z wPPPBR. +bf | (9a)
i n
| Pblinss = & (=pbln = VE(pbi)) + phln (9b)
PBgn = Q(Pbgn) (9¢)
Xee =g ) wertc] + bgw (9)
\ J

In (9a), C; represents the activation of internal units with recurrence at time step t.
PB, ,, represents the outputs of sigmoid function g() applied to the latent variable
pb. ,, during the nth epoch iteration at time step t. The latent variable pb is inferred at
each time step through N epochs of iterations of the internal computation loop. Its value
is updated in the direction of minimizing prediction error in the output by following
VE(pb{fn) which is the gradient of the mean square error E of the prediction outputs for
all time steps while also considering a unit decay effect of this value as represented in
the first term on the right-hand side of (9b). w¢, wP?, w°%, b¢ and b°“¢ are elements
of the learning parameters W.

The actual computation of (9) is carried out for N epochs iterated in the forward
computation of L time steps, with backward error regression computed for the same L
time steps using a past window storing all temporal variables from time step t-L+1 to
the current time step t as illustrated in Figure 1(b). In the forward computation, values
of the internal units as well as those of the prediction outputs from time step t-L+1 to
the next (anticipated future) time step t+1 are computed using the PB values updated for
each time step. In the backward error regression, the prediction error at each time step is
back-propagated through time (BPTT) (Werbos, 1990; Rumelhart et al, 1986) from the
current time step t to time step t-L+1 (at the onset of the past window). The latent

using RNN models by the author’s group (Murata et al., 2015; Ahmadi and Tani, 2019) address these

issues.

12
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variable pb;_; .1 ; in the window is updated by using the error gradient information
obtained by BPTT at each time step according to (9b).

The predicted proprioception at time step t+1 is sent to the robot PID (proportional-
integral-derivative) controller as target joint angles for the next time step of the robot,
and the robot moves accordingly. For instance, actuators receive the motor commands a
generated by the PID controller, move according to these commands, and this
movement generates new visual and proprioceptive (bottom-up) sensations and their
(top-down) prediction errors at time step t+1 again with the aim to minimize these
errors. The PID controller thereby instantiates the idea of active inference since action a
is generated in order to minimize the error between the actual and the predicted joint
angles (proprioception) (Baltieri and Buckley, 2018).

Finally, the learning of the RNNPB can be carried out by minimizing objective function
(8) with respect to both the learning parameters W and the latent variable pb,
Whi1 = —BVE(Wy) (10)

W is updated at each epoch using the gradient information computed by BPTT with the
learning rate S.

(B) Robotics experiment using RNNPB

To evaluate the RNNPB in a robotics experiment, a humanoid robot was used which
consists of three subsystems: an onboard sensory processing module with a head-
mounted video camera, an RNNPB module running on an external computer, and an
onboard motor control module. So configured, the RNNPB could predict two types of
sensory inputs, proprioception in terms of joint angles in both arms of the robot and
visual features representing target object position (X-Y-Z) at each time step.

During ball manipulation experiments (Ito et al., 2006), human tutors trained this robot
to manipulate a ball in two different sequences: repetitively pushing the ball from left to
right and right to left, and repetitively grasping the ball at the center position, lifting it
up and then dropping it. After the training of the network wherein PB values adapted
differently for each action sequence, the robot was tested to generate these sequences
autonomously (without external help). During testing, the robot switched from one to
the other intermittently, with an example presented in Figure 2 (also see a video:
https://youtu.be/a_auloksGNO.) In this instance, the robot initially pushed the ball from

13
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left and right repeatedly until the ball bounced off of one hand too much, rolling to the
center position. This unexpected movement caused prediction error. To minimize this
error, the robot adopted the PB value for grasping and dropping the ball, and its
behavior changing accordingly. Here, we see that the top-down intention to act with the
ball, represented by the PB, shifted autonomously during iterative interaction with the
bottom-up percept of the ball position from one behavioral reparatory to another in the
course of minimizing the error.

Rolling ball Lifting and dropping ball
g 1
=1
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Figure 2: Dynamic generation and switching of two learned ball handling behaviors.
Top row: measured ball position. Second and third rows: predicted ball position and
robot joint angles generated by the RNNPB, respectively. Bottom row: the PB as it
switches from one movement sequence to another. Redrawn from (lto et al., 2006).

Importantly, the continuous sensory flow was segmented during the error minimization
process as the robot optimized coordination with the target object through autonomous
shifts in PB values. Shifting PB values served as bifurcation parameters to induce
transitions, effectively steering the system from one learned behavioral pattern to the
other. This same mechanism for the segmentation and chunking of the continuous

14
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perceptual flow had been observed during an earlier RNNPB experiment on human-
robot interaction (Ito and Tani, 2004) wherein a robot and a human participant
attempted to synchronously imitate one another’s primitive movement patterns using
prediction based on prior learning. With robot and human participant movements
synchronized according to one of the prior learned patterns, if the human participant
suddenly shifts the current movement pattern to another learned one, the
synchronization breaks down thereby generating prediction error bottom-up in the
RNNPB. In effort to minimize this error, the PB value is updated, and enactive
synchrony with the present pattern achieved. Looking at the data from these
experiments, segmentation of sensory flow from one habituated pattern (with
corresponding expectations) to another can also be observed.

Observation of these phenomena suggests a general mechanism for the segmentation
and chunking of the continuous sensory flow. Confirming a core tenet of predictive
coding, that cognition aims to minimize prediction error in the process of interacting
with changing environments, perceived error should be essential to mechanisms
underwriting the segmentation of the continuous bottom-up sensory flow during online
cognition in biological models, as well. Moreover, such mechanisms should provide for
the development of compositionality in cognition, subject of the next section, because
this competency requires segmentation of sensory flow into a set of reusable objects
which can be mentally manipulated for combinatory operations.

Here, it is intriguing to note that the error regression scheme for the past window in the
RNNPB could provide a possible mechanism for “postdiction” (Shimojo, 2014).
Postdiction is a process that is recognizable during perceptual phenomena wherein the
percept of a stimulus presented earlier is affected by another stimulus presented later.
Postdiction is apparent during various backward perception phenomena including
classic examples of backward masking (Raab, 1963) or the cutaneous rabbit illusion
(Geldard and Sherrick, 1972). Such phenomena may be explained by the error
regression mechanism assumed in the RNNPB as a model of predictive coding.

The cutaneous rabbit involves tactile stimuli (taps, small electric shocks) presented to a
human subject, typically on the forearm (due to this area’s relatively poor spatial acuity
as mapped to the somatosensory cortex). In the simple case, three stimuli are presented

with equal temporal intervals between each. The cutaneous rabbit illusion appears when
these stimuli occur with very short durations between them (less than 300 milliseconds)
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and when the first and the second are given in the same position, but with the third
given in a distant position (which may extend past the physical body, Miyazaki et al.,
2010). The subject mis-locates the second tap in the direction of the third tap, whereas
the subject will not mis-locate it if the third tap is given in the same position with the
first or second ones.

In backward masking, the consciousness of a target presented immediately before a
masking stimulus (typically something driving urgent attention, such as something
scary) can be suppressed, such that subjects are unable to report having seen the first
stimulus. This phenomenon may be intuitively explained given two assumptions, one
that the world as we experience it usually doesn’t change so rapidly, and two that
optimal implicit internal models of such a world should operate according to the
expectation that a visual stimulus given a moment ago will be retained for a while. This
gives rise to the idea that there may be two pathways operative in backward masking,
one for normal operations over longer timespans, and one for surprising situations that
respond rapidly to changes in the environment. In case that a stimulus presenting minor
changes in the world is suddenly followed by a surprising stimulus presenting more
important changes in the world, an expectation error should be generated that
effectively diminishes the previous stimulus as the agent recenters activity around the
implications of the later stimulus. Thus, in the course of minimizing the error between
what is expected and what is sensed, the experience of the stimulus presented in the past

is “masked” by one that comes later.

The case of the cutaneous rabbit can be explained similarly. After the first and the
second (series of) taps are provided in the same position, an internal model implicitly
expects that the third should come in the same position after the same temporal interval.
However, when the third is presented in a distant position, an expectation error is
generated. To minimize the error, the experience of the second tap is relocated to the
midpoint between the first and the third tap positions (by means of regressing a linear
model predicting position and timing for succeeding stimuli). In sum, postdictive
phenomena can be explained in terms of inference and consequent rewriting of past
experience by means of the error minimization principle.®

3 Here, we may understand “inference” specifically, as search for an optimal latent variable to minimize

the error between the expected sensation and the actual one
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2.3 Multiple timescale RNN for development of compositionality

The RNNPB experiments reviewed above demonstrate that cognitive phenomena such
as segmentation of the undifferentiated perceptual flow into reusable chunks occurs by
minimizing conflicts between bottom-up perception and top-down intention. This
section briefly reviews experiments intended to expose the role of such dynamics in the
composition of novel patterns in coordination with novel task environments before
turning to how these fundamental dynamics may contribute to accounts of self.

Compositionality is the ability to combine parts into wholes, evident for example in the
abilities to determine the meanings of sentences from the structured relations between
constituent parts (Evans, 1982; Costello and Keane, 2000) and to enact diverse goal-
directed actions by sequentially combining reusable primitives (Arbib, 1981; Pastra and
Aloimonos, 2012). Yamashita and Tani (2008) proposed a predictive RNN model
characterized by multiple time constraints at different levels, the multiple timescale
recurrent neural network (MTRNN) to investigate how neural networks in biological
brains develop compositionality and thereby generate novel actions. The MTRNN has
been used to investigate various aspects related to development of compositionality
including co-development of skills between human tutors and robots (Nishimoto and
Tani, 2009), goal-directed creative compositions of primitives (Arie et al., 2009), cases
analogous to schizophrenic pathology including the delusion of control (YYamashita and
Tani, 2012), and imitative human-robot interactions (Hwang et al., 2019). Next, we
review the MTRNN in greater detail.

(A) Model description:

The MTRNN has layers of RNNs each characterized by a different timescale constraint
(see Figure 3(a) for a typical architecture). Neural activity in higher layers is slower
with larger timescale constraints, while lower layers are faster with smaller timescale
constraints. In the MTRNN, the following objective function for a time series of L time
steps is minimized as analogous to (9) in the case of the RNNPB:

, 1o/ 1 L1
Obj(er, W) =5 ) (o 1% = XeWIP 4 1zcF) (1)
t=1

In (11), N° and N€¢ represent the dimensions of the output and the internal units,
respectively. (11) differs from (9) in that c, - which represents the potential value of
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the internal units with recurrence at the initial time step in (9) - plays the role of latent
variable in (11).

Intention
Update m_Set

Top-down Generation

~ Intention
Intention 1

s

Intention 2

Top-down prediction

Bottom-up error regression

Compositional
Generations
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Figure 3: (a) an example of an MTRNN architecture with 3-layers, and (b) illustration
of compositionality of different action plans in an MTRNN. Redrawn from (Tani,
2016).

Assuming fixed learning parameters of W, this objective function can be minimized
with respect to c¢; by way of the following difference equations (12a-12d):

roo. 1y . 1 :
el =— (1 —;) ¢l + FZ wiCl +b¢ for t=1 (12a)
J
Ci,n+1 =a (_Ci,n - VE(Ci,n)) + Ci,n (12b)
< Cii1 =9(cl,y) for t =0 (12¢)
Xew = g| ) woptcl,, + by (12d)
\ j
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In this series of equations, C, represents activation of the internal units with recurrence
attime step t. T is the time constant for each internal neural unit, and is different at
each layer (in comparison, the time constant for all internal units in the RNNPB was
assumed to be 1.0.) By assigning the higher layer with a larger value for the time
constant, the higher layer is dominated by slower dynamics; by assigning a smaller time
constant to the lower layer, it is dominated by faster dynamics. It is also noted that a
bottleneck type connectivity constraint was applied to the network wherein the internal
units in the higher layer were connected only with those in the intermediate layer which
were again connected with only those in the lower layer.

Here, we may note that the latent variables represented as the initial states of the internal
units c¢; determines the time development of the whole network, including later
prediction outputs, due to the sensitivity to initial conditions that is characteristic of the
deterministic RNN model. Therefore, for minimizing the reconstruction error for all
time steps, the optimal values of the initial states are inferred by using the gradient
information computed by BPTT through iterations of the internal computation loop
using the past window in a similar way with the RNNPB case.

(B) Robotics experiment:

A robotics experiment using an MTRNN in a task of developmental tutoring of
compositional object manipulation is briefly reviewed. During this experiment
(Nishimoto and Tani, 2009), a Sony QRIO (as in Figure 1) controlled by an MTRNN
was tutored on multiple task sequences each composed of different series of primitive
actions. For example, one tutored sequence proceeded as follows. The tutor moved both
of the robot’s hands toward an object located at an arbitrary position on a table, then
using the hands grasped it, lifted it up and down a few times, and placed it back on the
table. Another sequence involved touching the object with the left and right hands in
turn, grasping the object, rotating it, and placing it back on the table. Sensors on the
robot delivered simplified visual features and proprioceptive information (as in
experiments described above). Tutoring proceeded gradually, i.e., the robot was tutored
on some tasks, then tested, and if performance was unsatisfactory, tutoring was repeated
(the corresponding video can be seen at https://youtu.be/n9INYcG8xIYs). It is important

to emphasize that tutors directly guided the robot’s hands by feeling and correcting the
“intent” of the robot with their own hands. After training, the robot was able to reliably
perform all task sequences successfully and layer-specific neural regions were analyzed.
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It was found that each layer played a different role in action compositionality (see
Figure 3 (b)).

Yamashita and Tani (2008) speculated that the multiple timescale property imposed on
network dynamics resulted in the emergence of a functional hierarchy in which the
higher layer generated different slowly changing neural activation patterns
corresponding to a scenario or plan for each task sequence, whereas the lower layer
developed precise skillful control for each behavior primitive. Recalling experiments
involving the RNNPB, the slowly changing neural activity from the higher layer served
as a source of bifurcation parameters, steering activity in the lower layer, while the
faster lower layer learned to develop a set of behavior primitives, e.g. grasping, lifting
up, or moving the object left and right, in complementary ways. After the development
of these dynamics through learning, the MTRNN-driven robot became able to generate
different ways of combining behavior primitives. Yamashita and Tani (2008)
interpreted these results by hypothesizing that the robot developed compositionality in
generating actions as its functional hierarchy self-organized. In order to test this
interpretation, they manipulated the timescale parameters of the MTRNN in order to
explore the role of the multiple timescales in structuring cognitive dynamics.
Compositional representations (layer-specific stable structural dynamics) could not be
developed when all layers shared the same time constant. The same results were
repeatedly confirmed in other robotics experiments conducted under more complex
conditions, for example while using pixel level vision (Hwang et al., 2018).

2.4 Goal-directed planning

With this understanding of compositionality as achieved through the segmentation of
fluid experience, predictive coding and active inference (see section 2.1) can be applied
also to the problem of the goal-directed planning of action sequences by robots.

Tani (1996) conducted experiments on the goal-directed navigation of a mobile robot,
Yamabico, which was equipped with a range sensor using a single layer RNN.
Yamabico was developed with a lower-level automatic control scheme using range
sensors which can perceive range images of 24 angular directions covering the front of
the body to travel smoothly in a collision-free manner in a workspace. Basically, it
moves toward the largest open space in a forward direction by maneuvering between
obstacles on its left and right sides. When a new open space appears, a decision is made
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on whether to pursue the current open space direction or to branch to the new one. This
branching decision is made by the RNN in the higher cognitive level as described next.

In the experiment, Yamabico explored the obstacle workspace under collision-free
maneuvering control during daytime for the purpose of gathering sensory-action data.
When it encountered a branching point, a branching decision was made arbitrarily (with
an equal chance for either option) by the experimenter. At this time, the sensory inputs
in terms of the range image, the travel distance (as indicated on the odometer) from the
previous branching point to the current one, and the action in terms of the branching
decision, were recorded. Yamabico explored the environment experiencing around 200
successive branches until its battery was depleted. This resulted in a sampling of a
sensory-action sequence of around 200 branching steps. During nighttime while the
battery was charging, the RNN was trained in the form of the forward model (Miall and
Wolpert, 1996; Kawato, 1999) so that it could predict the sensory input at a next
branching step X,,; when presented with current sensory input X, and branching
action a,,, by developing an adequate dynamic structure for the latent state transition
from Z, to Z,,, based on the branching scheme using the sampled sensory-action
sequence.

After this training, a test of goal-directed planning was conducted through the following
procedure. First, Yamabico traveled for several steps by randomly branching out from
an arbitrary position for the purpose of inferring the latent state by way of the observed
sensory sequence.* Several branching steps of travel were necessary because this
navigation problem involves the sensory aliasing problem; the current sensory inputs
cannot uniquely identify the current latent state. Then, after inference of the latent state
in the current branching step, Yamabico generated goal-directed planning under the
constraint of minimum travel distance to reach a branching point specified as a goal by
its expected sensory inputs.

Analogous with active inference as in (7), an optimal action sequence minimizing the
error between the preferred and the predicted sensory outcomes was identified,

4 This process can be related to the process of perception by predictive coding shown in (5). However, in
this case, the latent variable is not inferred by minimizing prediction error. Instead, the latent variable is
updated by means of the entrained (learned) sensory input sequence which turns out to minimize the

prediction error.
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specifically minimizing the error between the goal range image (image of the goal as it
is ideally achieved) and the predicted one in the distal (final) goal step (given the
current action plan) while also minimizing the predicted travel distance at each
branching step. This can be carried out by means of BPTT applied to the trained RNN
as illustrated in Figure 4. In the test experiment, a set of possible action sequence plans
was searched (including sub-optimal ones) through iterative computation. Generated
action plans were actually executed by the robot.

Planning for future action sequence

Ar—p Ar—1 ar a‘!:'l-l | ﬂT—l
l |
Zr e Zr+1 _._erJrz sy I o — ZT
l I
I
X‘r r+l -.r+2 |
| .
dr+1 Tr+1 1.'+2 T‘r+2 | * *
d d
1er+1 er+2 | 1
l ~
0.0 0.0 0.0 77
' goal range
I image
|

n
>

Branching-step

Figure 4: Goal-directed planning using RNN. The future action sequence a, r_4 is
optimized for minimizing the expected travel distance d,,; r at each branching step as
well as the error between the goal range image at the distal step 7; and its expected
value r,. The both errors for the travel distance at each step e%,, ; and the goal range
image at the distal step e; are back-propagated through steps.

Results of goal-directed plan generation are shown in Figure 5. Figure 5 (a) shows the
designated starting position and the goal position. Figure 5 (b)-(d) shows the actual
trajectories generated by executing 3 different action sequence plans, with Figure 5 (b)
showing the optimal trajectory that minimizes the travel distance, and Figure 5 (c-d)
showing suboptimal plans. Especially, it is noted that the robot had never enacted the
trajectory in Figure 5 (d) during the exploration phase before learning. This result
implies that Yamabico became capable of mentally imaging novel compositions of
experienced parts of trajectories by extracting the hidden structure of the environment
through consolidative learning of diverse sensory-action trajectories sampled.
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To examine the internal structure developed by the RNN, a phase space analysis was
conducted. The RNN generates mental simulations of thousands of consecutive steps of
random branching sequences. Figure 5 (e) shows the phase space plot wherein each
point represents an internal state (projected in 2-dimensional space) when visiting a
particular branching point. It can be seen that the points are all clustered into a set of
segments. It was found that each segment corresponds to a particular branching point,
and that the points inside each segment form a Cantor set-like assembly. These
observations inform us how the compositionality is represented in the internal state of
the RNN. When the robot moves from one branching point to another by choosing a
particular branching action, the internal state transits from one segment to another.
Therefore, a graph-like state transition structure can be seen by considering those
segments as nodes of a state transition diagram.

SANESS

=

<3 0.0

< S o

(c) (d)

Figure 5: Trajectories generated by goal-directed planning and the phase plot. (a) shows
staring and goal positions (b-d) 3 different trajectories generated by Yamabico based on
different action plans. (e) The phase plot of the internal state projected in a two-
dimensional space.
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Importantly, each node is represented not by a point, but by an assembly of points in the
continuous state space of the RNN, because each point within a segment can have a
different history of branching in arriving there. If two points are neighboring each other,
two branching sequences of reaching these two points may be exactly the same for a
long past history. On the other hand, if two points are distant in the same segment, two
branching sequences reaching these points will be quite different in the immediate past
history. Since an infinite number of different branching sequences can be composed to
reach a branching point, and all points corresponding to those different compositions
should be embedded in a segment of finite length, Cantor set-like assembly is organized
within each segment. Cantor sets are interesting in this context because they represent
boundary points. They are perfect sets, meaning that a set is equal to its derivative set,
which means that it is equal to its limit points. These findings are analogous to what
Elman (1991) and Pollack (1991) showed in investigating the capability of RNNs to
learn word or symbol sequences regulated by grammar.

Further analysis revealed that the whole assembly of points in the phase plot represents
an invariant set of a global attractor. When mental simulation is perturbed with external
noise added to the network activity, prediction goes wrong and the internal state falls
out of the invariant set.> However, if the noise is removed, the predictability can be
recovered after several steps of mental simulation, and the trajectory of the internal state
returns back to the invariant set. In this way, the invariant set may represent the
boundary of cognition (Maturana and Varela, 1991) which is structurally stable against
perturbation due to the nature of an attractor.

One drawback in this study (Tani, 1996) is that the exploration of the environment was
conducted randomly, independent of the process of learning about the environment in
order to satisfy a purpose. Human infants or artificial agents may explore the world by
seeking some intrinsic rewards such as novelty in interacting with their environments
(Schmidhuber, 1991; Oudeyer et al., 2007; Tschantz et al., 2020). Tani and Yamamoto
(2002) extended the study in Tani (1996) in order to investigate the issue of intrinsic
motivation by adding a novelty rewarding mechanism as a drive for seeking novel
experiences during exploration. The exploration and the learning phases of this
experiment were interleaved, with each happening after the other. In the exploration
phase, action plans for branching sequences were generated and executed such that the

% The network loses its “grip” cf. Bruineberg et al., 2014.
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sum of expected prediction error at each branching point was maximized (rather than
minimized). And in the learning phase, the training of the network was conducted by
using two types of sensory-action sequence data. One was the sequence which had been
experienced in the last travel and which had been stored in the short-term memory, and
the other was the set of rehearsed sequences generated by using the same planning
scheme for maximizing the novelty (in which the sum of expected prediction error at
each branching point was maximized). By extending the model thusly, Yamamoto and
Tani showed that compositionality - in terms of the number of different combinations of
branching - increases both in the physically generated trajectories and in the rehearsed
sequences during the learning phase over the course of development. Finally, a phase
space analysis of the internal state at each stage of development indicated that a
segment-wise invariant set similar to the one shown in Figure 5 (e) appeared, but only
during the end period of the development, when the robot had completely learned about
all possible branching consequences. Such dynamics illustrate how the aforementioned
boundary of cognition might emerge during developmental processes similarly
motivated by exploration in biological models including human beings, as well.

Recently, Friston and colleagues (Kaplan and Friston, 2018) took a generic Bayesian
perspective on the exploration-exploitation trade-off by considering that the expected
free energy is comprised of novelty, salience and prior preferences which together
constitute optimal beliefs on policies guiding action. On this scheme, novelty and
salience represent intrinsic values where novelty is for epistemic gain, as described
previously, saliency is for the gain of certainty about the latent state, and prior
preferences serve the role of extrinsic values, such as for achievement of predefined
rewards or goals. As such, Kaplan and Friston (2018) assumes that actions are selected
both in order to gain knowledge about the world and to achieve predefined preferences.
One point of interest in this context, however, is the relatively high computational cost
required in order to optimize such action plans. In reality, it is not necessary to always
compute optimal action plans, since action can typically be generated according learned
routine, or habit. On this point, Maisto et al. (2019) proposed that an active inference
agent caches the probabilities of policies from previous trials in memory as habits in
order to reduce the computational costs for re-calculating them at each new trial. Simply
put, a probability is only re-calculated when encountering a new context, and is then
kept cached as long as the context does not change. Testing this sort of idea in robots
should be practically beneficial in for example reducing real-time computational
burdens of robots in operational contexts.
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3. The sense of self

Building from the preceding introduction, this section speculates on how such cognitive
robotics experiments employing fundamental principles may contribute to ongoing
inquiry into the sense of self and related psychological phenomena. Although the problem
of self has been addressed in various ways, such as Neisser’s (1988) five different types
of selves or Kohut's (2013) bipolar self from psychoanalysis, the current paper focuses
on two distinct types of self, minimal self and narrative self. This section begins with
Gallagher’s (2000) concept of the minimal self, and then examines how his notions may
corresponded to the phenomena observed in CNR experiments such as those introduced
in the preceding section.

3.1 The minimal self

Gallagher (2000) argues that after all of the unessential features of experience are stripped
away, we still have a feeling of a basic, immediate, or primitive ‘something’ that we can
call the “minimal self”. He further contemplates that this sort of non-reflective self is
associated with two different types of senses, one is a sense of ownership and the other is
a sense of agency. According to Gallagher (2000), the sense of ownership is the sense
that I am the one who is undergoing an experience. For example, a sense that this is my
body moving regardless of whether the movement is caused by me or others. The sense
of agency, on the other hand, refers to congruence between an agent’s intention or belief
in an action and its anticipated outcome, which endows the agent with the sense that “I

am the one generating this action”.

Both cases may be explained in terms of internal models for predicting perceptual
outcomes. For example, Hohwy (2013) showed that the sense of body ownership in the
rubber hand illusion (Botvinick and Cohen, 1998) can be explained by using predictive
coding that models the probabilities of the dummy hand being mine or another’s. During
the rubber hand illusion, experience of the temporally synchronized multimodal sensation
of touching, one from a tactile stimulus and the other from visual observation, results in
a causal inference that these two occur at the same location even though they actually do
not. This is because the temporal correlation entails more dominant effects on the
inference than the spatial one does (Hohwy, 2013: Limanowski and Blankenburg, 2013).
This leads to the illusion of the dummy hand being mine.
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Concerning the sense of agency, Gallagher (2000) suggests that a possible underlying
mechanism may be conceivable by considering neurocognitive models accounting for
some cases of schizophrenia such as discussed by Feinberg (1978) and Frith (1992). They
proposed that the delusion of control as a characteristic of schizophrenia may occur when
a mismatch takes place between an intended state and the anticipated state produced by
the forward model. As the forward model is informed by the motor efference copy, they
proposed that the mismatch may be caused by either the failure of the forward model, or
due to the fact that the efference copy cannot be sent to the forward model because the
motor controller is disconnected from it. Gallagher (2000) suggested that the sense of
agency, which remains implicit in a normal condition, can be disturbed in such a case,
resulting in the feeling that ‘somebody is controlling me’ which is common to self-reports
in some cases of schizophrenia.

The RNNPB robotics experiments (reviewed in section 2) may help to account for the
emergence of minimal self accordingly. Minimal self should develop implicitly as an
aspect of the sense of agency derived from causality between an agent’s intention driving
action (encoded in the PB) and the affected perceptual reality, similarly to the sentiment
expressed in Hohwy (2007, page 5): “mineness is the feeling of already being familiar
with the movement’s sensory consequences when they actually occur, we are so to speak
already ‘at home’ in the movement because the incoming signals are predicted through
habituation, and therefore it is regarded as an implicit sense of self.” Accordingly, when
a robot’s prediction was accurate, action proceeded smoothly and automatically without
distinction between synchronized embodied self and the external objects with which it
was interacting, such as a ball or human counterpart.

Our proposal in the context of minimal self is that, when such synchrony breaks down
due to miscellaneous unpredictable influences including noise in the physical system or
a human participant’s sudden intentional change, the otherwise implicit sense of minimal
self becomes an object of consciousness. This is because the consequent effort required
to minimize the reconstruction error in the immediate past window, by inferring an
optimal intention state in the PB, is accompanied by a focal awareness of the gap between
embodied routines and the capacity for embodied routines to successfully meet
environmental demands. At this very moment of the unified structure breaking down, the
independence of each element becomes noticeable. Consequently, this experience of self
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is formally articulated as minimal self-consciousness (Tani, 1998; 2016, pages 169-172).

Moreover, on this account, the sense of minimal self should intermittently shift between
an unconscious phase (predictable phase, when intention guides action without undue
error) and a conscious phase (unpredictable phase, when error forces reformulation of
intentions guiding action going forward) as had been observed in a vision-based robot in
Tani (1998), as well as in the humanoid robot experiments involving ball handling
described in section 2. Why do those system dynamics once converged into an attractor
basin, such as a predictable or routine interaction in a region, get destabilized again and
move out to another basin of attractor? One possibility is the inherently indeterministic
nature of embodied cognitive systems due to the circular causality established in the
enactment loop (Tani, 1998; 2009).

Circular causality describes the embedded and embodied agent’s situation. An agent acts
on the world, and a sequence of causes and effects returns back to the original cause with
possibly altering it whereby another sequence is produced in on ongoing interactive
feedback loop. For example, in the case of the ball handling humanoid robot, when a
prediction error is generated for the ball position, the intention of the robot in terms of the
PB value is updated in the direction of minimizing the error. This intention generates the
next step prediction of proprioception which, in the case of tracking a ball, turn out to be
new target joint angles. These angles are fed into the robot motor controllers. Then, both
hands of the robot move to push the ball further, for example.

When every process in this loop proceeds ideally, the whole system dynamics stay always
in the same attractor basin by successfully minimizing prediction error, unless
exceptionally large noise comes from the external world. However, in reality under
resource bounded situations, this cannot be guaranteed. Inherent indeterminism will
appear. The predictability of the neural network is limited, because it is trained with only
a finite amount of the sensory-motor experience. The inference of the PB values cannot
be guaranteed to be optimal in a real time situation, and physical movements of the robot
body as well as the resultant movement of the ball should contain some margin of
unpredictability because of nonlinearity in both static and dynamic friction and contact
dynamics. All of these contingencies (to a very large degree) are due to embodiment.
They provide potential instability to the system dynamics.
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In fact, two flows in opposing directions coexist. One is the inflow converging to
attractors or thermodynamic equilibria by minimizing prediction error (or free energy),
and the other is the outflow destabilizing the convergence by means of embodiment and
circular causality. In a macroscopic sense, the coexistence of inflow and outflow in the
phase space makes attractors only marginally stable, wherein the state trajectories tend to
visit multiple pseudoattractors one by one itinerantly (known as chaotic itinerancy, Tsuda
et al., 1987; Kaneko, 1990). This may correspond to the “momentary self” contemplated
by William James (1890) who wrote that: “When we take a general view of the wonderful
stream of our consciousness, what strikes is the pace of its parts. Like a bird’s life, it

seems to be an alternation of flights and perchings (p. 243).”°

Such unsteady dynamics resulting from potential indeterminism provides an inherent
autonomy to the minimal self in terms of its spontaneous shifts between its unconscious
phase (staying inside basins of attractors or habitual regions) and conscious phase
(transition to another attractor passing through less familiar regions). Froese and Taguchi
(2019) present an analogous argument that artificial as well as living agents may make
sense of their interactions with the world provided that there is some room for
indeterminism or incompleteness in the causal closure of these interactions. One
difference, however, between Froese and Taguchi’s (2019) and our consideration is that
they attribute the origin of indeterminacy to quantum mechanics at the micro level, which
is supposed to be amplified through the enactment loop at the macroscopic level. On the
contrary, we presume that the sensitivity to the initial state caused by chaos, or the
structural instability observed in chaotic itineracy, may account for the origin of
indeterminacy without resorting to (what currently remain) mystic propositions.

3.2 Narrative self

Gallagher (2000) considers narrative self as “a more or less coherent self (or self-image)

that is constituted with a past and a future in the various stories that we and others tell

® In terms of compositionality, this image also recalls Plato’s aviary from the Thaetatus, in which a
person collects birds in the cage of the mind (where they may be imagined to flit from perch to perch),
representing expressions of knowledge that can be taken when the knowledge is useful, or mistaken when

the knowledge is not, cf. discussion beginning 197d, Plato, 1997, page 218.
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about ourselves” (p.15). He contrasts two distinct ways of representing such a sense of
narrative self. One is offered by Dennett (1992) who characterizes self as the constant
locus of experience and center of “narrative gravity”. The other is a more distributed
model inspired by Paul Ricoeur’s (1984) philosophy of narrative self. Ricoeur considers
a hermeneutic cycle of movements from prefiguration of phenomena in the world to their
refiguration or restoration back into the real world through (communicative) action via
configuration of interpreted narratives, with configuration of narratives playing the role
of mediation between prefiguration and refiguration, and the three together constituting a
process through which the agent gains a better understanding of its self and its place in
the social and natural world. Especially, he considers the human experience of aporia,
when phenomena in the world are experienced as incomprehensibly contradictory.
Ricoeur emphasizes that human beings compose fictive as well as true narratives in order
to reconcile this feeling of aporia. Furthermore, he considers that one’s own self-
narratives are configured in a way that they are intermingled with those communicated
by others. Following Ricoeur, Gallagher (2000) proposes that narrative self might be
developed as a mixing of stories about one’s self, including conflictive and irresolvable
ones which an individual might tell about her/himself or others might tell about her/him
(cf. “pernicious misunderstandings” in Gallagher and Allen, 2018, pages 14-15) Thus on
Gallagher’s account, the sense of narrative self might be considered as a center of
narrative gravity that is more distributed, representing the reconciliation of narratives
normalized in communication with others in interaction with the shared object

environment.

We can find some analogy with what Ricoeur and Gallagher consider narrative,
including this more distributed sense of narrative self, in the results of the CNR
experiments described previously. In effect, the robots used in experiments by Tani and
colleagues were frequently confronted with incomprehensible and irresolvable
situations during tutoring. For example, the humanoid robot implemented with the
MTRNN (see section 2.3) was tutored to generate inconsistent primitive movement
sequences, e.g. after grasping an object, it was tutored to lift the object up in one
instance, and in another it was tutored to rotate the same object after grasping it. The
mobile robot Yamabico was tutored to branch to the left during one trial, and during
another to branch right at the same branching point. Each tutoring trajectory never
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repeated exactly the same sensory-motor sequence pattern as another, even though the
tutors attempted to do so, due to noise and fluctuation — indeterminacy (cf. Tani, 1998;
Froese and Taguchi, 2019) — inevitable during embodied interaction with the physical
world. In light of Gallagher and Ricoeur’s insights into narrative self, we may say that
these robots could develop compositionality for generating diverse actions because it
was necessary to deal with the inconsistency presented in the tutoring trajectories.
Through consolidative learning, the RNNs could self-organize finite state machine-like
state transition structures in their latent state space by extracting relational structures
from among the tutored set of inconsistent sequences.

The segmentation and chunking of the continuous sensory flow observed in robotic
experiments using the RNNPB and MTRNN are mechanized by means of the error
regression employed in order to minimize the error signal generated in prediction and
reconstruction at the moment of transition from one primitive to another. The
inconsistency brought to the robots especially by human tutors in demonstration and
tutoring of movement patterns plays an important role here, also. If we tutor the robots
with a continuous sensory flow consisting of a primitive sequence like A - B - C,
repeated without inconsistencies, this sensory flow will be learned as a big chunk
without segmentation into primitives. But, if the robots are tutored with a set of sensory
flows consisting of inconsistent primitive sequences like A—- B - C, A—= B - A, and
A — C — B, these sensory flows are learned as compositions of reusable primitives with
each of them segmented. We presume that the cognitive competency of
compositionality for segmenting the continuous sensory flow into a set of reusable
primitives and composing and decomposing a whole action sequence using these
primitives can provide a basis for development of the narrative self.

Furthermore, some robots (or more generally agents) (Schmidhuber, 1991; Tani and
Yamamoto, 2002; Oudeyer 2007; Kaplan and Friston, 2018) are motivated to learn to
predict unpredictable situations by seeking novelty, with the objective of which also
seeming rather contradictory or conflictive at first glance. And, in order to reconcile
such conflicts, agents seem to be required to generate creative or fictive mental images
accounting for the hidden causal structure in the world. Here, we might note some
analogy between the compositionality developed by means of a self-organizing finite
state machine-like structure in distributed neural activation in the RNN during such
conflictive situations, and the sense of narrative self which develops distributedly, with
the mixing of diverse inputs including inconsistent ones from the outside as described
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above. The compositionality developed in the robots enables them to mentally simulate
future actions, including counter factual or fictional ones, as well as to rehearse what
has been experienced in the past in order to prepare for the uncertain future.

At this point, it is natural to consider that the development of narrative requires
linguistic competency for telling stories. On this front, there have been some efforts in
attempting to ground linguistic expressions in sensory-motor modalities by using
RNNPB and MTRNN architectures by some groups (Sugita and Tani, 2005; Peniak et
al., 2011; Yamada et al., 2016; Heinrich and Wermter, 2018). With a vision-based
mobile robot using the predictive coding framework, Sugita and Tani (2005) showed
that an RNNPB can learn to bind a set of simple imperative sentences consisting of
verbs and nouns, e.g. Point-Red, Push-Blue, Hit-Green, with corresponding sensory-
motor behavioral patterns. An analysis on the experimental results of learning and
action generation for given imperative sentences showed that the compositionality in
combining verbs and nouns in the linguistic modality and the one in combining actions
and objects developed as a unified structure in the RNNPB. Peniak et al. (2011) and
Heinrich and Wermter (2018) showed scaling of such language-behavior binding using
extended MTRNN models. Also extending the MTRNN, Yamada et al. (2016)
presented a continuing human-robot interaction experiment using both linguistic and
behavioral modalities. These experimental results revealed that the contextual flow
corresponding to successive human-robot interactions was represented in the higher-
level latent variables in the MTRNN. These results suggest that the internal structures
developed in the latent space in these RNN models, via continuing human-robot
interaction using both linguistic and behavioral modalities, bring us closer to realizing a
narrative self as articulated by Ricoeur and by Gallagher and colleagues in an embodied
cognitive neurorobot.

4. Discussion

The preceding paper introduced cognitive neurorobotics, the principles of prediction
error minimization and backpropagation as implemented in different RNN architectures,
related these with free energy and active inference, and reviewed selected cognitive
neurorobotics experiments employing these principles in greater detail. In terms of
Marr’s (1982) three levels introduced in section 1, the error minimization principle
appears at the computational level, prediction and active inference at the algorithm
level, and RNNs embodied by robots at the implementation level as an example. This
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leaves open questions, for instance how these implementations can be validated, and
then to what extent we may expect them to contribute to scientific explanation of
cognitive phenomena including the senses of minimal and narrative self as reported by
human beings.

First, in the review of the CNR experiments using the RNNPB (Ito and Tani, 2004; Ito
et al., 2006), we explained that the RNNPB learns multiple behaviors in the course of
prediction error minimization as embedded in different attractor basins which represent
habitual regions for the robot. It was also explained that behavior patterns of the robots
shift from a learned one, by means of the error regression accompanied by segmentation
of continuous sensory-motor flows. to another due to either external forces or internal
fluctuation

Next, in the review of the CNR experiments using the MTRNN (Yamashita and Tani,
2008; Nishimoto and Tani, 2009), it was explained that compositionality as a cognitive
competency for composing/decomposing the whole action from/into behavior
primitives can develop gradually in the course of iterative tutoring of the robot by using
the error minimization principle. We explained that such compositionality can develop
by means of self-organization of functional hierarchy using the prior constraints applied
to the network, including layer-wise timescale difference and the information
bottlenecks in the connectivity between layers.

In the review of experiments on goal-directed planning in robot navigation tasks, it was
explained that robots can learn compositional structures latent in the obstacle
environment through either supervised tutoring (Tani, 1996) or self-exploration (Tani
and Yamamoto, 2002). Further, it was noted that such compositional structures develop
by self-organizing global attractors of Cantor set-like assembly in the latent state phase
space. Although its appearance seems analogous to finite state machines at first glance,
these two are crucially different. As for the attractors developed in the latent state phase
space, they represent the boundary of cognition (Maturana and Varela, 1991) wherein
prediction goes well as habituated within the invariant set of the attractors, and
prediction goes wrong once the state trajectory goes out of the invariant by possible
permutation. However, the state trajectory can come back to the invariant set as long as
it is formed as a global attractor. On the other hand, in the case of a finite state machine,
there is no mechanism for such auto-recovery unless some external programs for this
purpose are provided. The CNR experiments reviewed above demonstrate that robots
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can generate both fictional and factual action plans by using compositional structures
developed in both goal-directed planning and novelty rewarding schemes.

Further analysis contemplated possible accounts for subject experience including senses
of minimal and narrative self. First, let us revisit our account of the sense of minimal
self. When action goes smoothly and an agent remains in habitual regions by
minimizing the prediction error, the sense of minimal self is present but only implicitly.
However, a breakdown of such a steady phase comes inevitably because of the inherent
indeterminacy due to the circular causality established in the enactment loop. In such an
instance, the minimal self should become an object of conscious awareness with the
effort to return from unfamiliar regions to a routine one by minimizing prediction error.
We see the structure of the minimal self in this autonomy of spontaneous shifts between
unconscious and conscious phases analogous with James’ (1890) "wonderful stream of
our consciousness”.

Next, let us revisit the sense of narrative self. We found a good analogy in the results of
the CNR experiments with what Ricoeur and Gallagher’s socially distributed sense of
narrative self. Robotic experiments using the RNNPB and MTRNN showed that
compositionality can be naturally developed provided that the robots are tutored with a
set of inconsistent sensory-motor sequences, corresponding with Ricoeur's thought that
humans compose both fictive and true narratives in the process of resolution of

aporia. Indeed, the CNR experiments reviewed in the current paper showed that these
robots can generate both fictive and factual compositions of primitive action both in
physical execution and in mental planning and rehearsing. And, by briefly introducing
the on-going research on embodied language using various RNN models, discussion
extended to possibilities of how such narratives initially represented in distributed
neural activation patterns can be transformed into linguistic representations for sharing
stories.

Although space forbids present review, other ongoing work “breaks” these and
complimentary architectures (cf. Glennan, 2005), tests them against biological models
in similar abnormal conditions and in this way aims to inform accounts of psychiatric
conditions e.g. schizophrenia and autism understood as self-disturbances (Yamashita
and Tani, 2012; Idei et al., 2018). It is expected that such research contributes to our
understanding of otherwise difficult to resolve cognitive phenomena in two directions.
For one, emergent dynamics when analogous with biological model behavior may
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inform researchers working at lower levels of organization about how different
operations may be related, e.g. temporally. In such an instance, prediction error
minimization inspires neural network algorithm design (backpropagation, error
regression, etc.). With successful demonstration of functional dynamics in a real-world
context, such a synthetic architecture can be correlated with biological models (e.g., the
higher, intermediate, and the lower level correspond to the PFC, parietal, and
S1+V1+M1) in exploration of possible explanations for (normal and abnormal)
biological structural dynamics. An example of such work includes the HBP’s
neurorobotics group’s effort to render a computational model of an embodied mouse
that may replace biological models in psychological studies (Falotico et al., 2017).

On the other hand, the neurorobotics studies reviewed in this paper target invariant
structures arising in what Sun et al. (2005) call the “causal nexus” between top-down
and bottom-up processes, e.g. selves, internal world-models. Informed by
phenomenological and neurocognitive research, these studies aim to contribute to
explanations in cognitive science by articulating architectures which generate target
emergent phenomena through their dynamic interaction with the world. In such an
experiment for example, the prediction error minimization principle shapes the
cognitive architecture according to biological and psychological constraints. This
architecture is tested in robot experiments, and emergent phenomena are recorded.
Correspondences to phenomenology (e.g., minimal-self), to neuroscience (e.g. mirror
neurons), and to psychiatry (e.g. autism) are considered. Limitations of the model
inform ongoing inquiry, and insights drawn from these studies are offered.

Although physical robot experiments might be replaced by simulations in some
contexts, it must be stressed that embodied humanoid robots are important to the
success of the CNR research such as that reviewed in section 2. Practically, the results
of physical robot experiments are more robust than simulated variants. Because
simulation experiments typically employ thousands of trials that establish optimal
parameters within narrow ranges, the resulting networks often become too rigid to
perform in real-world embodied robots because robots themselves are quite noisy (in
the informational sense) in their mechanics and physical interactions. With this in mind,
we may point to an epistemic upshot to embodied robotics experiments over simulated
variants. Humanoid CNR experiments open phenomena to investigation which remain
inaccessible to simulations, especially those which emerge through direct human
interaction as in the experiments. During these experiments, trajectories of every
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learned movement are co-developed by tutor and robot through their interaction.
Accordingly, we speculate that successful results were achieved not only due to
essential structural dynamics captured by biologically inspired cognitive architectures,
but also due to the intuitive interaction afforded human tutors with both tutor and
humanoid robot aiming to minimize error in the embodied manipulation of common
objects — including each other - in a shared space of action. Such phenomena cannot be
(easily) simulated. And, given the fundamental role of interaction with others in the
development of self (cf. Bolis and Schilbach, 2020), the socially situated nature of
embodied humanoid cognitive neurorobotics experiments presents special potential for
ongoing inquiry into phenomena associated with self in human beings.

4. Conclusion

Guided by the intuition that higher-level cognitive phenomena including different
senses of self should emerge from the effort to minimize conflicting interactions
between top-down and bottom-up information processes, Tani and colleagues have been
refining cognitive neurodynamic models since the mid-1990s to articulate structural
dynamics native to living systems in artificial ones. The preceding paper reviewed
synthetic neurorobotics experiments using analog devices (RNNSs) directly sharing the
same analog metric space with human beings with the expectation that such continuous
spatio-temporal dynamics can both avoid the notorious symbol grounding problem
(Harnad, 1990) as well as inform our understanding of cognitive phenomena such as
self in human beings.
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