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Abstract

This paper introduces novel analyses that clarify why the dynam-
ical systems approach is essential for studies of embodied cognition
by revisiting author’s prior robot experiment studies. Firstly, we ar-
gue that the symbol grounding problems as well as the “situated-
ness” problems should be the consequences of lacking a shared metric
space for the interactions between the higher cognitive levels based
on symbol systems and the lower sensory-motor levels based on ana-
log dynamical systems. In our prior studies it was proposed to em-
ploy recurrent neural networks (RNNs) as adaptive dynamical sys-
tems for implementing the top-down cognitive processes by which it
is expected that dense interactions can be made between the cogni-
tive and the sensory-motor levels. Our mobile robot experiments in
prior works showed that the acquired internal models embedded in the
RNN is naturally situated to the physical environment by means of
entrainment between the RNN and the environmental dynamics. In
the current study, further analysis was conducted on the dynamical
structures obtained in the experiments, which turned out to clarify
the essential differences between the conventional symbol systems and
its equivalence realized in the adaptive dynamical systems.



1 Introduction

We speculate that the problems of cognition commence with the robots’ at-
tempt to acquire internal models of the world in certain forms so that they can
mentally simulate or plan their own behavior consequences. By this means,
we may not consider purely reactive-type robots that base their actions on
simple sensori-motor reflexes since those robots do not deal with any mental
processes that employ internal models. When discussing internal models,
it is important to consider how they can be grounded to the physical envi-
ronments and how the mental processes manipulating them can be situated
in the behavioral contexts. This question addresses one of the observation
problems in cognition which asks us where the observer, dealing with the de-
scriptions, is positioned. We examine these problems by revisiting our prior
studies on robot navigation learning experiments [1]. We attempt to conduct
further dynamical systems analysis for the results of this experiment. This
analysis will clarify the essential differences between symbols in conventional
symbol systems and those embedded in analog dynamical systems through
learning processes.

In the traditional approach of the robot navigation problems, the robots
are forced to acquire exact maps of the environment measured in the global
coordinate systems. Such robots apparently use the external views to de-
scribe their environments, since the descriptions are made by assuming the
global observation from the outside.

On the other hand, the recent approach based on landmark-based nav-
igation [2, 3] does not assume any global observations of the environments.
In this approach, the observer sits inside the robot and looks at the out-
side through the sensory device focusing on upcoming events or landmarks.
The observer collects the sequences of landmark-types and tries to build
chain representations of them in the form of finite state machines (FSM) as
the topological map of the environment. Although it is true that this ap-
proach provides us with much more successful results in the navigation tasks
compared to the global map strategies, the symbolic representation of the
FSM can still cause the symbol grounding problems. The symbol ground-
ing problem is a general problem, as discussed by Harnad [4]. The problem
is that discrepancies occur between the objects in the physical environment
and their symbolic representations in the system which cannot be resolved
autonomously through the system’s own operations.

Let us consider the situation where the robot navigates in a pre-learned



environment by identifying the current position from trying to match the
state transitions in the FSM. A problem can arise when the robot fails to
recognize an oncoming landmark because of some noise. The robot will be
lost because it has received an erroneous sensory input which is different from
the one expected using the FSM. The FSM will simply halt upon receiving
this illegal input!.

Although some may argue that this problem can be resolved by further
development of the categorization schemes for landmark recognition, we con-
sider that this approach leaves the underlying problem unsolved. We believe
that the underlying problem exists in the position of the observers who look
over the symbolic representations and try to manipulate them. The observer
here is external to the descriptions. As long as such external observers are
allowed for the robots, the robots face the symbol grounding problems.

We have investigated this problem from the dynamical systems perspec-
tives [5, 6]. We speculate that real number systems best represent the mental
activities of robots. We expect that the nonlinear dynamics characterized by
chaos or fractal may serve as a basis for the mental activities of robots, as
the theories of symbolic dynamics [7, 8, 9] have shown that such nonlinear
dynamics exhibits a certain linguistic complexity. When the internal dynam-
ics, which describe the mental processes of the robot, and the environment
dynamics are coupled together through the sensory-motor loop, those two
dynamics would share the same metric space. We consider that the men-
tal processes of the robots can be naturally situated to the environments
as the coherence is achieved between those two dynamics interacting with
each other in the same phase space. An important objective here is to unify
the two separate entities for “descriptions” and their “manipulations” in the
systems into one entity within the framework of the time-development of
dynamical systems. We speculate that the internal observer [10, 11] finally
appears in the cognitive processes of robots if this objective is accomplished.
The next section reviews our embodied work on mobile robot learning of
cognitive maps based on the dynamical systems approach.

!When an illegal input is received, the current state cannot be identified correctly.
There could be an extra algorithm by which the current state can be estimated by means
of the maximum likelithood. Such an extra algorithm, however, could generate another
symbol grounding problem. The author will argue that there are intrinsic mechanisms to
avold these problems in the dynamical systems approach
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Figure 1: The YAMABICO mobile robot. It is equipped with a laser range

SENsor.

2 Formulation

Firstly we review our navigation scheme which is applied to the YAMABICO
mobile robot (cf. Fig. 1). YAMABICO can obtain the range image by a laser
range finder in real-time. In our formulation, maneuvering commands are
generated as the output of a composite system consisting of two levels. The
control level generates a collision-free, smooth trajectory using a variant of
the potential field method i.e. the robot simply proceeds towards a particu-
lar potential hill in the range profile (direction toward an open space). The
navigation level focuses on the topological changes in the range profile as the
robot moves through a given workspace. The profile gradually changes until
another local peak appears when the robot reaches a branching point. At
this moment of branching the navigation level decides whether to transfer
the focus to the new local peak or to stick with the current one. The naviga-
tion level functions only at branching points which appear in unconstructed
environments. The importance here is that the navigation of the robot con-
sists of the topological trajectories which are determined by the branching
sequences. The control level is pre-programmed and the learning takes place
only in the navigation level. Hereafter, our discussion focuses on how to learn
and determine the branching sequences using neural learning schemes.

In the learning phase, the robot explores a given obstacle environment
by randomly determining branching. Suppose that the robot comes to the
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Figure 2: Sensory-motor sequence in branching and RNN architecture.

nth branch point with receiving sensory input (range image vector) p, and
randomly determine branching (0 or 1) as x,, then it moves to the next
branch point n+1th (see Fig 2.) Through the entire exploratory travel, the
robot acquires the sensory-motor sequence of (p;, ;). Using this sample of
the sensory-motor sequence, a recurrent neural net (RNN) is trained so that
it can predict the next sensory input p,i; in terms of the current sensory
input p, and the branching motor command z, (see Fig 2). We employ
the idea of the context re-entry by Jordan [6] which effectively adds internal
memory to the network. The current context input ¢, (a vector) is a copy
of the context output in the previous time: by this means the context units
remember the previous internal state. The navigation problem is an exam-
ple of a so-called “hidden state problem”(or non-Markov problem) where a



given sensory input does not always represent a unique situation/position of
the robot. Therefore, the current situation/position is identifiable, not by
the current sensory input only, but additionally the memory of the sensory-
motor sequence stored during travel is necessary. The memory structure is
self-organized through the learning process. We expect that the RNN can
learn certain “grammatical” structure hidden in the obstacle environment
as embedded in its intrinsic dynamical structure by utilizing the context re-
entry. (As many have shown the capability of RNNs for grammar learning.)
We employ the back-propagation through time algorithm [12] for the RNN
learning.

Once the RNN is trained, it can conduct the following two types of mental
processes. (1) The RNN can conduct lookahead prediction of the sensory
sequences for arbitrary given motor programs (branching sequences) by the
closed-loop forward computation. In this computation the sensory prediction
outputs in the current step is copied to the sensory inputs in the next step
as shown by a dashed loop in the left hand side of the RNN in Fig 2. In this
way, lookahead prediction of the future sensory sequence can be recursively
computed with a given branching sequence. (2) The RNN can conduct goal-
directed planning. It can generate the motor programs (branching sequences)
for the robot to reach a goal specified by the corresponding distal sensory
image. The inverse dynamics of the RNN with the minimum travel distance
criteria can determine an optimal motor program. Details of goal-directed
planning are not shown here, but in [1].

3 Experiment

Here, we review a part of our experiments of lookahead prediction. The robot
explored a given workspace and the RNN was trained with 193 samples of
the sensory-motor sequence. After this learning, the robot is started to travel
from arbitrary positions. The robot maneuvers following an arbitrary motor
program (branching sequence) and it tries to predict the coming sensory input
of the next branch using the sensory input and a given motor command at
each current branch. (This is one-step lookahead prediction.) Fig 3 shows
an example of the results. The upper part of the figure shows the measured
trajectory of the robot. The lower part shows the comparison between the
actual sensory sequence and the predicted one. The figure shows the nine
steps of the branching sequence, where five units in the most left are the
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Figure 3: One-step prediction.



sensory input, the next five units are its prediction, the next one unit is the
motor command (0 or 1 of branching), and the most right four units are
the context units. Initially the robot cannot predict correctly. It, however,
becomes able to predict correctly after the 4th step. Since the context units
are randomly set initially, the prediction fails at the very beginning. However
as the robot continues to travel, the sequence of the sensory input “entrain”
the context activations into the normal state transition sequence, thereafter
the RNN becomes able to predict correctly. We repeated this experiment
with various initial settings (positions and motor programs), which showed
that the robot always starts to predict correctly within 10 steps. Furthermore
we found that although the context is easily lost when perturbed by large
sensory noise (e.g. when the robot fails to detect a branch or receiving
totally different values of the sensory inputs from the ones expected for some
branching steps), the prediction can be always recovered as long as the robot
continues to travel. This auto-recovery of the cognitive process is made in
consequence that a sort of coherence is organized between the internal and
the environmental dynamics in their interactions.

Once the robot is “situated” in the environment (i.e. the robot becomes
able to conduct one-step predictions correctly as the context is recovered after
the travel), the robot can conduct multiple steps of lookahead predictions
from a branching point. An example of the comparison between a lookahead
prediction and its outcome of the actual sensory sequence during the travel is
shown in Fig. 4. In (a) the arrow denotes the branching point where the robot
conducted a lookahead prediction using a motor program given by 1100111.
The robot, after conducting the lookahead prediction, traveled following the
motor program, generating an “eight-figure” trajectory, as shown. In (b) the
left-hand side shows the sensory input sequence, while the right-hand side
shows the lookahead sequence, the motor program and the context sequence.
This sequence consists of eight branching steps (from the Oth to the 7th
step) including the initial one in the “start” point. It can be seen that the
lookahead for the sensory input agrees very well with the actual values. It is
also observed that the context as well as the prediction of sensory input at
the Oth and the Tth steps are almost the same. This indicates that the robot
predicted its return to the initial position at the 7th step in its “mental”
simulation. The robot actually returned back to the “start” point at the Tth
step in its test travel. We repeated this experiments of lookahead prediction
for various branching sequences, and found that the robot can predict the
sensory sequences correctly for arbitrary motor programs unless severe noise
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Figure 4: The robot conducted lookahead prediction for a motor program
from a branching point.



affects the branching sequence. From this result, it can be assumed that the
robot successfully learned to extract grammatical structure hidden in the
obstacle workspace.

4 Analysis

It is assumed that there exists an essential dynamical structure which can
generate the coherence between the internal and the environment system, as
we have discussed. We conducted the phase space analysis of the obtained
RNN in order to see such structure. Phase plots show shapes and structures
of attractors (invariant sets) of dynamical systems. For the purpose of draw-
ing the phase plot of the RNN trained, the re-entry loop is connected from the
sensory output nodes to the sensory input nodes so that the RNN can con-
duct lookahead predictions for arbitrary length of motor command sequences.
Then the RNN was activated for 2000 steps with feeding randomly generated
branching sequences of x*. (Here, the RNN conducts mental simulations for
the random branching sequences.) The state space trajectory of the context
units was plotted using the activation sequences of two context units (we
took a 2-D projection of the entire state space) excluding the first 100 step
points, which are regarded as transient. The result is a one-dimensional like
invariant set as shown in Fig. 5 (a). Our mathematical analysis shows that
this invariant set is topologically transitive®.

We also found that the invariant set is a global attractor since the plotting
always converges into the same figure independent of the initial setting of the
context values or the branching sequences used. More intuitively, the state
starting from arbitrary points in the state space goes around the phase widely
during the initial transient period. After convergence, the state transits only
within the invariant set (among segments) shown in Fig. 5.

In this plot, one may interpret that the invariant set shows the bound-
ary of rationality/cognition for the mental processes of the robot. When the
RNN is perturbed by receiving noisy inputs, the state goes out of the in-
variant set where the rationality in terms of predictability is lost. However,
as the RNN continues its dynamical iterations, the state always returns to
the rational region, i.e. the invariant set, and the RNN is able to predict
correctly again. This cognitive boundary is self-maintained solely from the

?This means that there are always finite step transition paths between any given two
points in the invariant set
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Figure 5: (a)The global attractor appeared in the RNN dynamics and (b)
enlargement of a part of the attractor.

system’s own dynamical iterations, as stated by Maturana and Varela [13].
Here, we see that an inherently robust mechanism of dynamic cognition is
achieved by self-organizing the global attractor.

Our further analysis of this invariant set revealed the fact that each line
segment corresponds to each identical branching point. Each segment has two
ways of transitions depending on the binary branching. And each segment
is accessible from all other segments within finite steps of state transitions
(Remember that the invariant set is topologically transitive.). It was also
found that each segment is not just a one-dimensional collection of points
but it is organized as a Cantor set [14] where the history of past branching
sequences is represented by the current position in this Cantor set. Math-
ematically speaking, if two branching sequences share an infinite number of
steps of same branching sequences in the past, the current states of the two
sequences will correspond to two points that are epsilon-neighbors on the
Cantor set of the same segment. On the other hand, two points will be dis-
tanced from each other if their recent past sequences are different. (This is
due to the dynamic characteristics of the RNN as an iterated function sys-
tem. See [15] for the details.) An interesting point is that the RNN naturally
takes a context-dependent representation in which the history of the robot
travel is encoded tacitly. This idea is also related to Tsuda’s [16] Cantor set
coding of the episodic memory in the hippocampus.

What we see in the phase plot is the so-called dynamical closure which
some might interpret as equivalent to an FSM representation. However, a
segment shown in the phase plot is not equivalent to a node in an FSM since
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it maintains more rich information of the context in terms of the Cantor set
coding. The “symbols” appeared in the dynamical systems scheme are not
arbitrarily shaped tokens in Harnad’s terminology [4], but they maintain a
certain metric structure in a tacit manner.

5 Summary and Discussion

It can be said that the representation and manipulation capabilities of sym-
bols have been the most significant power of Artificial Intelligence. However,
cognitive robotics researchers found that such computational symbols cannot
be grounded easily in the physical environment. Then, they attempted to
employ pattern categorizers as ideal interfaces between the real world analog
dynamical systems and the computational symbolic systems. However, such
trials could not produce much successtul solutions to the problems. The fail-
ure is due to the fact that those two systems cannot share the same metric
space where they can interact densely with each other.

Our studies have shown an alternative approach based on the dynamical
systems view. We proposed that a RNN, as an adaptive dynamical system,
could be an alternative to symbol systems which can naturally interact with
the physical real world by sharing the same metric space of analog dynami-
cal systems. Our experiments with a real robot have shown some interesting
results. Firstly, it was shown that the internal system, once perturbed by
possible accidental events or noise, is naturally re-situated to the environment
system by means of entrainment between the two systems. This sort of en-
trainment between the internal and environmental systems becomes possible
because those two systems share the same metric space of analog dynamical
systems in our scheme.

Secondly, the phase space analysis indicated that the dynamical system's
iterations by the RNN can be equivalent to the symbol manipulations pro-
cesses of FSMs or language as has also been indicated by Pollack [8], Kolen
[15] and Elman [17] ?. We, however, found genuine differences between the
symbol systems embedded in the proposed dynamical system and those of
the computational FSMs in the way they are constituted. In the FSM for-
mulation, first nodes are allocated as discrete states and then transitions

3Their studies, however, could not articulate enough the advantage of RNNs as an
alternative of symbol systems since their studies never addressed the embodied cognition
of sensory-motor systems.
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Figure 6: The invariant set, the outer flow attracted to the invariant set, and
the internal flow going inside the invariant set are illustrated.

among them are defined. In our dynamical systems scheme using a RNN,
the dynamical flow, which is represented as a local vector in the state space,
is organized through the sensory-motor learning processes. As a result, a
mechanism equivalent to the FSM becomes visible in the phase space. The
dynamical flow includes both the outer flow attracted towards the invariant
set and the internal flow going only within the invariant set (see Fig. 6 for
the illustration).

A crucial point is that an equivalent function of the FSM can be gener-
ated only in the form of an attractor and that the outer flow of attraction is
indispensable for its existence. It is this flow that explains the auto-recovery
mechanism of the system from its perturbed states. Important here is that
the auto-recovery mechanism is intrinsic to the dynamical systems scheme
since the internal flow and the outer attraction flow are generated as insep-
arable units in the process of self-organizing the attractor. This suggests
that the transient dynamics might be more crucial in cognitive systems than
believed previously since once conflicts or gaps arise between the mental im-
ages and its reality they are resolved during such transient periods. Symbol
systems, which support neither notions of attraction nor transient dynamics,
just halt if conflicts occur unless extra exception-handling type mechanisms
are initiated.

In the proposed dynamical systems scheme, the system itself neither sees
the descriptions of an FSM nor involves their direct manipulations. When
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the internal system merely repeats its dynamical iterations, the emergent
structure of the state transitions observed in the phase plots by an outside
observer (like myself) may be perceived as if symbols actually existed and
were manipulated internally. In fact, all what exists is the dynamical struc-
ture and the resultant dynamical flow in the system. The descriptions and
manipulations appear to be an inseparable entity in the dynamical system.
Since there are no observers dealing with the descriptions, we finally find the
internal observer [10, 11] in our robot. Consequently, there are no descrip-
tions or symbols to cause the symbol grounding problem from the view of
this internal observer.

In the end, I would like to address the open problems related to this
study. When the original experiments reviewed in this paper were com-
pleted about 8 years ago, I thought of two future directions. One direction
was to study dynamic adaptation schemes in which the robot has to learn
about open environments in an incremental way rather than off-line. The
studies have been conducted [18, 19] and are continuing focusing on how
coherent and incoherent phases autonomously appear during the dynamic
changes of the internal attractors. We proposed that such open-dynamics
characteristics might explain the momentary self-consciousness discussed in
the phenomenology literatures. The other line of study is to consider articu-
lation mechanisms of sensory-motor flows. The branching mechanism in the
YAMABICO experiments was pre-programmed as described earlier. Then,
we started to consider how “concepts” of branching or landmarks can be
learned as articulated from the experiences of continuous sensory-motor flow
in navigation tasks [20]. This question leads to further general questions
of how behavior primitives could be self-organized[21] and how they can be
combined to generate diverse behavior patterns[22]. However, I have to ad-
mit that these studies are still half-baked and there are many open problems
left for future studies.
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