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Abstract—This paper discusses a novel scheme for sensory-based navigation of a mobile robot. In our previous work
(Tani & Fukumura, 1994, Neural Networks, 1(3), 553-563), we formulated the problem of goal-directed navigation
as an embedding problem of dynamical systems: desired trajectories in a task space should be embedded in an
adequate sensory-based internal state space so that a unique mapping from the internal state space to the motor
command could be established. In the current formulation a recurrent neural network is employed, which shows that
an adequate internal state space can be self-organized, through supervised training with sensorimotor sequences. The
experiment was conducted using a real mobile robot equipped with a laser range sensor, demonstrating the validity of
the presented scheme by working in a noisy real-world environment. Copyright © 1996 Elsevier Science Ltd.
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1. INTRODUCTION

Conventionally, the scheme of sensory-based naviga-
tion has been formulated with the assumption of a
global representation of the world. Given a detailed
map of the workspace described in the global
coordinate system as a priori knowledge, the robot
navigates to the specified goal by following it (Elfes,
1987; Durrant-Whyte & Leonard, 1989; Asada, 1990;
Freyberger et al., 1990).

However, in the situation where the robot itself
learns to acquire navigational knowledge through its
behavioral experiences, it might be more natural if
the knowledge could be represented in a localized
form, from the view point of the robot itself. The
problem to consider is how the task could be
comprehended internally by the robot through
association with the temporal inflow of the sensory
information.

In our previous study (Tani & Fukumura, 1994)
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we proposed a vector field approach, in which the
internal state of the robot, corresponding to past
sequences of sensory inputs, was assumed. The
manoeuvring direction (motor command) at each
time could be determined as a unique mapping from
this internal state, which, however, imposed a
condition: the internal state space should be defined
such that the vector flow in the task space (the desired
trajectories) can be successfully embedded in that.

Here, how to construct internal state space is an
essential problem. In the previous formulation,
sensory regression of a fixed length was taken as the
internal state, and the actual mapping from this
regression vector to the output (motor command)
was realized by means of a time-delay neural network
(TDNN). A set of simulations showed that learning
tasks by supervised training, such as homing and
sequential routing of limited complexities, was
successfully achieved.

The formulation, however, is not yet general
because it predetermined the essential structure of
the internal state space (as a fixed length of sensory
regression), which caused inflexibility in adaptation
for more complex tasks. In this paper, we consider a
more general scheme, aiming that an adequate state
space can be self-organized without any assumptions
of a priori temporal structure. We also show that such
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FIGURE 1. An example of the navigation task of sequential
routing. The robot has to loop around figures of “8” and “0” in
sequence, with A as the branching point.

a scheme is robust enough for noisy real-world
environments, by conducting a physical experiment
with the mobile robot YAMABICO (Yuta, 1990).

2. HIDDEN STATE PROBLEM

Local sensing at each moment gives only partial
information of the true world state that must be
identified for determination of optimal action. This is
well known as the hidden state problem (Lin &
Mitchell, 1992). To deal with this problem, we utilize
historical information in sensing, which can uncover
hidden features.

Figure 1 shows an example of the navigation task,
(which is adopted for the physical experiment in a
later section). The task is for the robot to repeat
looping of a figure of “8” and “0” in sequence. The
task is not trivial because at the branching position 4
the robot has to decide whether to go “8” or “0”
depending on its memory of the last sequence. A
TDNN architecture is difficult to use in this situation
because we have to decide the optimal regression
form by a priori such that it can attain the desired
memory structure enabling this sequential task.

Our new attempt, here, is to utilize a recurrent
neural network (RNN) with feedback loops of
context units (Jordan, 1986, Rumelhart et al., 1986;
Pineda, 1987), aiming for the required temporal
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FIGURE 2. An example of the trajectory and corresponding
bifurcation sequence in the sensory data flow. (a) The trajectory
contains three bifurcation points (A), (B) and (C). (b) In the
spatio-temporal sensory data, the brighter area indicates that its
range is closer. The exact range profile at each bifurcating point
is shown at the side. The arrows indicate the branching
decisions of “transit” to a new branch or “stay” at the current
one.

structure that is self-organized, utilizing its internal
state space during training.

3. NAVIGATION ARCHITECTURE

This section reviews the proposed navigation
architecture (Tani & Fukumura, 1994), which
consists of two levels: a control level and a
navigation level, and also shows the current
implementation of RNN into this.

We place a constraint on the trajectories to be
generated: each trajectory should be a smooth one,
avoiding collisions with obstacles. This condition
reduces degrees of freedom in the navigation and
simplifies the problem dramatically. The control level
employs a scheme similar to the potential method
(Khatib, 1986) in order to realize this constraint.
Incorporating this scheme, the task of the navigation
level is simplified to decisions of branching directions
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FIGURE 3. A composite neural system: Kohonen net and RNN.
The output by the Kohonen net (the winner position in 3D output
space) is fed into the RNN.

at finite points in the task space. An approximation
of the desired vector field (the direction of desired
movement) in the task coordinate system can be
reconstructed only by acquiring the topological
trajectory, consisting of those representative vectors
at branching points.

Figure 2 shows an example of the robot’s travel
measured in the later described experimental work-
space. The upper figure is its test trajectory and the
lower figure its corresponding sensory flow. The time
history of the range image, covering 160 degrees of
the frontal side, is expressed as upward in the time
direction by the shaded sequence. The darker part
denotes far distance to obstacles in its direction and
the brighter part its close distance. In this test travel,
A, B and C on the trajectory become the branching
points. We can see that those correspond to
bifurcations in the range image in the lower figure.
The exact range image profile at each bifurcation
point is also shown at the side. In this example travel,
the navigation level decides to branch at B and C but
not at 4 (staying at the same branch). A more precise
description is given in Tani and Fukumura (1994).

The branching decision for the topological trajec-
tory is made by the neural architecture shown in
Figure 3. This neural architecture consisting of a
Kohonen network (Kohonen, 1982) and RNN is
invoked only at the branching point. The range
image, consisting of 24 range values at the branching,
is fed into a Kohonen network and it is compressed
into the output of a three dimensional vector. This
output (the three-dimensional position of the cube of
the Kohonen network in the figure) is fed into the
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input of RNN, generating output of the branching
decision. This output is either of 0 (move straight) or
1 (move to a new branch), which is determined by the
current sensory inputs and the context units values at
the last branching. Our expectation is that the
essential temporal structure associated with the task
can be extracted by means of this context activity.

The employed recurrent network, in the later
experiment, consists of three input units, eight
hidden units, two context feedback units and one
output unit. The Kohonen network consists of
6 x 6 x 6 units as output and 24 units as input.

4. ROBOT HARDWARE

The physical experiment was conducted using the
mobile robot YAMABICO (Yuta, 1990). The range
image is obtained by a range finder consisting of three
CCD cameras and laser projectors (see Figure 4). A
range at a direction is calculated by triangulation: the
height of a laser-projected horizontal line on a
obstacle measured by a camera with a fixed tilt
angle denotes the range. The ranges at 24 angular
directions covering 160 degrees of the frontal side of
the robot are measured at every 0.15 s. The range is
measurable from 0.2 m to 5.0 m.

A computation loop between the robot and a host
computer was constructed. The robot transmits the
range image to the host computer by radio, the
navigation architecture in the host generates the
corresponding motor command and transmits it back
to the robot. The robot moves at a constant speed of
0.3 m/s.

5. PROCEDURE OF RECURRENT TRAINING

The robot learns the mnavigation tasks through
supervision by a trainer who is assumed to know
the optimal paths. In the training of cyclic looping
navigation, we repeatedly guided the robot to the
desired loop from a set of arbitrarily selected initial
locations. In actual training, the robot moves by the
navigation of the control lever and stops at each
bifurcation point, where the branching direction is
taught by the trainer. The sequence of range images
and teaching branching commands at those bifurca-
tion points are fed into the neural architecture as
training data.

The objective of training RNN is to find the
optimal weight matrix that minimizes the mean
square error of the training output (branching
decision) sequences associating with sensory inputs
(outputs of Kohonen network). The weight matrix
can be obtained through an iterative calculation of
back-propagation through time (BPTT) (Rumelhart
et al., 1986).

In this calculation the RNN is transformed into a
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FIGURE 4. (a) The mobile robot YAMABICO in the adopted workspace of 5 m x 7 m area. (b) YAMABICO is equipped with a range finder
covering its frontal side The range consists of three CCD cameras and four laser projectors.

cascaded feed forward network without loops by
duplicating the original three-layered network in the
time direction. The generalized delta rule (Rumelhart
et al., 1986) is applied to the cascaded network in
order to find the weight update vector at each
sequence.

The topological structure of the internal state
space as well as its mapping to the output space are
modulated through the learning process. When the
learning error becomes asymptotically close.to zero, it
can be said that the task is embedded into a certain
internal state space on the RNN.

6. EXPERIMENT

The experimental task is shown in Figure 1 of a
previous section. The robot, at a position 4, has to
switch to the route of “8” or “0” by turns in the
adopted workspace of a 5m x 7m area. We repeated

the training of the robot, starting from 10 arbitrarily
selected positions. Figure 5 shows the LED trace of
the training trajectories. After the training, the robot
was started from arbitrary initial positions, with
setting initial context values to random ones.

Figure 6a and b show examples of test travels. The
result showed that the robot always converged to the
desired loop regardless of its starting position. Its
convergence, however, took a certain period that
depended on the case. Before convergence, the robot,
in some cases, made a wrong branching. This was due
to noise as well as the effects of the context
activations of the RNN. The RNN initially could
not output normally because of arbitrary initial
setting of the context units. As the robot moves
around the workspace encountering a sequence of
known sensory inputs, the context activation starts to
converge.

Noises affects the navigation performance remark-
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FIGURE 5. LED trace of the training trajectories.

ably. When miscellaneous noise such as mechanical,
sensory, and radio noise is present, the bifurcation
points sometimes become unstable. Thus, even after
convergence, the robot could by chance go out of the
loop, as the context activations are perturbed by
larger noise. However, the robot always comes back
to the loop after a while in the convergence of the
context activations. Though the actual navigation
contains an emergent property in its local decisions, it
can be said that the global structure of convergence is
quite stable in terms of the global attractor dynamics.

(a)

black triangle indicates each starting position.
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It is interesting to know how the task is
represented inside the network. We investigated the
activation patterns of RNN after the convergence
into the loop, and the result is shown in Figure 7. The
input and the context at each branching point is
shown with three white and two black bars,
respectively. One cycle of these (completing two
routes of “0” and “8) are aligned upward as one
column. The figure shows those of four continuous
cycles. It can be seen that the robot navigation is
exposed to much noise; the sensing input vector
becomes unstable at particular locations, and the
number of branchings in one cycle is not constant
(t.e., 16 or 17 times). The row labeled (A) and (A’) are
the branches to the routes of “0” and “8”
respectively. In this point, the sensor input receives
noisy chattering of different patterns independent of
(A) or (A’). The context, on the other hand, is
completely identifiable between (A) and (A’), which
shows that the task sequence between two routes is
rigidly encoded internally, even in the noisy
environment. The robot’s branching actions are
determined by two factors, the internal dynamics of
the context activations and the external force by the
sensory inputs. During the transient behaviour, i.e.,
the convergent process to the cycling behavior, the
external force by the sensory inputs tends to
“entrain” the internal dynamics to be coherent with
the environmental dynamics. Once the coherence is
achieved in the stational behavior of the cycling, the
internal dynamics can suppress a certain range of
perturbations invoked by the external sensory noise.

We also investigated the effects of the dimension-
ality of the internal state on the performance by
changing the number of the context units, while
preserving other structures as the same. Learning
with one context unit did not minimize the learning
error, which could mean that the desired task requires

(b)

FIGURE 6. LED trace of the test travels after the training. Two examples of (a) and (b) starting from different positions, are shown. The
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FIGURE 7. input and hidden state patterns after convergence
into the desired loop. White and black bars represent input and
hidden stages, respectively at branching points. Four complete
cycles are shown by four columns, in which the row labeled (A)
and (A') are the branches to the routes of “0” and “8”,
respectively.

an internal state space of larger dimensionality. As
the number of the context units is increased, the
learning tends to converge easier. By employing five
context units, we tested the navigational perfor-
mance. The robot converged into wrong loops
before achieving the correct one in some cases.
From this, it an be inferred that an internal state

J. Tani and N. Fukumura

space with an excessive dimensionality could have
generated harmful local attractors as well as the
desired attractor. It can be said that the general-
ization is possible with an internal representation
having the required, yet smaller dimensionality.

7. RELATED WORK

Brooks (1987), Mataric (1992) and others recently
proposed the approach of behavior based representa-
tion, aiming to achieve a decentralized control scheme
for autonomous agents. They employ rather symbolic
representation in their formulas. Mataric (1992)
considered a finite state machine (FSM)-type
representation of the world model for the navigation
problem. In her approach, the robot moves around
an indoor space by wall-following, acquiring a map
represented by a chain of predefined landmark types
based on its sequential experiences.

It might be interesting to consider the difference
between two formulas, a symbolic one and that of a
dynamical system in our problem domain. One
obvious advantage of symbolical representation is
its explicitness as seen from the outside. Users can
check inside, and can also tune the content if
necessary. It is, on the other hand, assumed that
system performance will not be sufficiently robust. A
problem can arise when the robot fails to recognize
an oncoming landmark because of some noise. The
robot will be lost because it has received erroneous
sensory inputs which are different from the one
expected using the FSM. The FSM simply halts upon
receiving those illegal inputs.

Our approach based on dynamical systems has no
explicit representation to be seen from the outside.
The knowledge of the navigation is submerged in a
rather redundant description of neural network
dynamics capable, however, of handling stochastic
properties in its interactions with the environment, as
shown in our experiment. When the context is lost by
receiving erroneous sensory inputs, the context is
recovered autonomously as long as the neural
dynamics continues to iterate. The actual perfor-
mance based on the dynamical system’s approach can
be inherently robust as long as the task is embedded
in the global attractor dynamics.

8. SUMMARY

A RNN was employed to self-organize the required
internal representation for sensory-based, goal-
directed navigation of a mobile robot. A physical
experiment was conducted with the mobile robot
YAMABICO, in which the supervised training of a
complex sequential routing task (an example of the
hidden state problem) was tested. The results showed
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that a RNN could embed the task into its stable
global attractor, even in a noisy environment.

We are currently studying to extend our dynamical
systems approach to the model-based navigation so
that the robot can plan action sequences for flexibly
changed goals. A part of this study is shown
elsewhere (Tani, 1996).
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