
Active Sensing based Dynamical Object Feature Extraction

Shun Nishide, Tetsuya Ogata, Ryunosuke Yokoya, Jun Tani, Kazunori Komatani, and Hiroshi G. Okuno

Abstract— This paper presents a method to autonomously
extract object features that describe their dynamics from active
sensing experiences. The model is composed of a dynamics
learning module and a feature extraction module. Recurrent
Neural Network with Parametric Bias (RNNPB) is utilized for
the dynamics learning module, learning and self-organizing
the sequences of robot and object motions. A hierarchical
neural network is linked to the input of RNNPB as the feature
extraction module for extracting object features that describe
the object motions. The two modules are simultaneously trained
using image and motion sequences acquired from the robot’s
active sensing with objects. Experiments are performed with
the robot’s pushing motion with a variety of objects to generate
sliding, falling over, bouncing, and rolling motions. The results
have shown that the model is capable of extracting features
that distinguish the characteristics of object dynamics.

I. INTRODUCTION

Recent studies on affordance-based motion [1] generation

have provided a foresight into creation of intelligent robots.

Affordance is a feature of an object or environment that im-

plies how to interact with the object or environment. Works

on affordance-based robot navigation focus on predicting the

traversability of the environment [2] [3]. Robots used in these

studies acquire knowledge of the relation between its own be-

havior and resulting object dynamics based on active sensing

[4] for evaluating traversability of the current environment.

Works on affordance-based object manipulation also adopt

active sensing to generate motions based on a criteria. Some

examples of these criteria are extension of reach [5] or

reliable predictability [6]. Although these works have suc-

ceeded in generating appropriate motions, they all predefine a

challenge required for environment adaptive robots; Features

for describing the objects are predefined. Therefore, these

works were capable of generating motions for objects with

similar shapes as those used for training. By providing robots

the ability to autonomously extract object features, the robot

will be able to select the appropriate features based on

the given task. The work could be combined with previous

studies [2] [3] [5] [6] to generate motions based on a given

criteria.

Related works on vision grounding have been done by

Fitzpatrick and Metta [7] [8]. These works focus on segment-

ing objects from visual images based on the robots active

sensing experiences with objects. The knowledge acquired

during these experiences would be used to learn the objects

S. Nishide, T. Ogata, R. Yokoya, K. Kazunori, and H. G. Okuno are with
the Department of Intelligence Science and Technology, Graduate School
of Informatics, Kyoto University, Kyoto, Japan {nishide, ogata,
yokoya, komatani, okuno}@kuis.kyoto-u.ac.jp

J. Tani is with the Brain Science Institute, RIKEN, Saitama, Japan
tani@brain.riken.jp

affordances and be applied to generate mimicry motions.

While these works provide the robot the knowledge to

segment objects from motion, our method provides the robot

the knowledge of how the object motion is to be represented.

Based on affordance theory, two types of features, or

invariants, exist considering perception of environments [9].

Structural invariants are features that describe the environ-

ment itself. These features remain unchanged when the envi-

ronment is changed by an event. Transformational invariants

are features that describe the change of the environment.

The same pattern of transformational invariants occurs for

same events. An example of these invariants are, the shape

or texture of an object, which are structural invariants as

they do not change when the object is pushed, and the

transition of the center position of an object, which is a

transformational invariant as it describes how the object

is moving. In this paper, the authors use the term “static

features” for structural invariants, and “dynamic features”

for transformational invariants as these terms are more in-

tuitive. The term “invariant” is used to relate the work with

affordance theory.

The objective of this research is to autonomously extract

static and dynamic features based on active sensing, for

applying to motion generation. The authors have developed

a model that extracts static object features from background

eliminated raw images [10]. The work trained and self-

organized object dynamics, described by center position and

inclination of the principal axis of inertia of the object image,

and linking them with background eliminated raw object

images. As a result, the model self-extracted static object

features representing fineness, roundness, and sharpness of

the objects. These static features greatly affect the rolling,

falling over, sliding motions of the objects used in the exper-

iment. However, as the dynamic features were predefined in

the experiment, the method was incapable of self-organizing

a larger variety of objects dynamics.

In this paper, the authors report a technique to au-

tonomously extract dynamic object features. The work con-

tains two issues:

1) Construction of dynamic object feature extraction

model.

2) Developing a model training method.

To deal with the first issue, the authors coupled a dynamics

learning module with a feature extraction module to extract

dynamic object features from the output error of the dy-

namics learning module. The authors utilize Recurrent Neu-

ral Network (RNN) for the robot-object dynamics learning

module. There are two reasons for this selection. First, the

hardware limitations of the robot (moving the robot too much

2008 IEEE/RSJ International Conference on Intelligent Robots and Systems
Acropolis Convention Center
Nice, France, Sept, 22-26, 2008

978-1-4244-2058-2/08/$25.00 ©2008 IEEE. 1

would lead to damage of hardware) calls for adaptation to

unknown environments from few training data. The gener-

alization capability of RNN is one of the capabilities that

meet this requirement. Second, we aim to train the dynamics

learning module and feature extraction module reciprocally,

as independent training of the two modules would not derive

the features that describe the dynamics. Neural network is the

only model possessing both functions required for realizing

the system. To deal with the second issue, the authors

have simultaneously trained the two models. This method

was decided empirically from comparison with training the

two models alternately. Alternate training fixes one model

while training the other, alternating the process after several

calculation loops. Simultaneous training, on the other hand,

trains both models every calculation loop. Since the model

requires reciprocal training, simultaneous training is more

suitable for the method as it mutually minimizes the errors

of the two models. The results have shown that the method

is capable of extracting object features that describe the

dynamics of the objects.

The rest of the paper is composed as follows. Section II

describes the overview of the technique. Section III describes

the experiment environment and conditions. Section IV de-

scribes the experimental results. Section V presents some

discussions considering the results. Conclusions and future

works are presented in Section VI.

II. OVERVIEW OF TECHNIQUE

This section describes the overview of the technique.

First, the robot acquires its motor value sequences and raw

object image sequences during active sensing with objects.

These sequences are used to train the model composed

by a dynamics learning module and a feature extraction

module. The authors utilize Recurrent Neural Network with

Parametric Bias (RNNPB), proposed by Tani [11], for the

dynamics learning module, and a hierarchical neural network

for the feature extraction module. RNNPB inputs the mo-

tor/object feature values of the current state and outputs the

motor/object feature values of the next state. The hierarchical

neural network inputs the raw object image and outputs the

object feature. The output of the hierarchical neural network

is linked to the input of RNNPB. The model autonomously

extracts object features that describe the dynamics of the

object in the output of the hierarchical neural network (input

of RNNPB) during the training process of the model. As

explained in the previous section, the model requires two

networks possessing both the functions of dynamics learning

and feature extraction. Neural networks are the only models

possessing these functions. The construction of the system

is shown in Fig. 1.

A. RNNPB Model

RNNPB, shown in the upper half of Fig. 1, is an extension

to the Jordan-type RNN [12] containing Parametric Bias (PB)

nodes in the input layer. In order to deal with sequential data

(dynamics), RNNPB is set as a predictor which calculates

the next state S(t + 1) from the current state S(t). The

Input S(t)

Output S(t+1)
X(t+1)

Context Loop X(t)
Parametric
Bias (PB)

ObjectRobot

(Next State)

(Current State)

Raw Image Input

Robot

Object

RNNPB

Hierarchical
Neural Network

Fig. 1. Construction of the Model

input/output nodes are divided and assigned into nodes that

input/output the robot motor values and object feature values.

The role of the PB nodes is to learn multiple sequential

data in a single model. While RNN calculates a unique output

from the input and context value, RNNPB is capable of al-

tering its output by changing the values of the PB nodes (PB

values). In other words, the PB values are used for switching

over each sequential data. This capability provides RNNPB

to learn and generate multiple sequences. Therefore, RNNPB

is often called a distributed representation of multiple RNNs.

RNNPB is a supervised learning system requiring teaching

signals as is the Jordan-type RNN. The training phase

consists of weight optimization and self-organization of

PB values using back propagation through time (BPTT)

algorithm [13]. For updating PB values, the back-propagated

errors of the weights are accumulated along the sequences.

Denoting the step length of a sequence as T , the update

equations for PB during the training phase are

∆ρ = ε ·

T∑

t=1

δ
bp
t (1)

p = sigmoid(ρ). (2)

First, the delta force ∆ρ for updating the internal values

of PB p is calculated by (1). The delta error δ
bp
t in (1)

is calculated by back propagating the output errors from

the output nodes to the PB nodes. The new PB value p

is calculated by (2) applying the sigmoid function to the

internal value ρ which is updated using the delta force. ε

is a learning constant. The BPTT algorithm updating only

the PB values (not updating the weights) is often used for

recognition/generation [14].

Training of RNNPB self-organizes the PB values, which

encode each sequence, according to their similarities, form-

ing the PB space which creates clusters of similar sequences.

The sequences could be reconstructed from the PB values by

recursively inputting the output S(t + 1) back into the input

S(t). This process, called association, calculates the whole

sequence from an initial state S(0), initial context X(0), and

a PB value.

2

B. Training the Model

The authors use BPTT algorithm for training RNNPB and

back propagation (BP) algorithm for training the hierarchical

neural network. Considering training for RNNPB, the next

state robot motor value is the teaching signal of the robot

motor output. Teaching signals for the hierarchical neural

network and object feature output of RNNPB are not constant

as they are to be extracted autonomously from the train-

ing process. Therefore, optimization based on simultaneous

training is required for training the model.

Teaching signals for the two neural networks are each

acquired from the other neural network. For RNNPB, the

output of the hierarchical neural network in the next state

(t+1) is used as teaching signals of the object feature output

for the current state (t). For the hierarchical neural network,

the object feature output of RNNPB of the previous state

(t − 1) is used as teaching signals for the current state (t).

As the two networks are both trained using the output signals

from the other network as teaching signals, the two outputs

of the networks converge to a uniform value sequence.

This value sequence represents both the feature extracted

from the image sequence and the value sequence capable of

training the RNNPB. Therefore, the training extracts the most

appropriate object feature sequence representing the object

dynamics.

III. EXPERIMENTAL SETUP

The authors used the humanoid robot Robovie-IIs [15]

shown in Fig. 2 for evaluation of the method. Robovie-IIs

has three DOF (degrees of freedom) on the neck and four

DOF on each arm. It also has two CCD cameras on the head

for processing visual information, one of which was used in

the experiment.

The training procedure of the experiment is as follows.

1) Acquire sequences of images and robot motor values

while the robot pushes objects.

2) Extract the object from images by deleting background

using color information.

3) Train model using motion sequences.

In this experiment, the authors use background eliminated

raw images for simplicity. Evaluating the model for usage

with completely raw images is left as future work. The

objects used for the experiment are shown in Fig. 3.

Fig. 2. Humanoid Robot Robovie-IIs

Fig. 3. Objects used for Experiment

A. Motion Sequence Acquisition from Active Sensing

Robovie II-s conducted pushing motion with its left arm

for each of the objects shown in Fig. 3. Pushing motions were

generated at five different heights by altering Robovie II-s’

shoulder pitch angle. As a consequence, the objects generated

sliding, falling over, bouncing, and rolling motions. The

balls were put on the cup to create bouncing motions when

pushed. Excluding the sequences that the robot’s arm didn’t

hit the object and those that the object couldn’t be extracted

(due to occlusions or illumination conditions), a total of 59

sequences were acquired. The number of each object motion

out of the total is shown in Table I. The small number of

fall over motions is due to occlusions that occur when the

object is hit with a high robot arm motion. As a result, more

than half of the whole falling over motions were eliminated

for use in the experiment. The sliding motion, on the other

hand, is a stable motion having less problems with the object

extraction process. Therefore, the total number of sliding

motions is larger compared to the other motions.

During the pushing motion of the robot, image and motor

sequences were acquired at 10 frames/sec. Acquisition of

the sequences were started just before the robot’s arm has

had contact with the object, and ended after acquiring 10

steps of data. This was decided by the visible area of the

robot’s camera; some of the objects went out of view after 11

steps. Although this experiment was conducted under a fixed

neck condition, the model could also adapt to cases where

the robot constantly tracks the object [14]. An example of

an object image sequence where the robot pushed an odor

eliminating container to make it fall over is shown in Fig. 4.

B. Configuration of the Neural Networks

The configuration of the neural networks (e.g. number of

nodes) greatly affects the training result. As the two linked

TABLE I

NUMBER OF EACH OBJECT MOTION

Slide Fall Over Bounce Roll

24 9 13 13

3

1 2 3 54

6 7 8 9 10

Fig. 4. Image Sequence of an Odor Eliminating Container Falling Over

neural networks each create the teaching signals from the

other neural network, this setup is specifically crucial for

the training process of the proposed model to converge. The

training process would not converge to an optimal solution

with a small number of nodes, while a large number of

nodes would result in inadequate object features which do not

represent the object dynamics, as the model would possess

many local minimums. In this paper, the authors focus on the

capability of the model to automatically extract dynamical

features and self-organize their similarities. Therefore, the

configuration of the neural networks were decided empiri-

cally. The model could be extended to gain higher training

capabilities by combining with works examining the relation

between the PB nodes and the self-organization capability

[16].

The configurations of RNNPB and the hierarchical neural

network are shown in Table II and Table III, respectively.

The initial weights of the neural networks were decided

randomly within a value between [-0.7, 0.7]. The total

number of input/output nodes in RNNPB are 5; 1 is for the

robot shoulder pitch angle normalized to [0,1], and 4 for

the dynamic object features to be automatically extracted.

The input of the hierarchical neural network consists of the

grayscale sequential object image, reduced to the resolution

25 × 20. The output is linked to the object input nodes of

RNNPB. The model was trained by iterating the BPTT and

BP calculation one million times.

IV. EXPERIMENTAL RESULTS

The authors evaluated the method based on the cluster-

ing results of the PB space. As described before, training

TABLE II

CONFIGURATION OF RNNPB

Number of Motor Input/Output Nodes 1

Number of Object Input/Output Nodes 4

Number of Middle Nodes 20

Number of Context Nodes 20

Number of PB Nodes 2

Learning Constant ε 0.01

TABLE III

CONFIGURATION OF HIERARCHICAL NEURAL NETWORK

Number of Input Nodes 500

Number of Middle Nodes 30

Number of Output Nodes 4

Learning Constant ε

′

0.1

RNNPB creates clusters of similar sequences into the PB

space. Therefore, formation of clusters for the PB values

of the same object dynamics implies that the appropriate

dynamical object features have been extracted for describing

each dynamics.

A. Self-Organized PB Space

Training the model generates the PB space based on the

raw image and motor sequences of the 59 training patterns.

The generated PB space is shown in Fig. 5. The rhombus,

square, triangle, and x mark, correspond to the PB values

of the sliding, falling over, bouncing, and rolling motions,

respectively.

B. Analyzing the PB Space

The authors have analyzed the PB space as follows, in

order to investigate the clusters of each object dynamics.

1) Divide the PB space into 100 × 100 segments.

2) For each pattern, calculate the absolute error of the

object feature sequence and the associated sequence.

This error is calculated by accumulating the errors

along the whole sequence.

3) For each segment, find the minimum error out of the

whole patterns.

4) Normalize the error to image format [0, 255] (mini-

mum error = 255, maximum error = 0).

5) Color each segment based on the dynamics and nor-

malized error.

The result of the analysis is shown in Fig. 6. This analysis of

the PB space is not an accurate analysis as a PB value may

represent two different dynamics if the initial object posture

differs. In this analysis, the authors have neglected patterns

with large training errors (subraction of object feature se-

quence by associated sequence for the obtained PB). For this

experiment, the authors have excluded patterns with training

errors larger than 0.02. 24 patterns were excluded, leaving 35

for analyzing the PB space. The blue, green, red, and yellow

areas correspond to areas with the minimal errors of slide,

fall over, bounce, and roll motions, respectively. Areas with

O

1

1

Slide Fall Over Bounce Roll

PB1

P
B

2

Fig. 5. Generated PB Space

4

lighter colors have smaller errors, while areas with darker

colors have larger errors.

Figure 6 proves that the PB space has been clustered

according to object dynamics. Neglecting the small portions

of bouncing motions, the PB space is segmented into five

areas. The rolling area intersects the sliding area, dividing it

into two. This is due to the experimental condition using

a single camera to observe object dynamics. Therefore,

the model was incapable of distinguishing the rolling and

sliding motions of the objects However, considering the

rolling motion and sliding motion as a same dynamics, the

model was capable of segregating the PB space into three

areas based on the falling over, bouncing, and sliding/rolling

motions.

To quantitatively analyze the PB space, the authors have

compared the PB values shown in Fig. 5 with the clusters

shown in Fig. 6. The number of PB values in the correct

cluster and incorrect cluster are shown in Table IV. Since

the model was incapable of distinguishing the sliding motion

and rolling motion, 3 of the 6 errors for the sliding motion

existed in the rolling cluster. The bouncing motion and

rolling motion are similar since a small bouncing height of

the ball resembles a rolling motion. These have created errors

for the bouncing and rolling motions, both existing in the

boundary between the bouncing and rolling clusters. 4 of

the PB values for errors in falling over motions existed in

the boundary of the falling cluster and sliding cluster. The

boundary represents both falling over and sliding motions as

described before. The rest of the errors (3 for fall over and 3

for slide) resulted from training errors of RNNPB and effects

of robot motion during self-organization.

Slide Fall Over Bounce Roll

O 1

1

PB1

P
B

2

Fig. 6. Analysis of PB Space

TABLE IV

TRAINED PB VALUES AND CLUSTERS

Correct Cluster Incorrect Cluster

Slide 18 6

Fall Over 2 7

Bounce 12 1

Roll 10 3

C. Object Feature Sequence

Examples of the training results for the sliding, falling

over, bouncing, and rolling motions are shown in Fig. 7.

The other sequences had the same characteristics as those

shown in Fig. 7. Open loop output is the sequence created

by inputting the actual data acquired during active sensing.

Closed loop output is the sequence created by association,

where the output of the previous step is input at the current

step. The value sequences of each of the four input nodes

for the object feature of RNNPB is presented. The extracted

sequence, open loop output, and closed loop output trace

nearly the same trajectory. The smallness of the closed loop

error denotes that the model possesses the capability to

predict the object dynamics from the robot motion and initial

object image.

From Fig. 7, it is notable that each sequence possesses a

different characteristic. Node 3 for the falling over sequence

decreases, where it increases for the sliding sequence and

rolling sequence. Due to the characteristics of the sliding

and rolling motions (they both move perpendicular to the

longer principal axis of inertia), similar types of features are

extracted. Focusing on Node 1, there is a unique characteris-

tic for the bouncing sequence. The value of node 1 fluctuates

resembling the actual bouncing motion of a ball. These nodes

do not represent well-known dynamics-representing features

(such as center position), since they are not the principal

features that discriminate the dynamics. For example, since

the robot pushes the object right, every object moves right.

Although the results do not provide a concrete description of

the object dynamics, they prove to be sufficient to distinguish

the difference of the dynamics.

V. DISCUSSIONS

In this section, we present some discussions considering

the experimental results.

A. Formation of PB Space

From Fig. 5, it is notable that some PB values exist in the

incorrect area (cluster). As the input/output of RNNPB is

the robot motor value and the object feature values, the PB

space is self-organized according to the similarities of the

two sequences. In this experiment, we decided the number

of PB nodes as two, since it would be easier to analyze

the results. However, the results have shown that two PB

nodes are insufficient for clustering based only on object

dynamics, neglecting the robot motion. Therefore, PB values

existing in incorrect areas are those that were drawn due

to the robot motion sequences represented by the transition

of the shoulder pitch angle. To obtain a better prediction

5

O 1 2 3 4 5 6 7 8 9

Step

0.5

1.0

V
al

u
e

(c) Bouncing Sequence

O 1 2 3 4 5 6 7 8 9

Step

0.5

1.0

V
al

u
e

(b) Falling Over Sequence

O 1 2 3 4 5 6 7 8 9

Step

0.5

1.0

V
al

u
e

(d) Rolling Sequence

O 1 2 3 4 5 6 7 8 9

Step

0.5

1.0

V
al

u
e

(a) Sliding Sequence

Extracted Sequence
(Outputs of Hierarchical NN)

Open Loop Output Closed Loop Output

Node 1

Node 2

Node 3

Node 4

Fig. 7. Extracted Feature Sequences and Training Results

capability, a larger number of PB nodes would be necessary

to cluster the object dynamics.

It is also notable that a larger number of PB representing

sliding motion overlap with the rolling motion compared

to other object motions. This is due to the experimental

condition that only a single camera is used as a sensor.

Therefore, it is difficult for the model to distinguish the

difference between the sliding motion and rolling motion

of the object (the difference exists only in the speed of the

object motion). In order to distinguish the two motions, it

would be necessary to introduce additional sensors such as

force sensors, as sliding objects would continuously input

signals while rolling objects would input just an impulse

signal into the sensor.

Although the results have shown some incorrect clustering,

they imply the capability of the model to extract dynamic

object features that describe the dynamics.

B. Model Configuration and Feature Extraction

In this paper, the authors have decided the configuration

of the neural networks empirically. This configuration affects

greatly the training result as it affects the number of local

minimums.

In the experiment, the initial weights of the neural net-

works were decided randomly within a certain boundary.

The boundary, [-0.7, 0.7], was also decided empirically.

With a smaller boundary, the extracted sequences become

closer to a constant value. This results in failure for the

training process, as no object features will be extracted since

every sequence would become similar. Thus, the PB space

would be clustered only by the similarities of the motor

sequences. With a larger boundary, the sequences fluctuate,

compelling difficulties for the training process to converge.

The authors have decided the boundary by investigating the

initial fluctuation of the sequences.

Deciding the number of nodes for the neural networks is

also a difficult task for the training process to converge. As

preliminary experiments, the authors have trained the model

with fewer nodes. Although clusters of each object dynamics

were created, a larger number of PB values were distributed

in wrong clusters. As described in Section III-B, the model

should not possess unnecessarily large number of nodes as

they would create additional local minimums.

The feature extraction hierarchical neural network is used

for easing the training process of the model. Training RN-

NPB with raw image sequences without the feature extrac-

tion model would consume large amounts of time. Setting

the configuration (number of nodes) of RNNPB would also

become a difficult problem for such system.

Future works involve decision of the most appropriate

configuration of the model, based on the image sequences.

This would provide robustness to the training process of the

model to extract the most appropriate features for describing

6

the dynamics of the objects.

C. Dynamic Object Feature and Transformational Invariants

Transformational invariants are flows of dynamical object

features, which are used to perceive motion. The simplest

example of a transformational invariant is the flow of the

center position of an object. In this case, the dynamical

features to be extracted by our model would be the sequence

of the center position.

The repertoire of invariants a person possesses, depends

greatly on one’s experience. A newly born baby has nearly

no invariants whereas a mature child would have enough

invariants to perceive almost any phenomenon in the world.

In this experiment, the robot was trained using only the

pushing motion with its left arm. Although the motion

sequences vary depending on the shape of the objects, they

have a same characteristic that they all move from the left to

right. Therefore, the extracted object features do not contain

a clear representation of the motion of the center position.

The self-organized result of the PB space, however, proves

that the model has extracted dynamic features describing the

dynamics of the objects. The motion sequences presented

in Fig. 7 also express an abstract description of object

dynamics. By increasing the number of motion patterns, the

robot would acquire more comprehensible features of the

objects. This would involve improvement of the training

capability of RNNPB to learn a larger variety of motion

patterns, which is also left for future work.

VI. CONCLUSIONS

In this paper, the authors proposed a method to au-

tonomously extract dynamical object features based on the

robot’s active sensing experiences. The training model con-

sists of a sequential learning module, namely RNNPB,

and a hierarchical neural network for the feature extraction

module, linking the object feature input of RNNPB and the

output of the hierarchical neural network. Using the training

data acquired during active sensing, a simultaneous learning

method is applied to train the two modules.

Experiments were conducted by active sensing twenty ob-

jects with the pushing motion of a humanoid robot Robovie

II-s. The model was trained using 59 patterns of image and

motor sequences. The background of the images were elim-

inated using color information. From the results, the model

was capable of extracting features to distinguish the falling

over, bouncing, and sliding/rolling motions, segregating the

PB space into three areas. Therefore, the model is capable of

extracting dynamic features which represent transformational

invariants, based on the robot’s active sensing experiences.

Future works involve resolution of the following issues.

1) Evaluation with additional sensors.

2) Evaluation of motion generation capability.

3) Introduce a criteria to decide the model configuration.

The first issue would be necessary for integrating multiple

sensory data. As described in Section V-A, this would

provide additional capabilities in distinguishing the dynamics

of objects. The second issue is a prerequisite for modeling

affordance. As features representing invariants are extracted

from the model, the next step would be to link them

to motion generation. The authors plan to take Reliable

Predictability into consideration for motion generation, as

done in our previous work [6]. The third issue would develop

the model to general purposes. A difficulty in creating the

model is decision of the optimal number of nodes and

initial weights. These affect local minimums which induce

difficulties to the training process. A concrete criteria for

configuring the model would lead to a robust model. We

believe that these works would lead to understanding the

mechanism of affordance based on constructive approach.

VII. ACKNOWLEDGMENTS

This research was partially supported by Global COE,

the Ministry of Education, Science, Sports and Culture,

Grant-in-Aid for Scientific Research (S), Grant-in-Aid for

Young Scientists (A), Grant-in-Aid for Exploratory Research,

RIKEN, and Kayamori Foundation of Informational Science

Advancement.

REFERENCES

[1] J. J. Gibson, “The Ecological Approach to Visual Perception,”
Houghton Mifflin, ISBN: 0898599598, 1979.

[2] D. Kim, J. Sie, S. M. Oh, J. M. Rehg, and A. F. Bobick, “Traversability
Classification using Unsupervised On-line Visual Learning for Out-
door Robot Navigation,” in Proc. ICRA, pp. 518-525, 2006.

[3] E. Uǧur, M. R. Doǧar, M. Çakmak, and E. Şahin, “The learning and
use of traversability affordance using range images on a mobile robot,”
in Proc. ICRA, pp. 1721-1726, 2007.

[4] R. Bajcsy, “Active Perception,” in IEEE Proc., Special issue on

Computer Vision, Vol. 76, No. 8, pp. 996-1005, 1988.
[5] A. Stoytchev, “Behavior-Grounded Representation of Tool Affor-

dances,” in Proc. ICRA, pp. 3060-3065, 2005.
[6] S. Nishide, et al., “Object Dynamics Prediction and Motion Generation

based on Reliable Predictability,” in Proc. ICRA, pp. 1608-1614, 2008.
[7] P. Fitzpatrick and G. Metta, “Grounding Vision Through Experimental

Manipulation,” in Philosophical Transactions of the Royal Society:

Mathematical, Physical, and Engineering Sciences, 361:1811, pp.
2165-2185, 2003.

[8] G. Metta and P. Fitzpatrick, “Early Integration of Vision and Manip-
ulation,” in Adaptive Behavior special issue on Epigenetic Robotics,
Vol. 11, Issue 2, pp. 109-128, 2003.

[9] R. E. Shaw, M. McIntyre, and W. Mace, “The Role of Symmetry in
Event Perception,” in R. MacLeod and H. Pick Jr. (Eds.), “Studies in
Perception: Essays in honor of J. J. Gibson,” Cornell University Press,
pp. 276-310, 1974.

[10] S. Nishide, T. Ogata, J. Tani, K. Komatani, and H. G. Okuno,
“Predicting Object Dynamics from Visual Images through Active
Sensing Experiences,” Advanced Robotics, Vol. 22, No. 5, pp. 527-
546, 2008.

[11] J. Tani and M. Ito, “Self-Organization of Behavioral Primitives as
Multiple Attractor Dynamics: A Robot Experiment,” IEEE Trans. on

SMC Part A, Vol. 33, No. 4, pp. 481-488. 2003.
[12] M. Jordan, “Attractor dynamics and parallelism in a connectionist

sequential machine,” Eighth Annual Conf. of the Cognitive Science

Society (Erlbaum, Hillsdale, NJ), pp. 513-546, 1986.
[13] D. Rumelhart, G. Hinton, and R. Williams, “Learning internal rep-

resentation by error propagation,” in D. E. Rumelhart and J. L.

McLelland, editors Parallel Distributed Processing (Cambridge, MA:

MIT Press), 1986.
[14] R. Yokoya, T. Ogata, J. Tani, K. Komatani, H. G. Okuno, “Experience

Based Imitation Using RNNPB,” Advanced Robotics, Vol. 21, No. 12,
pp. 1351-1367, 2007.

[15] H. Ishiguro, et al., “Robovie: an interactive humanoid robot,” Int.

Journal of Industrial Robotics, Vol. 28, No. 6, pp. 498-503, 2001.
[16] T. Ogata, S. Matsumoto, J. Tani, K. Komatani, and H. G. Okuno,

“Human-Robot Cooperation using Quasi-symbols Generated by RN-
NPB Model,” in Proc. IEEE ICRA, pp. 2156-2161, 2007.

7

