

Abstract - We present a connectionist model that combines
motions and language based on the behavioral experiences of a
real robot. Two models of recurrent neural network with pa-
rametric bias (RNNPB) were trained using motion sequences
and linguistic sequences. These sequences were combined using
their respective parameters so that the robot could handle
many-to-many relationships between motion sequences and
linguistic sequences. Motion sequences were articulated into
some primitives corresponding to given linguistic sequences
using the prediction error of the RNNPB model. The experi-
mental task in which a humanoid robot moved its arm on a
table demonstrated that the robot could generate a motion
sequence corresponding to given linguistic sequence even if the
motions or sequences were not included in the training data,
and vice versa.

I. INTRODUCTION

 Language is a powerful tool in human communication
because it can work as a static/definite symbol and/or dy-
namic/contextual symbol. However, the symbol-grounding
problem proposed by Harnad is problematic because of these
properties of language [1]. This is due to the ambiguity be-
tween actual actions/movement and symbols, that is, there is
a many-to-many mapping between actual actions/movement
and symbols. Ogata et al. proposed the use of the qua-
si-symbols to encode dynamic attractors as an approach to
this problem [2]. Quasi-symbols can be automatically ex-
tracted by using a recurrent neural network (RNN), and be
handled like real symbols in human-robot communication.
However, little research has been under taken to investigate
the relationship between quasi-symbols and natural lan-
guage.

For example, the motions represented by “move the arm to
center.” are different if the arm is on the right or left. The
meaning of a sentence can vary significantly depending on
the context in which they are used. This means that dynam-
ical representation of language is key issue when translating
sentences into motions.

We can describe a motion by using different sentences.
We can also use multiple sentences to represent a motion by
dividing the motion into stages. This means that articulating
and allocating the actual actions/movement is the key for
translating motions into sentences.

T. Ogata, M. Murase, K. Komatani, and H. G. Okuno is with the De-
partment of Intelligence Science and Technology, Graduate School of
Informatics, Kyoto University, Kyoto, Japan {ogata, komatani,
okuno}@kuis.kyoto-u.ac.jp

J. Tani is with the Brain Science Institute, RIKEN, Saitama, Japan ta-
ni@brain.riken.jp

 Sugita et al. proposed a method to integrate robot motions
and sentences using two RNNs that bind a part of the input
layers [3]. They taught a robot nine motions with 18 cor-
responding sentences. The generalization ability of the
RNNs enabled the robot to acquire many-to-many mappings
between motions and sentences, even though some of them
were not included in the training set. However, they did not
deal with the problem of articulating motions and allocating
sentences. The motions and sentences were prepared in
advance. Moreover, they only dealt with translating sen-
tences into motions and not translating motions into sen-
tences.

In this paper, we present a method that solves articulating
and allocating problems by using the prediction error ob-
tained from RNNs trained with motions and sentences. Our
method enables robots to translate motions into arbitrary
numbers of sentences, and vice versa. Our method also
enables new motions and new sentences to be created based
on the generalization ability of the neural networks.

The rest of the paper is as follows: Section II discusses
the validity of the use of RNN to deal with language by
referring to Elman’s studies. Section III describes the detail
of the RNN model used in our architecture. The model can
articulate a robot motion by using the prediction errors ob-
tained from the RNN and the number of given sentences.
Section IV describes the learning methods used to acquire
dynamic representation of motions and sentences. Section V
proposes the methods used to translate motions into sen-
tences, and vice versa. Section V explains the experimental
task in which a humanoid robot moves its arm on a table and
shows the results translating motions into sentences, and
vice versa. Section VI concludes the paper with a summary
of the key points and a look at our future work.

II. LANGUAGE LEARNING USING NEURAL NETWORKS

 An essential problem when computation systems handle
language and physical phenomena is a property difference
between them. In general, language is represented as a sto-
chastic system, and a physical phenomenon is represented as
a dynamical system. To combine them effectively, these
representations must be the same. Therefore, we used a RNN,
one of the dynamical systems, to represent both systems.
 Elman et al. showed that a RNN has the ability to acquire
grammar regulations [4-8]. The RNN was trained to predict
the next word from in a sentence from the previous word.
Result have generally shown that RNN can accept sentences
that follow regular grammar conventions and sentences that

Two-way Translation of Compound Sentences and Arm Motions by
Recurrent Neural Networks

Tetsuya Ogata, Masamitsu Murase, Jun Tani, Kazunori Komatani, and Hiroshi G. Okuno

Proceedings of the 2007 IEEE/RSJ International
Conference on Intelligent Robots and Systems
San Diego, CA, USA, Oct 29 - Nov 2, 2007

WeB3.3

1-4244-0912-8/07/$25.00 ©2007 IEEE. 1858

follow context–free conventions, even though this network
has sentence length limitations. Results have also shown that
an Elman type RNN can deal with sequences of tenses and
idiom sets that appear at distant positions in the same sen-
tence. These reports imply that a RNN can be used to treat
both language and robot motions.

III. RNNPB AND ARTICULATING TIME SEQUENCE DATA

A. RNNPB Model
The recurrent neural network with parametric bias

(RNNPB) model proposed by Tani and Ito is can predict
which input is a current state-vector and which output is a
next state-vector [9]. The model articulates complex motion
sequences into motion units, which are encoded as limit
cycling dynamics and/or fixed-point dynamics of the RNN.
The model we used has the same architecture as the con-
ventional Jordan-type RNN model [10], except that it has PB
nodes in the input layer. Jordan-type RNN output vectors
were generated from input vectors and context vectors with a
recursive connection. Unlike other input nodes, the PB nodes
have a constant value throughout each time sequence. They
are used to implement mapping between fixed length values
and time sequences. The network configuration of the
RNNPB model is shown in Figure 1.

Like the Jordan-type RNN model, the RNNPB model
learns data sequences in a supervised manner. The difference
is that in the RNNPB model, the values that encode the se-
quences are self-organized in the PB nodes during the
learning process. The common structural properties of the
training data sequences are acquired as connection weights
by using the back-propagation-through-time (BPTT) algo-
rithm [11], and the specific properties of each individual time
sequence are simultaneously encoded as PB values. As a
result, the RNNPB model self-organizes the mapping be-
tween the PB values and the time sequences.

Input S(t)

Output S(t+1)

Context loop X(t)

X(t+1)

Parameter
BiasInput S(t)

Output S(t+1)

Context loop X(t)

X(t+1)

Parameter
Bias

Figure 1 Network configuration of RNNPB model

B. Learning of PB Vectors

The learning algorithm for the PB values is a variant of
the BPTT algorithm in which T denotes the step length of a
sequence. For each sensory-motor output, the
back-propagated errors with respect to the PB nodes are
accumulated and used to update the PB values. The ith unit
of the parametric bias is updated by using the following
equations:

 δρ ε δi t

bp

t

T
i

=
=
∑

0

 (1)

p sigmoidt t= (/)ρ ζ (2)

In Eq. (1), δt
bp

 represents the delta error back propagated
from the output nodes to the PB nodes and is integrated over
period T steps. Internal value ρt is updated using the delta
force, as shown in Eq. (2). The ε and ζ are learning coeffi-
cients. The current PB values are obtained from the sig-
moidal outputs of the internal values.

In the generation mode, the PB value for a desired se-
quence is set to the PB node. The desired sequence is ob-
tained by performing a forwarding-forward calculation
called a closed-mode for RNNPB [12]. In the mode, the
output in step t − 1: S(t − 1) is the input data in the step t: S(t).
The input/output layer plays the same role as the context
layer in the closed-mode.

The RNNPB model can also be used in recognition
processes and in sequence generation processes. For a given
sequence, the corresponding PB value can be obtained by
using the update rules for the PB values without having to
update the connection weight values. This inverse operation
in generation is regarded as recognition.

C. Articulating Sequence Data
 As mentioned in Section I, essential issues for combining
language and robot motions are articulation and allocation.
 One way to combine language and motions is based on
using motion trajectories. Such methods usually cut off the
parts of trajectories where the motion velocity is close to zero.
Each part is approximated as a straight line, circle, and/or
spline function. This technique is especially practical, when
humanoid robots imitate motions, which has morphology
quite similar to that of humans. However, this technique is
unsuitable for our aim because it depends on static features.
The motion trajectory must be articulated by using dynami-
cal features so that its meaning can be changed based on the
context used in the sentences.
 Another way is based on the dynamics used to generate the
trajectories. Systems using this approach usually consist of
dynamic recognizers that predict the target sequences. The
motion is articulated based on the predictability of the re-
cognizer. The method we used to articulate a robot’s motion
using the prediction error of RNNPB model and the number
of given sentences is described as follows: We consider the
problem of articulating a motion sequence, X(t), of which
length is T into N sections, which are represented as S0, S1, ...,
SN-1. The boundary time between Si-1 and Si is represented by
t = si, that is, Si is defined as [si, si+1].

Step 1: Initializing

The given motion sequence is divided into N sections.
Each section has the same length.

1859

 s T i Ni ← ⋅ / (i = 0, ..., N) (3)

Step 2: RNNPB Training

The connection weights and PB values of the RNNPB
model are updated with the given sequence, while the PB
values keep constant in each section, Si.

Step 3: Calculating of prediction errors
In each Si, the prediction errors of the RNNPB model P(t)
are calculated, and the maximal error Ei is obtained as
follows:

 E X t P ti t Si

← −
∈

max () () (i = 0, ..., N) (4)

Step 4: Updating the length of each section
 The boundary time, si, is updated by using the following
rules:

 s
s ds
s ds

if
if

E E
E Ei

i

i

i i

i i
+

+

+

+

+

←
−
+

≥
<

⎧
⎨
⎩

1
1

1

1

1
 (5)

Where, ds is the parameter used to update the section
length.

Step 5: Repeating Steps 1 to 4 until the whole error is less
than the threshold.

 If a motion is generated by using simple dynamics, the
prediction error of the RNNPB is small, even when the PB
values are fixed. However, if a motion is generated by using
multiple dynamics, the prediction error at the boundary
between dynamics increases as shown in Fig. 2. The devel-
oped algorithm can decrease the error by modifying the
position of each boundary. The annealing technique used to
decrease ds based on the increase of learning steps is im-
plemented for stable learning.

Move the
boundary to
the area with
large error

S(t)

PB

time

time

Boundary
Prediction
Target DataS(t)

PB

time

time

Boundary

Error: Large Error: Small

Move the
boundary to
the area with
large error

S(t)

PB

time

time

BoundaryBoundary
Prediction
Target Data
Prediction
Target DataS(t)

PB

time

time

BoundaryBoundary

Error: Large Error: Small

Figure 2 Articulating into multiple sequences

IV. LEARNING TO COMBINE MOTIONS AND SENTENCES

A. Two RNNPBs for Motions and Sentences
Similar to Sugita, we use two RNNPBs to combine robot

motions and sentences. One RNNPB, called behavioral
RNNPB, is used to train the robot motion, and the other
RNNPB, called linguistic RNNPB, is used to train the mul-
tiple sentences that explain the motion.

The training data of the behavioral RNNPB consists of a

series of joint degrees and camera images downloaded into
the robot. The sequence data is articulated by using our al-
gorithm, described in Section II-C, and the number of given
sentences.

Like Elman’s RNN, the linguistic RNNPB predicts the
words in the given sentences. All words in the given sen-
tences correspond to nodes in the input layer. If the sentence
consists of three words (move, left, right), “move” is an input
vector (1, 0, 0) and “left” is (0, 1, 0). Since the given sen-
tences are articulated by “period” in advance, the algorithm
described in Section II-C was not used in the linguistic
RNNPB.

These RNNPBs are bind at the PB nodes, as shown in Fig.
4. The PB values of both RNNPBs are updated by using the
following equations. Here, PBM,i represents the ith PB node
in the behavioral RNNPB, and PBL,i represents the ith PB
node in the linguistic RNNPB.

δ α βPB error PB PBM i M i M L i M i, , , ,()= ⋅ + − (6)
δ α βPB error PB PBL i L i L M i L i, , , ,()= ⋅ + − (7)

Where, α, βM, and βL are the learning coefficients, and

errorM,i and errorL,i are the delta errors at the ith PB node
back-propagated in the motion and linguistic RNNPBs. The
updating of the PB values enables the robot to acquire dy-
namic representation shared in both the robot motions and
sentences.

PB PB

Current
sensory-motor value Current word

Predicting
the next word

Behavioral RNNPB Linguistic RNNPB

Predicting
sensory-motor value

Binding PB vectors

Figure 3 Configuration of RNNPBs binding the parametric bias

B. Learning Algorithm
 The RNNPBs are trained with several pairs of motions Mi
and sentences Li as follows: Here, Li consists of multiple
sentences, l1, l2, ..., lni.
Step 1: Articulating the motion

Motion Mi is divided into the ni sections, m1, m2, ..., mni by
using the algorithm shown in Section II-C.

Step 2: Learning of the RNNPB models
The behavioral RNNPB is trained with mi, and the lin-
guistic RNNPB is trained with li, while both PB values are
bind using equation (6) and (7).

1860

Step 3: Repeating Steps 1 and 2 during i = 1, 2, ..., N, until the
whole error is less than the threshold. Once this occurs,
the motions are allocated to the given sentences.

 V. TRANSLATING BETWEEN MOTIONS AND SENTENCES

A. Translating Sentences into Motion
When N sentences, l1, l2, ..., lN are given, the motion is

generated as follows:
Step 1: Obtaining the PB vector

Sentence li is recognized by the linguistic RNNPB, and the
PB vector is obtained.

Step 2: Generating motion
The current joint angles, camera image, and obtained PB
vector are set to the input and PB layer of the motion
RNNPB. After initializing, performing forward-
ing-forward calculation of the RNNPB generates the mo-
tion corresponding to sentence li.

Step 3: By repeating Steps 1 and 2 for i = 1, 2, ..., N, the
motions corresponding to L are generated.

B. Translating Motion into Sentences
 When motion M and the number of sentences, N, are given,
sentences L are generated as follows:
Step 1: Articulating the motion

Motion M is divided into N sections, m1, m2, ..., mN.
Step 2: Obtaining the PB vector

The motion section, mi, is recognized by the behavioral
RNNPB, and the PB vector is obtained.

Step 3: Generating the sentence
Performing forwarding-forward calculation of the
RNNPB with the obtained PB vector generates the sen-
tence corresponding to motion section mi.

Step 4: By repeating Steps 1, 2, and 3 for i = 1, 2, ..., N, the
motions corresponding to M is generated.

 In Step 3, there are some specific cases in which plural
nodes in the output layer are simultaneously activated. For
example, some motions can be described using different
words of “direction” and “name of place”. This ambiguity is
one of the fundamental issues of symbol-grounding prob-
lems, as mentioned in Section I. In our algorithm, if n words,
w1, w2, …, wn, are outputted in Step 3, an appropriate word is
selected as follows:
Step 3-1: The li is generated by assuming that the RNNPB

model only outputted wi.
Step 3-2: The pseudo motion, ~mi , is reproduced from the li

by using the algorithm described in Section V-A.
Step 3-3: Repeating Steps 3-1 and 3-2 for i = 1, 2, …, n. A

word, wi, with minimal errors between ~mi and original mi
is selected as the appropriate word.

 V. EXPERIMENT FOR COMBINING MOTIONS AND SEN-
TENCES

A. Experimental Setup and Training Data
We used a modified version of the Robovie-IIs humanoid

robot as the platform for our experiments [13]. Robovie-IIs is
a refined version of Robovie-II, which was developed at

ATR [14]. The original Robovie-II has three degrees of
freedom (DOF) to control its neck and four to control each
arm. It also has two CCD cameras on its head.
 During the experiment, the robot moved its head so as to
capture data of its left-hand by using forward control with
the joint angles of the arm. The sensory data collected were
the area ratio of each color (red, blue, green, and white)
captured by using a CCD camera with a resolution of 320 x
240 pixels (four dimensions) and the joint angles of the right
arm and head (four dimensions). The data were then norma-
lized ([0-1]) and synchronized (10 frame/s) for use by the
RNNPB model.

We performed an experiment in which the robot moved its
right hand to one of four areas in turn on a table; the areas
were marked red (R), blue (B), yellow (Y), and white (W).
Figure 3 shows an actual image of the experiment in progress.
The experimental setting enables the correspondence be-
tween motions and sentences to be easily detected.

white

yellow

blue

red

 Figure 4 Image of experiment in progress and layout of color area

 The behavioral RNNPB has eight neurons in the in-
put/output layer, which are four joint angles (shoulder roll,
shoulder yaw, head pitch, and head yaw) and four color areas,
50 neurons in the middle layer, and eight neurons in the
context layer.
 The linguistic RNNPB has 17 neurons in the input/output
layer, which corresponds to certain words: {move, to, go, red,
blue, yellow, white, slowly, fast, left, right, up, bottom, up-
per-right, upper-left, lower-left, and lower-right}. These
words are translated to 17-bit vectors and set in the input
layer. The RNNPB has 20 neurons in the middle layer and
eight neurons in the context layer. The number of PB nodes
in both RNNPB is four.
 Table 1 lists the motion patterns of the robot arm and their
corresponding sentences. Each motion was allocated to
multiple sentences with use of “Move” or “Go” and use of
direction or color. The “fast” patterns took one second to
complete the motion, whereas the “slow” patterns took two
seconds. Furthermore, some patterns with the same sen-
tences had different motions, such as the first sentences in (5)
and (6) in Table 1. There were many-to-many mappings
between motions and sentences. Although there were 12
movement patterns between four color areas, only 10 pat-
terns were used for training the two RNNPB models.

1861

Table 1 Training data pairs of motion and linguistic sequences
 Motion pattern Linguistic sequences
(1) Y R B W

(slow)
Move/Go to red/left slowly.
Move/Go to blue/up slowly.
Move/Go to white/right slowly.

(2) Y R B R
(slow)

Move/Go to red/left slowly.
Move/Go to blue/up slowly.
Move/Go to red/down slowly.

(3) Y R Y R
(fast)

Move/Go to red/left fast.
Move/Go to yellow/right fast.
Move/Go to red/left fast.

(4) Y R W R
(fast)

Move/Go to red/left fast.
Move/Go to white/upper-right fast.
Move/Go to red/lower-left fast.

(5) Y B R Y
(slow)

Move/Go to blue/upper-left slowly.
Move/Go to red/down slowly.
Move/Go to yellow/left slowly.

(6) Y B W Y
(slow)

Move/Go to blue/upper-left slowly.
Move/Go to white/right slowly.
Move/Go to yellow/down slowly.

(7) Y B Y R
(fast)

Move/Go to blue/upper-left fast.
Move/Go to yellow/lower-right fast.
Move/Go to red/left fast.

(8) Y B W R
(fast)

Move/Go to blue/upper-left fast.
Move/Go to white/right fast.
Move/Go to red/lower-left fast.

Y: yellow area, R: red area, B: blue area, W: white area

B. Result 1: Comparison with PB spaces
 Figure 5 shows the distribution of the PB values for the 12
motion sequences listed in Table 1. Figure 6 shows the dis-
tribution of the PB values obtained from four sentences:
“Move to red slowly.”, “Move to yellow slowly.”, “Move to
white slowly.”, and “Move to blue slowly.” Two nodes were
selected from a PB vector with four dimensions to coordinate
on X-Y plane. The results show that the PB vectors in two
spaces correspond each other appropriately.

C. Result 2: Translating sentence into motion

Figure 7 shows the three trajectories generated by the
robot using the sentence, “Move to white slowly.” The
initial positions of the robot hand in movements 1 and 2 were
in the red and blue areas. These motions were included in the
training data, as listed in Table 1. The robot generated
movement 3 from the yellow area, even though the trajectory
was not included in the training data. The generalization
ability of the RNN enabled the robot to generate unknown
motions from a given sentence.

D. Result 3: Translating motions into sentences

Table 2 lists the sentences corresponding to the 24 mo-
tions generated by our method. We obtained appropriate
sentences corresponding to 20 trained motions and four
motions that were unknown for the robot. When the move-
ment from blue to yellow area slowly was input to the lin-
guistic RNNPB, for example, it generated three sentences,
“Move to red slowly.”, “Move to yellow slowly.”, and “Go
to yellow slowly.” Our system eventually selected “Move to
yellow slowly.” by using the method described in Section
V-B.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

W > R
B > R
Y > R
R > Y
B > Y
W > Y
Y > W
R > W
B > W
Y > B
R > B
W > B

PB value (node 1)

PB
 v
al
ue
 (n
od
e
2)

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

W > R
B > R
Y > R
R > Y
B > Y
W > Y
Y > W
R > W
B > W
Y > B
R > B
W > B

PB value (node 1)

PB
 v
al
ue
 (n
od
e
2)

Figure 5 PB space acquired from 12 motions

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Move to red
slowly.
Move to yellow
slowly.
Move to white
slowly.
Move to blue
slowly.

PB value (node 1)

PB
 v
al
ue
 (n
od
e
2)

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Move to red
slowly.
Move to yellow
slowly.
Move to white
slowly.
Move to blue
slowly.

PB value (node 1)

PB
 v
al
ue
 (n
od
e
2)

Figure 6 PB space acquired from four sentences

blue white

red yellow

1

2
3

0 10 20 30-10-20-30 [cm]

[cm]

0

10

20

-10

-20

blue white

red yellow

1

2
3

0 10 20 30-10-20-30 [cm]

[cm]

0

10

20

-10

-20

Figure 7 Motion trajectories generated from a sentence:
1: Motion from blue to white (included in training data)
2: Motion from red to white (included in training data)

3: Motion from yellow to white (not included in training data)

Table 2 Sentences generated from motion sequences

(‘*’ denotes “not included in training data”)
Motion pattern Generated sentence
Y R (slow)
Y R (fast)
Y B (slow)
Y B (fast)

Y W (slow)*
Y W (fast)*
R Y (slow)
R Y (fast)
R B (slow)
R B (fast)

R W (slow)
R W (fast)
B Y (slow)
B Y (fast)
B R (slow)
B R (fast)

B W (slow)
B W (fast)
W Y (slow)
W Y (fast)

Move to red slowly.
Go to red fast.

Go upper-left slowly.
Go upper-left fast.

Move to white slowly.
Go to white fast.

Move to yellow slowly.
Go to yellow fast.

Move to blue slowly.
Move to blue fast.

Move upper-right slowly.
Move upper-right fast.

Move lower-right slowly.
Move lower-right fast.

Go to red slowly.
Move to red slowly.

Move to white slowly.
Move to white fast.

Go to yellow slowly.
Go to yellow fast.

1862

W R (slow)
W R (fast)

W B (slow)*
W B (fast)*

Move lower-left slowly.
Go lower-left fast.
Go to blue slowly.
Move to blue fast.

We found trends in the words selected in the generated

sentences. The words associated with area color tended to be
selected in sentences corresponding to horizontal and ver-
tical movements. Whereas, the words associated with motion
direction tended to be selected in sentences corresponding to
diagonal movements.

We then designed a motion that consists of two move-
ments: from the yellow to red and from red to blue (Fig. 8).
The speed of both motions was ‘fast’. Here, we changed
the number N of output sentences for this motion.

-10

-20

blue white

red yellow

0 10 20 30-10-20-30 [cm]

[cm]

0

10

20

-10

-20

blue white

red yellow

0 10 20 30-10-20-30 [cm]

[cm]

0

10

20 blue white

red yellow

0 10 20 30-10-20-30 [cm]

[cm]

0

10

20

 Figure 8 Motion trajectory for generating sentences

 When the N was set to ‘2’, the output sentences were as
follows:
 Move to red fast. Move to blue fast.
 These sentences are suitable for matching our intuition
well. An interesting output was obtained when the N was set
to ‘1’ as follows:
 Move to blue slowly.
 When the motion was regarded as one movement, the goal
color defined the sentence. Furthermore, since the motion
took twice as long time as the ‘fast (1 second)’ motion, the
word ‘slowly (2 seconds)’ was suitable to express the mo-
tion.

VI. SUMMARY AND FUTURE WORK

 We developed a method that enables a two-way transla-
tion between motions and sentences by using the behavioral
and linguistic RNNPB models that contain binding PB layers.
In translating sentences into motions, our method enabled
the robot to generate known and unknown motions. Our
method includes two essential methods: One method arti-
culates/allocates motions using prediction errors from RNN
and the number of sentences. The other method selects word
to solve ambiguity in generated sentences.
 Sentences were roughly categorized into ‘simple sen-
tences’, ‘compound sentences’ and ‘complex sentences.’ A
simple sentence has a minimal sentence unit. A compound
sentence consists of multiple simple sentences and has a
coordination relationship. Although complex sentence also
consists of multiple sentences, they have a dependency re-

lationship. The sentences generated by our method do not
have dependency relationships and follow a time sequence.
Therefore, our current method can only handle compound
sentences. One area of our future works will be to enhance
our method to be able to handle complex sentence. We will
use our method in more complex tasks and sophisticated
humanoids.

ACKNOWLEDGMENT

 This research was supported by the Ministry of Education,
Science, Sports, and Culture, Grant-in-Aid for Young
Scientists (A) (No. 17680017, 2005-2007), and Kayamori
Foundation of Informational Science Advancement.

REFERENCES
[1] S. Harnad, The symbol grounding problem. Physica D, 42, 335–346,

1990.
[2] T. Ogata, M. Matsunaga, S. Sugano, and J. Tani, “Human Robot Col-

laboration Using Behavioral Primitives,” IEEE/RSJ IROS 2004, pp.
1592-1597, 2004.

[3] Y. Sugita and J. Tani, “Learning semantic combinatoriality from the
interaction between linguistic and behavioral processes”, Adaptive
Behavior, Vol.13, No.1, pp.33-52, 2005.

[4] J. Elman et al., “A PDP approach to processing center-embedded sen-
tences”, Proc. of the Fourteenth Annual Conference of the Cognitive
Science Society, Hillsdale, NJ, 1993.

[5] J. Elman, “Finding structure in time”, Cognitive Science, 14, 179–211,
1990.

[6] J. Elman, “Distributed representations, simple recurrent networks, and
grammatical structure”, Machine Learning, pp.195-225, 1991.

[7] J. Elman, “Learning and development in neural networks: The impor-
tance of starting small”, Cognition, pp.71-99, 1993.

[8] P. Rodrigues, J. Wiles, and J. Elman, “A recurrent network that learns to
count”, Connection Science, Vol. 11, No. 1, pp. 5-40, 1999.

[9] J. Tani and M. Ito, “Self-Organization of Behavioural Primitives as
Multiple Attractor Dynamics: A Robot Experiment,” IEEE Transac-
tions on SMC Part A, Vol. 33, No. 4, pp. 481-488, 2003.

[10] M. Jordan, “Attractor dynamics and parallelism in a connectionist
sequential machine,” Eighth Annual Conference of the Cognitive
Science Society (Erlbaum, Hillsdale, NJ), pp. 513-546, 1986.

[11] D. Rumelhart, G. Hinton, and R. Williams, “Learning internal repre-
sentation by error propagation,” in D.E. Rumelhart and J.L. McLelland,
editors, Parallel Distributed Processing (Cambridge, MA: MIT Press),
1986.

[12] T. Ogata, S. Sugano, and J. Tani, “Open-end Human-Robot Interaction
from the Dynamical Systems Perspective -Mutual Adaptation and In-
cremental Learning, Advanced Robotics,” VSP and Robotics Society of
Japan, Vol.19, No. 6, pp. 651-670, July, 2005.

[13] H. Ishiguro, T. Ono, M. Imai, T. Maeda, T. Kanda, and R. Nakatsu,
“Robovie: an interactive humanoid robot.” Int. Journal of Industrial
Robotics, Vol. 28, No. 6, pp. 498-503, 2001.

[14] T. Miyashita, T. Tajika, K. Shinozawa, H. Ishiguro, K. Kogure and N.
Hagita, "Human Position and Posture Detection based on Tactile In-
formation of the Whole Body," IEEE/RSJ IROS 2004 Work Shop, 2004

1863

