
 
 

 

  

Abstract - We present a connectionist model that combines 
motions and language based on the behavioral experiences of a 
real robot. Two models of recurrent neural network with pa-
rametric bias (RNNPB) were trained using motion sequences 
and linguistic sequences. These sequences were combined using 
their respective parameters so that the robot could handle 
many-to-many relationships between motion sequences and 
linguistic sequences. Motion sequences were articulated into 
some primitives corresponding to given linguistic sequences 
using the prediction error of the RNNPB model. The experi-
mental task in which a humanoid robot moved its arm on a 
table demonstrated that the robot could generate a motion 
sequence corresponding to given linguistic sequence even if the 
motions or sequences were not included in the training data, 
and vice versa. 

I.  INTRODUCTION 

 Language is a powerful tool in human communication 
because it can work as a static/definite symbol and/or dy-
namic/contextual symbol. However, the symbol-grounding 
problem proposed by Harnad is problematic because of these 
properties of language [1]. This is due to the ambiguity be-
tween actual actions/movement and symbols, that is, there is 
a many-to-many mapping between actual actions/movement 
and symbols. Ogata et al. proposed the use of the qua-
si-symbols to encode dynamic attractors as an approach to 
this problem [2]. Quasi-symbols can be automatically ex-
tracted by using a recurrent neural network (RNN), and be 
handled like real symbols in human-robot communication. 
However, little research has been under taken to investigate 
the relationship between quasi-symbols and natural lan-
guage. 

For example, the motions represented by “move the arm to 
center.” are different if the arm is on the right or left. The 
meaning of a sentence can vary significantly depending on 
the context in which they are used. This means that dynam-
ical representation of language is key issue when translating 
sentences into motions. 

We can describe a motion by using different sentences. 
We can also use multiple sentences to represent a motion by 
dividing the motion into stages. This means that articulating 
and allocating the actual actions/movement is the key for 
translating motions into sentences. 
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 Sugita et al. proposed a method to integrate robot motions 
and sentences using two RNNs that bind a part of the input 
layers [3]. They taught a robot nine motions with 18 cor-
responding sentences. The generalization ability of the 
RNNs enabled the robot to acquire many-to-many mappings 
between motions and sentences, even though some of them 
were not included in the training set. However, they did not 
deal with the problem of articulating motions and allocating 
sentences. The motions and sentences were prepared in 
advance. Moreover, they only dealt with translating sen-
tences into motions and not translating motions into sen-
tences. 

In this paper, we present a method that solves articulating 
and allocating problems by using the prediction error ob-
tained from RNNs trained with motions and sentences. Our 
method enables robots to translate motions into arbitrary 
numbers of sentences, and vice versa. Our method also 
enables new motions and new sentences to be created based 
on the generalization ability of the neural networks.  

The rest of the paper is as follows: Section II discusses 
the validity of the use of RNN to deal with language by 
referring to Elman’s studies. Section III describes the detail 
of the RNN model used in our architecture. The model can 
articulate a robot motion by using the prediction errors ob-
tained from the RNN and the number of given sentences. 
Section IV describes the learning methods used to acquire 
dynamic representation of motions and sentences. Section V 
proposes the methods used to translate motions into sen-
tences, and vice versa. Section V explains the experimental 
task in which a humanoid robot moves its arm on a table and 
shows the results translating motions into sentences, and 
vice versa. Section VI concludes the paper with a summary 
of the key points and a look at our future work. 

II.  LANGUAGE LEARNING USING NEURAL NETWORKS 

 An essential problem when computation systems handle 
language and physical phenomena is a property difference 
between them. In general, language is represented as a sto-
chastic system, and a physical phenomenon is represented as 
a dynamical system. To combine them effectively, these 
representations must be the same. Therefore, we used a RNN, 
one of the dynamical systems, to represent both systems. 
 Elman et al. showed that a RNN has the ability to acquire 
grammar regulations [4-8]. The RNN was trained to predict 
the next word from in a sentence from the previous word. 
Result have generally shown that RNN can accept sentences 
that follow regular grammar conventions and sentences that 
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follow context–free conventions, even though this network 
has sentence length limitations. Results have also shown that 
an Elman type RNN can deal with sequences of tenses and 
idiom sets that appear at distant positions in the same sen-
tence. These reports imply that a RNN can be used to treat 
both language and robot motions. 

III.  RNNPB AND ARTICULATING TIME SEQUENCE DATA 

A. RNNPB Model 
The recurrent neural network with parametric bias 

(RNNPB) model proposed by Tani and Ito is can predict 
which input is a current state-vector and which output is a 
next state-vector [9]. The model articulates complex motion 
sequences into motion units, which are encoded as limit 
cycling dynamics and/or fixed-point dynamics of the RNN. 
The model we used has the same architecture as the con-
ventional Jordan-type RNN model [10], except that it has PB 
nodes in the input layer. Jordan-type RNN output vectors 
were generated from input vectors and context vectors with a 
recursive connection. Unlike other input nodes, the PB nodes 
have a constant value throughout each time sequence. They 
are used to implement mapping between fixed length values 
and time sequences. The network configuration of the 
RNNPB model is shown in Figure 1. 

Like the Jordan-type RNN model, the RNNPB model 
learns data sequences in a supervised manner. The difference 
is that in the RNNPB model, the values that encode the se-
quences are self-organized in the PB nodes during the 
learning process. The common structural properties of the 
training data sequences are acquired as connection weights 
by using the back-propagation-through-time (BPTT) algo-
rithm [11], and the specific properties of each individual time 
sequence are simultaneously encoded as PB values. As a 
result, the RNNPB model self-organizes the mapping be-
tween the PB values and the time sequences. 
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Figure 1 Network configuration of RNNPB model 

 
B. Learning of PB Vectors 

The learning algorithm for the PB values is a variant of 
the BPTT algorithm in which T denotes the step length of a 
sequence. For each sensory-motor output, the 
back-propagated errors with respect to the PB nodes are 
accumulated and used to update the PB values. The ith unit 
of the parametric bias is updated by using the following 
equations: 

 
 δρ ε δi t

bp

t

T
i

=
=
∑

0

         (1) 

 

p sigmoidt t= ( / )ρ ζ        (2) 
 

In Eq. (1), δt
bp

 represents the delta error back propagated 
from the output nodes to the PB nodes and is integrated over 
period T steps. Internal value ρt is updated using the delta 
force, as shown in Eq. (2). The ε and ζ are learning coeffi-
cients. The current PB values are obtained from the sig-
moidal outputs of the internal values.  

In the generation mode, the PB value for a desired se-
quence is set to the PB node. The desired sequence is ob-
tained by performing a forwarding-forward calculation 
called a closed-mode for RNNPB [12]. In the mode, the 
output in step t − 1: S(t − 1) is the input data in the step t: S(t). 
The input/output layer plays the same role as the context 
layer in the closed-mode.  

The RNNPB model can also be used in recognition 
processes and in sequence generation processes. For a given 
sequence, the corresponding PB value can be obtained by 
using the update rules for the PB values without having to 
update the connection weight values. This inverse operation 
in generation is regarded as recognition. 

 
C. Articulating Sequence Data 
 As mentioned in Section I, essential issues for combining 
language and robot motions are articulation and allocation.  
  One way to combine language and motions is based on 
using motion trajectories. Such methods usually cut off the 
parts of trajectories where the motion velocity is close to zero. 
Each part is approximated as a straight line, circle, and/or 
spline function. This technique is especially practical, when 
humanoid robots imitate motions, which has morphology 
quite similar to that of humans. However, this technique is 
unsuitable for our aim because it depends on static features. 
The motion trajectory must be articulated by using dynami-
cal features so that its meaning can be changed based on the 
context used in the sentences.  
  Another way is based on the dynamics used to generate the 
trajectories. Systems using this approach usually consist of 
dynamic recognizers that predict the target sequences. The 
motion is articulated based on the predictability of the re-
cognizer. The method we used to articulate a robot’s motion 
using the prediction error of RNNPB model and the number 
of given sentences is described as follows: We consider the 
problem of articulating a motion sequence, X(t), of which 
length is T into N sections, which are represented as S0, S1, ..., 
SN-1. The boundary time between Si-1 and Si is represented by 
t = si, that is, Si is defined as [si, si+1]. 
 
Step 1: Initializing 

The given motion sequence is divided into N sections. 
Each section has the same length.  
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 s T i Ni ← ⋅ /     (i = 0, ..., N)    (3) 
 
Step 2: RNNPB Training 

The connection weights and PB values of the RNNPB 
model are updated with the given sequence, while the PB 
values keep constant in each section, Si. 

Step 3: Calculating of prediction errors 
In each Si, the prediction errors of the RNNPB model P(t) 
are calculated, and the maximal error Ei is obtained as 
follows: 

 
 E X t P ti t Si

← −
∈

max ( ) ( )     (i = 0, ..., N)    (4) 

 
Step 4: Updating the length of each section 
 The boundary time, si, is updated by using the following 
rules: 
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Where, ds is the parameter used to update the section 
length. 

Step 5: Repeating Steps 1 to 4 until the whole error is less 
than the threshold. 

 If a motion is generated by using simple dynamics, the 
prediction error of the RNNPB is small, even when the PB 
values are fixed. However, if a motion is generated by using 
multiple dynamics, the prediction error at the boundary 
between dynamics increases as shown in Fig. 2. The devel-
oped algorithm can decrease the error by modifying the 
position of each boundary. The annealing technique used to 
decrease ds based on the increase of learning steps is im-
plemented for stable learning.  
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Figure 2 Articulating into multiple sequences 
 

IV. LEARNING TO COMBINE MOTIONS AND SENTENCES 

A. Two RNNPBs for Motions and Sentences 
Similar to Sugita, we use two RNNPBs to combine robot 

motions and sentences. One RNNPB, called behavioral 
RNNPB, is used to train the robot motion, and the other 
RNNPB, called linguistic RNNPB, is used to train the mul-
tiple sentences that explain the motion. 

The training data of the behavioral RNNPB consists of a 

series of joint degrees and camera images downloaded into 
the robot. The sequence data is articulated by using our al-
gorithm, described in Section II-C, and the number of given 
sentences.  

Like Elman’s RNN, the linguistic RNNPB predicts the 
words in the given sentences. All words in the given sen-
tences correspond to nodes in the input layer. If the sentence 
consists of three words (move, left, right), “move” is an input 
vector (1, 0, 0) and “left” is (0, 1, 0). Since the given sen-
tences are articulated by “period” in advance, the algorithm 
described in Section II-C was not used in the linguistic 
RNNPB. 

These RNNPBs are bind at the PB nodes, as shown in Fig. 
4. The PB values of both RNNPBs are updated by using the 
following equations. Here, PBM,i represents the ith PB node 
in the behavioral RNNPB, and PBL,i represents the ith PB 
node in the linguistic RNNPB. 

 
δ α βPB error PB PBM i M i M L i M i, , , ,( )= ⋅ + −    (6) 
δ α βPB error PB PBL i L i L M i L i, , , ,( )= ⋅ + −     (7) 
 
Where, α, βM, and βL are the learning coefficients, and 

errorM,i and errorL,i are the delta errors at the ith PB node 
back-propagated in the motion and linguistic RNNPBs. The 
updating of the PB values enables the robot to acquire dy-
namic representation shared in both the robot motions and 
sentences.  

 

PB PB
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sensory-motor value Current word

Predicting
the next word

Behavioral RNNPB Linguistic RNNPB

Predicting  
sensory-motor value
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Figure 3 Configuration of RNNPBs binding the parametric bias 
 
B. Learning Algorithm 
 The RNNPBs are trained with several pairs of motions Mi 
and sentences Li as follows: Here, Li consists of multiple 
sentences, l1, l2, ..., lni.  
Step 1: Articulating the motion 

Motion Mi is divided into the ni sections, m1, m2, ..., mni by 
using the algorithm shown in Section II-C. 

Step 2: Learning of the RNNPB models 
The behavioral RNNPB is trained with mi, and the lin-
guistic RNNPB is trained with li, while both PB values are 
bind using equation (6) and (7).  
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Step 3: Repeating Steps 1 and 2 during i = 1, 2, ..., N, until the 
whole error is less than the threshold. Once this occurs, 
the motions are allocated to the given sentences.  

 V. TRANSLATING BETWEEN MOTIONS AND SENTENCES 

A. Translating Sentences into Motion 
When N sentences, l1, l2, ..., lN are given, the motion is 

generated as follows: 
Step 1: Obtaining the PB vector 

Sentence li is recognized by the linguistic RNNPB, and the 
PB vector is obtained. 

Step 2: Generating motion 
The current joint angles, camera image, and obtained PB 
vector are set to the input and PB layer of the motion 
RNNPB. After initializing, performing forward-
ing-forward calculation of the RNNPB generates the mo-
tion corresponding to sentence li. 

Step 3: By repeating Steps 1 and 2 for i = 1, 2, ..., N, the 
motions corresponding to L are generated. 

 
B. Translating Motion into Sentences 
 When motion M and the number of sentences, N, are given, 
sentences L are generated as follows:  
Step 1: Articulating the motion 

Motion M is divided into N sections, m1, m2, ..., mN. 
Step 2: Obtaining the PB vector 

The motion section, mi, is recognized by the behavioral 
RNNPB, and the PB vector is obtained. 

Step 3: Generating the sentence 
Performing forwarding-forward calculation of the 
RNNPB with the obtained PB vector generates the sen-
tence corresponding to motion section mi. 

Step 4: By repeating Steps 1, 2, and 3 for i = 1, 2, ..., N, the 
motions corresponding to M is generated. 

 In Step 3, there are some specific cases in which plural 
nodes in the output layer are simultaneously activated. For 
example, some motions can be described using different 
words of “direction” and “name of place”. This ambiguity is 
one of the fundamental issues of symbol-grounding prob-
lems, as mentioned in Section I. In our algorithm, if n words, 
w1, w2, …, wn, are outputted in Step 3, an appropriate word is 
selected as follows:  
Step 3-1: The li is generated by assuming that the RNNPB 

model only outputted wi. 
Step 3-2: The pseudo motion, ~mi , is reproduced from the li 

by using the algorithm described in Section V-A.  
Step 3-3: Repeating Steps 3-1 and 3-2 for i = 1, 2, …, n. A 

word, wi, with minimal errors between ~mi  and original mi 
is selected as the appropriate word. 

 V. EXPERIMENT FOR COMBINING MOTIONS AND SEN-
TENCES 

A. Experimental Setup and Training Data 
We used a modified version of the Robovie-IIs humanoid 

robot as the platform for our experiments [13]. Robovie-IIs is 
a refined version of Robovie-II, which was developed at 

ATR [14]. The original Robovie-II has three degrees of 
freedom (DOF) to control its neck and four to control each 
arm. It also has two CCD cameras on its head.  
 During the experiment, the robot moved its head so as to 
capture data of its left-hand by using forward control with 
the joint angles of the arm. The sensory data collected were 
the area ratio of each color (red, blue, green, and white) 
captured by using a CCD camera with a resolution of 320 x 
240 pixels (four dimensions) and the joint angles of the right 
arm and head (four dimensions). The data were then norma-
lized ([0-1]) and synchronized (10 frame/s) for use by the 
RNNPB model. 

We performed an experiment in which the robot moved its 
right hand to one of four areas in turn on a table; the areas 
were marked red (R), blue (B), yellow (Y), and white (W). 
Figure 3 shows an actual image of the experiment in progress. 
The experimental setting enables the correspondence be-
tween motions and sentences to be easily detected.  
 

 

white

yellow

blue

red

 
 

 Figure 4 Image of experiment in progress and layout of color area 
 

 The behavioral RNNPB has eight neurons in the in-
put/output layer, which are four joint angles (shoulder roll, 
shoulder yaw, head pitch, and head yaw) and four color areas, 
50 neurons in the middle layer, and eight neurons in the 
context layer.  
 The linguistic RNNPB has 17 neurons in the input/output 
layer, which corresponds to certain words: {move, to, go, red, 
blue, yellow, white, slowly, fast, left, right, up, bottom, up-
per-right, upper-left, lower-left, and lower-right}. These 
words are translated to 17-bit vectors and set in the input 
layer. The RNNPB has 20 neurons in the middle layer and 
eight neurons in the context layer. The number of PB nodes 
in both RNNPB is four. 
 Table 1 lists the motion patterns of the robot arm and their 
corresponding sentences. Each motion was allocated to 
multiple sentences with use of “Move” or “Go” and use of 
direction or color. The “fast” patterns took one second to 
complete the motion, whereas the “slow” patterns took two 
seconds. Furthermore, some patterns with the same sen-
tences had different motions, such as the first sentences in (5) 
and (6) in Table 1. There were many-to-many mappings 
between motions and sentences. Although there were 12 
movement patterns between four color areas, only 10 pat-
terns were used for training the two RNNPB models. 
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Table 1 Training data pairs of motion and linguistic sequences 
 Motion pattern Linguistic sequences 
(1) Y R B W 

(slow) 
Move/Go to red/left slowly.  
Move/Go to blue/up slowly.  
Move/Go to white/right slowly. 

(2) Y R B R 
(slow) 

Move/Go to red/left slowly.  
Move/Go to blue/up slowly.  
Move/Go to red/down slowly. 

(3) Y R Y R 
(fast) 

Move/Go to red/left fast.  
Move/Go to yellow/right fast.  
Move/Go to red/left fast. 

(4) Y R W R 
(fast) 

Move/Go to red/left fast.  
Move/Go to white/upper-right fast.  
Move/Go to red/lower-left fast. 

(5) Y B R Y 
(slow) 

Move/Go to blue/upper-left slowly.  
Move/Go to red/down slowly.  
Move/Go to yellow/left slowly. 

(6) Y B W Y 
(slow) 

Move/Go to blue/upper-left slowly.  
Move/Go to white/right slowly.  
Move/Go to yellow/down slowly. 

(7) Y B Y R 
(fast) 

Move/Go to blue/upper-left fast.  
Move/Go to yellow/lower-right fast.  
Move/Go to red/left fast. 

(8) Y B W R 
(fast) 

Move/Go to blue/upper-left fast.  
Move/Go to white/right fast.  
Move/Go to red/lower-left fast. 

Y: yellow area, R: red area, B: blue area, W: white area 
 
B. Result 1: Comparison with PB spaces 
  Figure 5 shows the distribution of the PB values for the 12 
motion sequences listed in Table 1. Figure 6 shows the dis-
tribution of the PB values obtained from four sentences: 
“Move to red slowly.”, “Move to yellow slowly.”, “Move to 
white slowly.”, and “Move to blue slowly.” Two nodes were 
selected from a PB vector with four dimensions to coordinate 
on X-Y plane. The results show that the PB vectors in two 
spaces correspond each other appropriately. 
 
C. Result 2: Translating sentence into motion 

Figure 7 shows the three trajectories generated by the 
robot using the sentence, “Move to white slowly.”  The 
initial positions of the robot hand in movements 1 and 2 were 
in the red and blue areas. These motions were included in the 
training data, as listed in Table 1. The robot generated 
movement 3 from the yellow area, even though the trajectory 
was not included in the training data. The generalization 
ability of the RNN enabled the robot to generate unknown 
motions from a given sentence.  

 
D. Result 3: Translating motions into sentences 

Table 2 lists the sentences corresponding to the 24 mo-
tions generated by our method. We obtained appropriate 
sentences corresponding to 20 trained motions and four 
motions that were unknown for the robot. When the move-
ment from blue to yellow area slowly was input to the lin-
guistic RNNPB, for example, it generated three sentences, 
“Move to red slowly.”, “Move to yellow slowly.”, and “Go 
to yellow slowly.” Our system eventually selected “Move to 
yellow slowly.” by using the method described in Section 
V-B.  
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Figure 5 PB space acquired from 12 motions  
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Figure 6 PB space acquired from four sentences 
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Figure 7 Motion trajectories generated from a sentence:  
1: Motion from blue to white (included in training data) 
2: Motion from red to white (included in training data) 

3: Motion from yellow to white (not included in training data) 

 
Table 2 Sentences generated from motion sequences  

(‘*’ denotes “not included in training data”) 
Motion pattern Generated sentence 
Y R (slow) 
Y R (fast) 
Y B (slow) 
Y B (fast) 

Y W (slow)* 
Y W (fast)* 
R Y (slow) 
R Y (fast) 
R B (slow) 
R B (fast) 

R W (slow) 
R W (fast) 
B Y (slow) 
B Y (fast) 
B R (slow) 
B R (fast) 

B W (slow) 
B W (fast) 
W Y (slow) 
W Y (fast) 

Move to red slowly. 
Go to red fast. 

Go upper-left slowly. 
Go upper-left fast. 

Move to white slowly. 
Go to white fast. 

Move to yellow slowly. 
Go to yellow fast. 

Move to blue slowly. 
Move to blue fast. 

Move upper-right slowly. 
Move upper-right fast. 

Move lower-right slowly. 
Move lower-right fast. 

Go to red slowly. 
Move to red slowly. 

Move to white slowly. 
Move to white fast. 

Go to yellow slowly. 
Go to yellow fast. 
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W R (slow) 
W R (fast) 

W B (slow)* 
W B (fast)* 

Move lower-left slowly. 
Go lower-left fast. 
Go to blue slowly. 
Move to blue fast. 

 
We found trends in the words selected in the generated 

sentences. The words associated with area color tended to be 
selected in sentences corresponding to horizontal and ver-
tical movements. Whereas, the words associated with motion 
direction tended to be selected in sentences corresponding to 
diagonal movements. 

We then designed a motion that consists of two move-
ments: from the yellow to red and from red to blue (Fig. 8). 
The speed of both motions was ‘fast’. Here, we changed 
the number N of output sentences for this motion.  
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 Figure 8 Motion trajectory for generating sentences 
 

 When the N was set to ‘2’, the output sentences were as 
follows:  
 Move to red fast. Move to blue fast. 
 These sentences are suitable for matching our intuition 
well. An interesting output was obtained when the N was set 
to ‘1’ as follows: 
 Move to blue slowly. 
 When the motion was regarded as one movement, the goal 
color defined the sentence. Furthermore, since the motion 
took twice as long time as the ‘fast (1 second)’ motion, the 
word ‘slowly (2 seconds)’ was suitable to express the mo-
tion. 

VI.  SUMMARY AND FUTURE WORK 

 We developed a method that enables a two-way transla-
tion between motions and sentences by using the behavioral 
and linguistic RNNPB models that contain binding PB layers. 
In translating sentences into motions, our method enabled 
the robot to generate known and unknown motions. Our 
method includes two essential methods: One method arti-
culates/allocates motions using prediction errors from RNN 
and the number of sentences. The other method selects word 
to solve ambiguity in generated sentences. 
 Sentences were roughly categorized into ‘simple sen-
tences’, ‘compound sentences’ and ‘complex sentences.’ A 
simple sentence has a minimal sentence unit. A compound 
sentence consists of multiple simple sentences and has a 
coordination relationship. Although complex sentence also 
consists of multiple sentences, they have a dependency re-

lationship. The sentences generated by our method do not 
have dependency relationships and follow a time sequence. 
Therefore, our current method can only handle compound 
sentences. One area of our future works will be to enhance 
our method to be able to handle complex sentence. We will 
use our method in more complex tasks and sophisticated 
humanoids. 
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