
Learning to Generate Articulated Behavior Through the Bottom-Up

and the Top-Down Interaction Processes

Jun Tani

Brain Science Institute, RIKEN

2-1 Hirosawa, Wako-shi, Saitama, 351-0198 Japan

Tel +81-48-467-6467, FAX +81-48-467-7248

E-mail tani@brain.riken.go.jp

(Neural Networks, 16-1, pp11-23, 2003)

Abstract

A novel hierarchical neural network architecture for sensory-motor learning
and behavior generation is proposed. Two levels of forward model neural net-
works are operated on different time scales while parametric interactions are
allowed between the two network levels in the bottom-up and top-down direc-
tions. The models are examined through experiments of behavior learning and
generation using a real robot arm equipped with a vision system. The results
of the learning experiments showed that the behavioral patterns are learned by
self-organizing the behavioral primitives in the lower level and combining the
primitives sequentially in the higher level. The results contrast with prior work
by Pawelzik et al. (1996), Tani & Nolfi (1998), and Wolpert & Kawato (1998)
in that the primitives are represented in a distributed manner in the network in
the present scheme whereas, in the prior work, the primitives were localized in
specific modules in the network. Further experiments of on-line planning showed
that the behavior could be generated robustly against a background of real world
noise while the behavior plans could be modified flexibly in response to changes
in the environment. It is concluded that the interaction between the bottom-up

1

process of recalling the past and the top-down process of predicting the future
enables both robust and flexible situated behavior.

1 Introduction

It is generally understood that higher-order cognition involves structural information

processing which deals with the level of abstraction. When an agent perceives sensory

flow, the agent might need to recognize only sequences of essential event-like features

out of raw sensory signals. On the other hand, when the agent attempts to generate

motor behavior, it is reasonable to assume that an abstract event sequence is generated

in a higher level and that its detailed motor program is generated in a lower level. The

question is how this sort of abstraction of information in the processes of sensation and

behavior generation can be achieved based solely on the sensory-motor experiences of

the agent. Kuniyoshi etal. (1994) argued that the key issue lay in the question of

how the sensory-motor flow could be recognized and generated as articulated. Here,

articulated means that continuous sensory-motor flow is temporally segmented into a

sequence of chunks that are reusable as parts for reconstructing other experiences of

sensory-motor flows.

The problems of segmentation and chunking have been studied in the context of

sequence learning by Wang and Arbib (1990), Hochreiter and Schmidhuber (1997) uti-

lizing a local short term memory architecture, and Sun and Sessions (2000) utilizing

adaptive reinforcement learning modules. In the field of motor learning, Gomi and

Kawato (1993), Wolpert and Kawato (1998), Haruno, Wolpert and Kawato (2001),

and Bapi and Doya (2000) have shown that behavior primitives can be self-organized

at each local network using a mixture of experts (Jacobs et al, 1991) type architecture

by following Pawelzik’s (1996) idea of segmenting sequences. Their models utilize a

network consisting of multiple adaptive modules in which each adaptive module learns

competitively to be an expert in predicting a specific primitive sensory-motor profile.

When the winner of the experts switches from one module to another module corre-

sponding to the structural changes in the characteristics of the sensory-motor flow,

the sensory-motor flow is considered to have been segmented. The idea of utilizing a

mixture of experts was further extended by introducing level structures to the system

(Tani & Nolfi, 1998). Multiple levels of modular networks were considered. When the

system repeatedly experiences a similar sequence of module activations in the lower

level, this sequence itself can be learned by a module in the higher level network. Each

module in the higher level network learns to encode a different sequence of the prim-

2

itives that is reusable in various situations. By cascading the networks into different

levels, the sensory-motor flow can be articulated hierarchically. Those prior works uti-

lizing a local short term memory architecture or a mixture of experts scheme share the

same characteristic that primitives are represented locally in corresponding modules. A

major drawback of such localist representation schemes is that the number of primitive

patterns stored is limited to that of local modules.

The current paper proposes an alternative scheme in which multiple primitive pat-

terns are stored distributedly. We call the scheme the “forwarding forward model”

(FF-model) since a cascade of forward dynamics models (Kawato, Furukawa, & Suzuki,

1987; Jordan & Rumelhart, 1992) is utilized. It will be explained how behavior prim-

itives are self-organized as well as evoked through the processes of bottom-up and

top-down interactions utilizing the level structures proposed in the distributed repre-

sentation scheme. Particularly, we propose a scheme of combining the recall of past

experiences and the planning of future behavior for achieving both robust and flexible

behavior generation. In order to generate adequate future behavior, the behavior pro-

grams have to be prepared prior to their execution. On the other hand, the behavior

program currently generated should be modified flexibly even after its generation in

response to situational changes in the environment. Therefore, the process of motor

planning for the future should be performed in an on-line manner, i.e. integrated with

the process of on-line recall of the past so that future behavior can be programmed

while being situated in the past behavioral context. In other words, since the current

behavior is generated by going through the interactive processes between top-down pre-

diction of the future and bottom-up recall of the past, the behavior can be adaptively

modified in response to a changing environment while also being performed robustly

with respect to noise.

The proposed scheme will be examined through experiments of learning and gener-

ation of guided behaviors with a real robot arm. We will investigate (i) how behavior

primitives are articulated and how they are integrated between the levels using limited

sets of learning examples, and (ii) how the behavioral program is generated adaptively

in response to situational changes using simple task examples. At the end of the paper,

we discuss the advantages and disadvantages of the distributed representation scheme

compared to the local one.

3

2 Model

2.1 Overview

We posit two levels of dynamical systems in which each dynamical system is operated on

a different time scale. These two dynamical systems interact with each other in a top-

down, bottom-up, or bidirectional manner, depending on the operational processes. We

explain the basic ideas behind our model first by showing abstract dynamical systems

models. The actual neural network modeling will be explained in the next subsection.

The diagram of the top-down process is shown in Figure 1 (a). In this figure the

lower and higher level dynamics are represented on two different time scales, t and T ,

respectively. The lower level dynamics are represented in the form of a forward model

(Kawato, Furukawa, & Suzuki, 1987; Jordan & Rumelhart, 1992) with the current

sensory-motor state xt as input and the next sensory-motor state xt+1 as output. A

vector pt is the “parametric bias” that functions as a set of parameters to modulate

the characteristics of the lower level forward dynamics. The forward dynamics in the

higher level determines the time development of the parametric bias PT that is fed into

the lower level forward dynamics as pt. The idea is that the dynamics in the lower level

is structurally changed when the values of the parametric bias are modulated since a

mapping exists between the parametric bias and the dynamical structure in the lower

level. This mechanism is analogous to bifurcations of nonlinear dynamical systems

corresponding to parameter changes. Consequently, a specific sensory-motor pattern is

generated by means of the modulation of the lower level forward dynamics as mapped

from the parametric bias

The mapping from the parametric bias to the sensory-motor pattern is self-organized

utilizing the error signal generated in the lower level network during the repeated learn-

ing of a given set of behavior patterns, as will be described later. From the dynamic

constraints implemented in the model, the parametric bias values tend to change in

a stepwise fashion only when the sensory-motor profile changes structurally. Other-

wise, they stay relatively unchanged. The sensory-motor sequences are segmented into

chunks by utilizing these stepwise changes of the parametric bias. The higher level

forward model learns to predict this discrete sequence of parametric bias changes in

terms of PT , which represents the chunking sequence of the sensory-motor profile. In

the top-down process, an abstract action scenario is generated in the higher level as a

sequence of PT . An exact profile of the sensory-motor flow can then be generated by

feeding the parametric bias into the lower level dynamics. The higher level plays the

4

role of a 2nd order forward model, as it learns to predict how the lower level forward

model changes in terms of the parametric bias.

A diagram of the bottom-up process is shown in Figure 1 (b). The bottom-up

process recognizes its own sensory-motor sequence from past steps to the current step.

Now let us consider the case in which the system experiences a sensory-motor sequence

while its arm is manually guided in a specific movement pattern. If the system has

already learned this pattern, then the lower level RNN can regenerate the target se-

quence by adapting the parametric bias sequence to the corresponding sequence. The

sequence of pt is iteratively computed by solving the inverse problem of minimizing

the errors between the target and output sequences with smoothness constraints on

the pt sequence. Once pt is determined, its value is sent to the higher level as PT

through a time-mapping function. Following this, the guided behavior is recognized in

an abstract manner in the higher level network through the sequential inputs of the

parametric bias PT determined by the lower level dynamics.

The bottom-up and the top-down interactions are explained by the diagram in

Figure 1 (c). This process occurs as the system exhibits behavior while its future

action plans are simultaneously computed in an on-line manner. In this case the values

of the parametric biases (pt and PT) are iteratively computed by using both the top-

down and the bottom-up processes. The top-down process attempts to predict the

action scenario in terms of the sequence of the parametric biases from the past to the

future. The past sequence of the parametric biases can be modified by the bottom-

up process through the error signals generated by the difference between the sensory

sequence predicted by f() and the real outcome. In this way, the motor plan can be

adjusted dynamically in response to environmental changes.

2.2 Neural network architecture

We describe a neural network implementation of the ideas described above. This

neural network model is utilized in three different sensory-motor system processes: the

learning process, the motor planning process, and the recall process.

Figure 2 shows our proposed neural network architecture. The main architecture on

the left-hand side consists of two Jordan type RNNs (Jordan, 1986) which correspond

to the lower and the higher level networks. These RNN networks utilize the working

memory storage shown on the right-hand side of the figure. The working memory

stores the sequences of the parametric biases and the sensory-motor inputs/outputs

where the recall as well as planning processes take place. In the current study, the

5

working memory is not realized in the form of neural networks but is implemented by

a simple computer program. In the main architecture, the lower level RNN receives

two types of input. One type is the vector of the current sensory-motor values (st,mt),

and the other is the vector of the current parametric bias pt. This RNN outputs the

prediction of the sensory-motor values at the next time step (ˆst+1, ˆmt+1). In contrast,

the higher level RNN receives PT (the parametric bias at the current time step T) as

inputs, then outputs its prediction at the time step T + 1.

In Figure 2 the parametric bias units in the lower level network are bi-directionally

connected to the higher level network. The values of the parametric bias units are

dynamically determined by utilizing the bottom-up, the top-down, or bidirectional

signals, depending on the operational processes. In the learning process, only bottom-

up signals are utilized for determining the parametric bias in the past sequence. When

the robot actually behaves, two iterative computational processes of behavior recall

and planning for the future are simultaneously activated. The motor planning process

generates the motor program (the sequence of motor values) for future steps, utilizing

the parametric bias determined by top-down signals at each future step. The recall

process re-evaluates the sequence of the parametric bias from the past to the current

time step by utilizing both the top-down and the bottom-up signals. Thus, once

generated in the top-down manner the motor program can be modulated by the bottom-

up signal if errors are generated in the sensory prediction in the lower level network.

This sort of top-down and bottom-up interaction scheme enables the robot to modulate

the motor program by on-line adaptation in response to environmental changes. We

will now describe each process in detail.

(1) The learning process

In learning a target sensory-motor sequence, the temporal profile of the parametric bias

pt is computed dynamically in the lower level, corresponding to the sensory-motor pro-

file in the sequence, while the synaptic weights in the lower level network are modified.

The higher level network, on the other hand, learns to predict how the parametric

biases change in the sequence. Both learning processes in the lower and the higher

levels are conducted in an off-line manner.

The temporal profile of pt in the sequence is computed via the back-propagation

through time (BPTT) algorithm (Rumelhart, Hinton, & Williams, 1986; Werbos,

1990), utilizing the sequence of the internal values of the parametric bias ρt, the teach-

ing target, and the outputs of the sensory-motor sequences in the working memory

storage. The total number of steps of these sequences in the working memory is L.

For each learning iteration, the forward dynamics of the RNN are computed for L

6

steps by establishing closed sensory-motor loops. For the closed loop, denoted by the

dotted line in the left-hand side of the lower level RNN in Figure 2, copies of the cur-

rent sensory-motor prediction outputs are fed back to the next inputs which enables

look-ahead prediction for an arbitrary number of future steps. Once the L steps of

the prediction sequence are generated, the errors between the prediction outputs and

the teaching targets are computed and then back-propagated through time in order to

update both the values of the parametric bias at each step and the synaptic weights.

The update equations for the ith unit of the parametric bias at time t in the sequence

are:

δρt
i = kbp ·

t+l/2∑

t−l/2

δbp
t

i · 1/l + knb(ρ
i
t+1 − 2ρi

t + ρi
t−1) (1)

4ρi
t = ε · δρt

i + η · 4ρt−1 (2)

pi
t = sigmoid(ρt/ζ) (3)

In Eq. (1), δρt
i, the update of the internal values of the parametric bias ρi

t, is obtained

from the summation of two terms. The first term represents the delta error, δbp
t , back-

propagated from the output nodes to the parametric bias nodes. It is summed over

the period from t− l/2 to t + l/2. By summing the delta error, the local fluctuations

of the output errors will not affect the temporal profile of the parametric bias signif-

icantly. The parametric bias should vary only corresponding to structural changes in

the sensory-motor sequences. As will be discussed later, this summation step length l

should be determined heuristically since its value affects the segmentation process sig-

nificantly. The second term plays the role of a low pass filter through which frequent

rapid changes of the parameter values are inhibited. ρt is updated by δρt
i, obtained

from the steepest descent method, as shown in Eq. (2). Then, the current parameters

pt are obtained by means of the sigmoidal outputs of the internal values ρt. A param-

eter ζ is employed such that the gradation of the parametric bias can be controlled. If

ζ takes smaller values, the parametric bias tends to have more extreme values, either

near 0 or 1. On the other hand, if ζ takes larger values, the parametric bias tends

to take graded values. In the actual learning process, ζ varies from larger to smaller

values as learning proceeds. At the end of learning, one can observe chunks of 1 or 0 bit

representations of the parametric bias during the time steps in which the segmentation

took place.

Finally, the higher level network learns to predict the sequences of the segmenta-

tions. More specifically, the higher level network learns to predict the bit patterns PT+1

and the interval length τT+1 of the next chunk.

7

(2) The motor planning and recall processes

The sequence of the sensory-motor prediction for future steps is generated in a real

time manner while the sensory-motor sequence of past steps is recalled such that the

plans are generated appropriately for the current behavioral context. The prediction

of the future steps from tc to tp is generated by means of both forward dynamics in the

lower level RNN and in the higher level RNN. The higher level RNN supervises the

lower level RNN in a top-down manner. The higher level RNN generates a predicted

sequence of the parametric bias PT and the interval length τT in a closed loop manner,

which determines the parametric bias units pt in the lower level RNN. Consequently,

for a given Pt, a sequence of the sensory-motor prediction is generated as a future plan

by means of the closed-loop forward dynamics in the lower level RNN. The pt in future

steps is computed using

δρt
i = ktop · (P̂T

i − 0.5) + knb(ρ
i
t+1 − 2ρi

t + ρi
t−1) (4)

The first term represents the top-down signal where P̂T
i and ktop denote the parametric

bias predicted in the higher level network and its coefficient, respectively. The second

term is the same as the second term in Eq. (1). pt is calculated by means of the steepest

descent method with the sigmoid transformation applied to pt, as in Eq. (2).

The computation of PT in future steps by means of the forward dynamics in the

higher level RNN requires the determination of PT in the past. PT in the past is

continuously modified through recall of the past sequence in the lower level RNN,

where the results of the bottom-up sensations are re-interpreted utilizing the top-down

expectations for the sequence. More specifically, the past sequence of pt from tr to tc−1

is computed iteratively in the interaction between the expectation of the parametric

bias in the higher level RNN and the signal back-propagated from the sensory prediction

error in the lower level RNN. The update rule for the ith parametric bias at time t in

the sequence is:

δρt
i = ktop · (P̂T

i − 0.5) + kbp ·
t+l/2∑

t−l/2

δbp
t

i · 1/l + knb(ρ
i
t+1 − 2ρi

t + ρi
t−1) (5)

The first and second terms represent the top-down and the bottom-up signals, respec-

tively. Subsequently, PT is determined by applying the segmentation rules to the pt

sequence obtained.

8

3 Robot Experiments

Our proposed model was examined through a set of behavior learning experiments

using an arm robot. The robot used in our experiments has 4 degrees of freedom in its

arm joints; a hand on the top of the arm can sweep over the task table horizontally as

shown in Figure 3. A colored mark is attached to the top of the hand for the purposes

of video image processing. A colored object is prepared in the task space which the

robot can manipulate by pushing with its hand. The robot is equipped with a color

video camera by which the plan view positions of the hand and the object are tracked

using color filtering. A handle is attached to the hand so that a trainer can teach

behavior to the arm manually.

To teach the robot, the arm is guided manually to generate various behavioral se-

quence patterns. The sensory-motor sequences associated with the generated sequence

patterns are used for off-line learning of these behavioral patterns. In preparing the

manual teaching patterns, a set of primitive behaviors is defined. The teaching se-

quence patterns are generated by combining the primitive behaviors in sequence. The

robot then has to learn these given behavioral sequence patterns as articulated - i.e., a

pattern to be learned is recognized as a sequential combination of primitive sequences

that can be repeatedly utilized for representing other sequence patterns. The objective

of this learning is not just to learn to regenerate taught patterns but also to seek the

segmentation structures hidden in the patterns. We will closely observe the way such

articulation structures self-organize through learning based on the hidden primitives.

The advantage of this type of learning is that once the primitive representations are

self-organized internally, the robot can easily adapt to diverse behavior patterns by

combining these primitives.

We conduct two types of experiments. In the first experiment we examine how

the robot learns to generate a set of behavior patterns by focusing on the ways of

self-organizing primitive representations in the network. In the second experiment, we

investigate how the motor plans can be dynamically modified in the course of their ex-

ecution in response to environmental changes. The second experiment provides us with

an opportunity to examine the roles of the bottom-up and the top-down interactions

in on-line behavior generation.

These experiments are conducted using the proposed neural network model. The

network size and parameters were determined by trial and error in order to find robust

conditions for the robot experiments. Parameter sensitivity tests were then conducted

for those parameters considered essential for the total system dynamics. The lower level

9

RNN has 8 input nodes which are allocated to the 4 motor positions of the arm and

to the two dimensional Cartesian positions of the hand and object obtained through

the video camera image processing for the current time step. The output nodes are

allocated in the same way as the input nodes, but with the values for the next time

step. All values are normalized to a range of 0.0 to 1.0. The lower level RNN has 20

hidden nodes and 8 context nodes. It also has 4 parametric bias nodes in the input

layer. The higher level RNN has 4 input and output nodes which are allocated to

the parametric bias of the current and the next time step respectively. It also has 10

hidden nodes and 6 context nodes.

3.1 Learning

In the learning experiments, 7 primitive behavior patterns are defined as illustrated in

Figure 4(a). In Figure 4(a), a shaded circle represents the colored object. The arm is

in the home position when it is touching the rectangular box on the right-hand side.

Abbreviations for each primitive behavior are given. After determining the primitive

behaviors, 7 training sequence patterns are generated through manual guidance of the

arm by combining these primitives in sequences. The lower level RNN is then trained

using the sequences. Figure 4(b) shows the 7 training sequence patterns in terms of

sequences of the primitives. Note that the training sequences are carefully designed

such that they do not include any deterministic sub-sequences of the primitives. For

example, after AO either PO or HO can follow. If PO were always to follow after AO,

the AO-PO sequence could be regarded as an alternative primitive.

The learning experiments are conducted repeatedly for various integration step

lengths l since this parameter is assumed to affect significantly the segmentation of

the sensory-motor flow. Other parameters are determined in the pre-experiments such

that the results of the learning are acceptable –i.e. the mean square error is reduced

to less than 0.005 while generating stable segmentation structure. The parameters are

set as follows for Equations (1) and (2): kbp = 0.1, knb = 0.005, ε = 0.01 and η = 0.9.

We examined how the behavioral primitives are acquired as articulated in the training

patterns by observing the relationship between the training error and the segmentation

rate with parameter l variation. The segmentation rate is calculated as the average

ratio of the actual number of the segments generated in the learning processes to the

actual numbers of primitives combined in the training sequence patterns. The results

are plotted in Figure 5 in which the mean square error and the segmentation rate (on

a log scale) are plotted as a function of the integration step length. Observe that the

10

mean square error becomes higher and the segmentation rate becomes lower as the

integration step length increases. This means that the learning error can be minimized

if fragmentation of the segmentation is allowed, while the error typically increases if

such fragmentation is not permitted through control of the parameter l.

We examine in detail the case in which l is set to 6. Figure 6 shows how the para-

metric bias is activated during learning for each training sequence. The plots in the top

row of this figure show the activation of four parametric bias units as a function of the

time step; the activation values from 0.0 to 1.0 are represented using a grayscale from

white to black, respectively. The plots in the second and third rows represent the tem-

poral profile of motor and sensor values for each training sequence. The vertical dotted

lines indicate the occurrence of segmentation when the behavior sequence switches

from one primitive to another in generating the training sequence. The capital letters

associated with each segment denote the abbreviation of the corresponding primitive

behavior. In this figure, observe that the switching of bit patterns in the parametric

bias takes place mostly in synchronization with the segmentation points known from

the training sequences, although some segments are fragmented. Observe also that the

bit patterns in the parametric bias correspond uniquely to primitive behaviors in a

one-to-one relationship in most cases.

Next, we examine how the robot can generate novel behavioral patterns made by

combining the pre-learned primitive behaviors. Three behavioral patterns are prepared.

When each behavioral pattern is taught, only the connective weights in the higher level

RNN are allowed to adapt, while those in the lower level RNN remain unchanged. This

scheme assumes that the internal representations for primitives are preserved in the

lower level RNN. More specifically, the sequences of the parametric bias pt are obtained

by iterative computation using Eq. (1) for the lower level RNN in which the learning

rate of the connective weights ε is set to 0.0. Subsequently, the higher level RNN is

trained using the articulated sequences of the parametric bias PT .

After the learning in the higher level RNN converges, the robot attempts to regen-

erate each behavioral pattern. The actual behavior of the robot is generated based

on the motor planning and recall processes described previously. Figure 7 shows the

comparison of the temporal profiles between the taught patterns (left-hand side) and

the regenerated patterns, as the robot actually behaves (right-hand side), for each se-

quence. Observe that the sensory-motor profiles are successfully regenerated from the

patterns taught without any significant discrepancies.

One may conclude that there exists a certain parameter range in which learning

can be performed successfully using a self-organizing internal representation of primi-

11

tive behaviors. The primitives acquired turn out to be reusable in other instances of

learning.

3.2 On-line adaptation of motor planning

The next robot experiment simulates possible cognitive behaviors of animals or humans

when alternative behavior plans have to be generated in response to environmental

changes. One difficulty is that behavior should be continuously generated even during

the on-line modification of the motor program. We demonstrate that our scheme of

both recalling the past and planning for the future through interactive bottom-up and

the top-down processes can cope with the problems of on-line adaptation of behavior

plans.

For the experiments, the robot is trained with two different behavioral patterns

each of which is associated with a specific environmental situation. The test is then to

examine how the behavioral patterns are switched when the environmental situation

changes. This switching task is not as trivial as simple phase transitions in physics,

where the system slips down smoothly from one energy state to another when certain

external forces are applied. Although two behavior tasks have to be alternated, the

top-down pathway cannot generate the sequential image of such switching situations

since the two behavior patterns are learned as independent sequences. The top-down

processes would force the system to stay in the current task context. On the other hand,

the bottom-up processes would force the system to switch to another task context as the

error back-propagated from the sensory prediction tends to modulate the parametric

bias at the moment of the situational change. The question is how these two conflicting

forces can be resolved. One might predict that the experimental results would be either

(1) a smooth phase transition, (2) getting stuck in some local minimum, or (3) diverse

transient dynamics.

In the experiments, two different behavior patterns are trained by adapting the

synaptic weights only in the higher level RNN while those in the lower level RNN are

preserved as acquired in the previous experiment. In the first behavior, the arm repeats

a sequence of approaching an object and then returning home. The object is located in

the center of the task space. The second behavior is that the arm repeats a sequence of

centering, making a C-shape, and then returning home while the object is located to the

left-hand side of the task space. Figure 8 shows the sensory-motor profiles associated

with the parametric bias for these trained behaviors. After the learning converged, we

examined how the behavioral patterns changed when the position of the object was

12

suddenly moved from the center to the left-hand side of the task space in the middle

of executing the first behavior.

One may assume that the balance between the top-down and the bottom-up pro-

cesses greatly affects the system’s behavior. Therefore, the experiments on behavior

switching were conducted repeatedly, changing the strength of the top-down signals by

varying the coefficient ktop in Eq. (4) and Eq. (5) from 0.0 to 0.1 with a 0.01 increment.

Other parameters in Eq. (4) and Eq. (5) were set to kbp = 0.1, knb = 0.005 and l = 6

which are the same as those used in the previous learning experiment. In particular,

we examined the smoothness of behavior switching by observing the time lag from the

moment the object was moved to the moment when the second behavior was activated.

The switching trial was repeated five times for each setting of ktop. Other conditions,

such as the timing of the object movement, were the same for all the trials. Figure 9

shows the plot of the time lag versus the coefficient ktop.

It was observed that the first behavior pattern was not accomplished when ktop

was set to less than 0.03. The parametric bias was not activated as learned since

the top-down signal was too weak. When the top-down behavior plan, in terms of

the parametric bias sequence, was executed on-line, the sequence was easily affected by

even small prediction errors in the lower level, caused by noise in the robot’s operation.

When ktop was set from 0.03 to 0.07, switching from the first behavior to the second

behavior took place. The time lag tended to increase as ktop was increased. This

indicates that the motor plans tend to be less sensitive to environmental changes when

the top-down effects become larger, as expected. However, an important observation

is that there is a relatively large distribution of the time lag for each ktop value. This

suggests that diverse transient behavior are generated during the switching. When ktop

was set to larger than 0.07, no behavior switching was observed. The parametric bias

was no longer affected by the bottom-up sensations since the top-down influence on

the parametric bias was too strong.

Figure 10 shows the temporal profile of the behavior generated in the case where

ktop was set to 0.05. The profiles of the parametric bias, the motor outputs and the

sensor inputs are plotted in the top, in the second and in the third rows, respectively.

The vertical dotted line denotes the moment when the object is moved from the center

to the left-hand side of the task space. Observe that it takes 20 steps until the second

behavior pattern is initiated after the object is moved to the left-hand side. Observe

also that the parametric bias, the motor outputs, and the sensory inputs fluctuate

during this transition period. The fluctuation is initiated because of the gap generated

between the top-down prediction of the parametric bias and the real inputs in the

13

bottom-up process. The fluctuations in the parametric bias result in the generation

of complex motor patterns in the lower level. These patterns occur by means of the

top-down pathway which generates the sensory prediction error that is again fed-back

to the parametric bias by means of the bottom-up pathway. In the five repeated trials

in this parameter setting, the profiles of the transient patterns were never repeated, as

is suggested by the large distribution of the time lag. The observed fluctuation seems

to play the role of a catalyst in searching for diverse transition paths from the steady

attractor, associated with the first behavior pattern, to that for the second behavior

pattern. Once the transition is complete, the second behavior pattern proceeds steadily.

The experimental results are summarized as follows. On-line motor plan modifica-

tion can be conducted in the interactions between the top-down and the bottom-up

processes. If the top-down signal is too strong and the bottom-up signal is too weak,

then the behavior can be generated robustly by following the top-down commands,

but it becomes insensitive to environmental changes. In the opposite case, the behav-

ior generation becomes unstable since it becomes too sensitive to noise. There is a

relatively large range of the parameter (0.03 < ktop < 0.07) where on-line motor plan

modification can be successfully conducted. The transient behavior during switching

is neither smooth nor trapped by certain local minima. It is complex and diverse since

it is sensitive to slight differences in the initial conditions. (Note that we attempted

to initiate the switching with the same timing as during the first task.) Where does

this complexity come from? First, it may come from the dynamic mechanism of mu-

tual interactions between multiple levels, from the sensory-motor level to the lower

and higher RNN levels. Second, it may come from the context dependent nature in

the recall of the past as well as future planning. The matching between the top-down

representation of the sensory-motor pattern and the actual experience is made not only

for the current moment, but for a past time period up to the current moment. The

fact that future behavior patterns are generated based on this sort of context depen-

dent matching (including the past history) makes the system’s behaviors nontrivial.

Finally, the complexity may come from the nonlinear characteristics of the proposed

distributed representation. Figure 10 shows fragmented patterns of the parametric bias

during switching. It is likely that this fragmentation contributes to the generation of

diverse behaviors utilizing nonlinear characteristics of the system. This argument will

be revisited in the discussion section.

14

4 Discussion and Summary

In this paper we have proposed the FF-model, which is characterized by a distributed

representation scheme. Our experiment demonstrated that complex behaviors can be

learned and generated in an articulated, segmented manner. Behavior primitives self-

organize by utilizing the distributed representation scheme in the lower level RNN of

the FF-model. It was also shown that the bottom-up and the top-down interactions are

essential for the system to adapt to its environment in a robust and flexible manner.

There are continuing discussions about whether primitives should be represented

locally or in distributed networks. In the localist view, complex behaviors can be

decomposed into a set of reusable behavioral patterns which are each stored in a specific

local neural network module. Our FF-model contrasts with this localist view in that

multiple behavior primitives are represented in a distributed manner in a single RNN,

where all neurons and synaptic weights participate in representing all trained patterns.

A specific difference between the two schemes is that the number of primitives in the

local representation scheme is constrained by the number of local modules, while that

in the distributed system is constrained by the number of possible bit combinations

in the parametric bias, as we have described previously. However, it could be argued

that an infinite number of behavior patterns can be generated in a localist mixture

of experts scheme if the gating of local modules is allowed to take analog values.

In fact, Haruno, Wolpert and Kawato (2001) showed in their MOSAIC model that

novel behavior patterns can be generated by means of linear interpolations among

outputs of local forward model networks by adjusting their gate values. In contrast with

this result, our recent study (Tani, 2002) showed that nonlinear characteristics play

essential roles in generating behavior patterns in the FF-model. In this study, multiple

attractor dynamics were trained in the lower level RNN while the parametric bias was

gradually changed for each attractor pattern. After the convergence of learning, we

examined the type of mapping that was organized between the parametric bias and the

corresponding dynamic patterns. It was shown that the attractor patterns bifurcated

in various ways depending on the changes of the parametric bias. The patterns could

be abruptly modulated in some regions of the parametric bias space by small changes

of the parametric bias, while in other regions they could be smoothly modulated. The

system was capable of generating diverse patterns that could not be accounted for

by means of linear interpolations among trained patterns, since the mapping between

the parametric bias and the sensory-motor outputs could be nonlinear. (Note that

the parametric bias in the input layer can nonlinearly affect the sensory-motor values

15

in the output layer in three-layered networks, as employed in the current scheme.)

Such nonlinear characteristics could be utilized for generating diverse, self-exploratory

behaviors. However, it is also true that the proposed scheme could have stability

problems in generating behaviors. Behavior control becomes more difficult when the

mapping of the parametric bias to the behavior outputs becomes nonlinear.

These two types of motor control scheme differ also in their performance during in-

cremental learning. In the localist network architecture, a novel pattern can be learned

by allocating an additional local module, thereby minimizing interference between the

novel patterns and previously memorized patterns. For example, Wang and Yuwono

(1996) reported that their localist scheme does not suffer from so-called catastrophic

interference (McClosky & Cohen, 1989), which is the complete loss of old memories

during new learning. Their extensive simulations indicated that the number of dam-

aged or forgotten patterns did not increase with the number of stored patterns. Also,

in our prior studies (Tani & Nolfi, 1998) using a mixture of RNN experts, incremental

learning was successfully performed without catastrophic interference. However, catas-

trophic interference did occur in the current distributed representation scheme. The

learning processes can converge only through off-line batch processes.

Deciding whether to use a distributed or a local representation scheme seems to

be a trade-off problem. The localist scheme has greater stability for generating and

learning behavior patterns. On the other hand, if nonlinear effects in the distributed

representation scheme are utilized, then one gains diversity in the generated patterns.

at the cost of losing the stability of behavior generation and learning. It is likely that

biological neural networks never sit in either of these two extremes, and that they

find optimal locality/distributedness depending on the cognitive tasks involved. Our

future studies will focus on possible adaptation mechanisms by which the degree of

locality/distributedness can be self-determined.

16

References

[1] Bapi, S., & Doya, K. (2000). Multiple forward model architecture for sequence

processing. In Sun, R., and Giles, C., eds., Sequence Learning. Berlin, Springer

[2] Gomi, H. & Kawato, M. (1993). Recognition of manipulated objects by motor

learning with modular architecture networks. Neural Networks 6, 485–497.

[3] Haruno, M., Wolpert, D., & Kawato, M. (2001). MOSAIC model for sensorimotor

learning and control. Neural Computation 13, 2201–2220.

[4] Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural

Computation 9(8), 1735–1780.

[5] Jacobs, R., Jordan, M., Nowlan, S. & Hinton, G. (1991). Adaptive mixtures of

local experts. Neural Computation 3(1), 79–87.

[6] Jordan, M.I. (1986). Attractor dynamics and parallelism in a connectionist se-

quential machine. Proc. of Eighth Annual Conference of Cognitive Science Society

531–546., Hillsdale, NJ: Erlbaum

[7] Jordan, M.I. & Rumelhart, D.E. (1992). Forward models: supervised learning with

a distal teacher. Cognitive Science 16, 307–354.

[8] Kawato, M., Furukawa, K. & Suzuki, R. (1987). A hierarchical neural network

model for the control and learning of voluntary movement. Biological Cybernetics

57, 169–185.

[9] Kuniyoshi, Y., Inaba, M., & Inoue, H. (1994). Learning by Watching: Extracting

Reusable Task Knowledge from Visual Observation of Human Performance. IEEE.

Trans. on Robotics and Automation 10(6), 799–822.

[10] McCloskey, M. & Cohen, N. (1989). Catastrophic interference in connectionist

network. Psych. Learning Motivat. 24, 109–165.

[11] Pawelzik, K., Kohlmorgen, J. & Muller, K.-R. (1996). Annealed competition of

experts for a segmentation and classification of switching dynamics. Neural Compu-

tation 8(2), 340–356.

[12] Rumelhart, D., Hinton, G., & Williams, R. (1986). Learning internal represen-

tations by error propagation. In Rumelhart, D., and McClelland, J., eds., Parallel

Distributed Processing. Cambridge, MA: MIT Press.

17

[13] Schmidhuber, J. (1992). Learning complex, extended sequences using the principle

of history compression. Neural Computation 4(2), 234–242.

[14] Sun, R., & Sessions, S. (2000). Automatic segmentation of sequences through hi-

erarchical reinforcement learning. In Sun, R., and Giles, C., eds., Sequence Learning.

Berlin, Springer

[15] Tani, J. & Nolfi, S. (1998). Learning to perceive the world as articulated: an ap-

proach for hierarchical learning in sensory-motor systems. In Pfeifer, R., Blumberg,

B., Meyer, J. and Wilson, S.W., eds., From animals to animats 5. Cambridge, MA:

MIT Press. later published in Neural Networks 12, 1131–1141.

[16] Tani, J. (2002). Self-organization of behavioral primitives as multiple attractor

dynamics: a robot experiment. to be presented at IJCNN‘2002, Honolulu

[17] Wang, D. & Arbib, M. (1990). Complex sequence learning based on short-term

memory. Proc. IEEE 78, 1536–1543.

[18] Wang, D. & Yuwano, B. (1996). Incremental learning of complex temporal pat-

terns. IEEE Trans. on Neural Networks 7(6), 1465–1480.

[19] Werbos, P. (1990). Backpropagation through time: what does it mean and how

to Do it. Proc. IEEE 78, 1550–1560.

[20] Wolpert, D. & Kawato, M. (1998). Multiple paired forward and inverse models

for motor control. Neural Networks 11, 1317–1329.

18

List of Figures

1 Schematic diagram of the model for (a) the top-down process, (b) the

bottom-up process and (c) the top-down and the bottom-up interactive

process. 21

2 The complete architecture. Two levels of RNNs on the left-hand side

and the working memory on the right-hand side. 22

3 The arm robot used in the imitation learning experiments. 23

4 (a) The primitive behaviors defined for imitation learning, abbreviated

as follows. AO: approach to object in the center from the right-hand

side. PO: push object from the center to the left-hand side. TO: touch

object. IC: perform inverse C shape. HO: go back to home position.

CE: go to the center from the right-hand side. C: perform C shape. (b)

The seven sequences used. 24

5 The mean square error (msqer) and the segmentation rate (segr, log-

scale) plotted as a function of l in the repeated learning trials. 25

6 For the seven training sequences (a)-(g), the temporal profiles of the

parametric bias which resulted from learning are plotted in the top row,

the motor outputs are plotted in the second row and the sensor inputs are

plotted in the third row. The vertical dotted lines denote the occurrence

of segmentation when the primitive behaviors switched in the training

sequences. The capital letters associated with each segment denote the

abbreviation of the corresponding primitive behavior. 26

7 Comparison between the taught sensory-motor patterns on the left-hand

side (1-a, 2-a, 3-a) and the regenerated patterns on the right-hand side

(1-b, 2-b, 3-b) and their associated parametric bias, for 3 sequences. . . 27

8 Two behavioral patterns (a) and (b) as trained in preparation for the

experiments on on-line behavior switching. The temporal profiles of the

parametric bias, the motor outputs, and the sensor inputs are shown in

the top, the second, and the third rows, respectively. 28

9 The time lag in behavior switching, plotted as a function of the top-down

coefficient, ktop. 29

19

10 A behavioral switching trial for which ktop was set to 0.05. The temporal

profiles of the parametric bias, the motor outputs, and the sensor inputs

are shown in the top, the second, and the third rows, respectively. The

vertical dotted line denotes the moment when the object was moved

from the center to the left-hand side of the task space. 30

20

Figure 1: Schematic diagram of the model for (a) the top-down process, (b) the bottom-

up process and (c) the top-down and the bottom-up interactive process.

21

Figure 2: The complete architecture. Two levels of RNNs on the left-hand side and

the working memory on the right-hand side.

22

Figure 3: The arm robot used in the imitation learning experiments.

23

Figure 4: (a) The primitive behaviors defined for imitation learning, abbreviated as

follows. AO: approach to object in the center from the right-hand side. PO: push

object from the center to the left-hand side. TO: touch object. IC: perform inverse C

shape. HO: go back to home position. CE: go to the center from the right-hand side.

C: perform C shape. (b) The seven sequences used.

24

se
gm

en
ta

tio
n

ra
te

0

0.005

0.01

0.015

0.02

2 4 6 8 10 12 14 16 18 20

m
sq

er

0

0.5

1.0

2.0

4.0
msqer
segr

Integration step length l

Figure 5: The mean square error (msqer) and the segmentation rate (segr, log-scale)

plotted as a function of l in the repeated learning trials.

25

steps

steps

m
ot

or
se

ns
or

(a)

steps

steps

m
ot

or
se

ns
or

(b)

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35 40

motor0
motor1
motor2
motor3

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35 40 45

motor0
motor1
motor2
motor3

0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40 45

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35 40

sense0
sense1
sense2
sense3

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35 40 45

sense0
sense1
sense2
sense3

AO PO IC TO HO AO PO IC TO IC TO HO

pt pt

steps

steps

m
ot

or
se

ns
or

(d)

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30

motor0
motor1
motor2
motor3

0 5 10 15 20 25 30

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30

sense0
sense1
sense2
sense3

AO PO HO

pt

steps

steps

m
ot

or
se

ns
or

(c)

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35 40 45

motor0
motor1
motor2
motor3

0 5 10 15 20 25 30 35 40 45

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35 40 45

sense0
sense1
sense2
sense3

HOAO HOAO HOAO

pt

steps

steps

m
ot

or
se

ns
or

(e)

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30

motor0
motor1
motor2
motor3

0 5 10 15 20 25 30

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30

sense0
sense1
sense2
sense3

CE C CE HO

steps

steps

m
ot

or
se

ns
or

(f)

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35 40

motor0
motor1
motor2
motor3

0 5 10 15 20 25 30 35 40

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35 40

sense0
sense1
sense2
sense3

CE C CE HOC

pt

steps

steps

m
ot

or
se

ns
or

(g)

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35 40

motor0
motor1
motor2
motor3

0 5 10 15 20 25 30 35 40

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35 40

sense0
sense1
sense2
sense3

CE HO CE HO

ptpt

Figure 6: For the seven training sequences (a)-(g), the temporal profiles of the paramet-

ric bias which resulted from learning are plotted in the top row, the motor outputs are

plotted in the second row and the sensor inputs are plotted in the third row. The ver-

tical dotted lines denote the occurrence of segmentation when the primitive behaviors

switched in the training sequences. The capital letters associated with each segment

denote the abbreviation of the corresponding primitive behavior.

26

(1-a) (1-b)

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70

motor0
motor1
motor2
motor3

steps

se
ns

or
m

ot
or

0

0.2

0.4

0.6

0.8

1
sense0
sense1
sense2
sense3

0 10 20 30 40 50 60 70

steps

m
ot

or
se

ns
or

(2-a)

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35 40 45 50

motor0
motor1
motor2
motor3

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35 40 45 50

sense0
sense1
sense2
sense3

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35 40 45

sense0
sense1
sense2
sense3

0 5 10 15 20 25 30 35 40 45

0 5 10 15 20 25 30 35 40 45

0

0.2

0.4

0.6

0.8

1
motor0
motor1
motor2
motor3

steps

m
ot

or
se

ns
or

(2-b)

steps

m
ot

or
se

ns
or

(3-a)
steps

se
ns

or
m

ot
or

(3-b)

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70

motor0
motor1
motor2
motor3

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70

sense0
sense1
sense2
sense3

0 10 20 30 40 50 60 70

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70

sense0
sense1
sense2
sense3

0

0.2

0.4

0.6

0.8

1
motor0
motor1
motor2
motor3

0 10 20 30 40 50 60 70

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60

motor0
motor1
motor2
motor3

steps
m

ot
or

se
ns

or

0 10 20 30 40 50 60

0.2

0.4

0.6

0.8

1
sense0
sense1
sense2
sense3

0
0 10 20 30 40 50 60

pt

pt

pt

Figure 7: Comparison between the taught sensory-motor patterns on the left-hand side

(1-a, 2-a, 3-a) and the regenerated patterns on the right-hand side (1-b, 2-b, 3-b) and

their associated parametric bias, for 3 sequences.27

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35 40 45

sense0
sense1
sense2
sense3

se
ns

or

step
(a)

0 5 10 15 20 25 30 35 40 45

0

0.2

0.4

0.6

0.8

1
motor0
motor1
motor2
motor3

0 5 10 15 20 25 30 35 40 45

m
ot

or

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80 90

sense0
sense1
sense2
sense3

0 10 20 30 40 50 60 70 80 90

0

0.2

0.4

0.6

0.8

1
motor0
motor1
motor2
motor3

0 10 20 30 40 50 60 70 80 90

se
ns

or
m

ot
or

step
(b)

pt pt

Figure 8: Two behavioral patterns (a) and (b) as trained in preparation for the experi-

ments on on-line behavior switching. The temporal profiles of the parametric bias, the

motor outputs, and the sensor inputs are shown in the top, the second, and the third

rows, respectively.

28

0 0.02 0.04 0.06 0.08 0.1

10

20

30

40

50

60

Figure 9: The time lag in behavior switching, plotted as a function of the top-down

coefficient, ktop.

29

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80 90 100

sense0
sense1
sense2
sense3

steps

se
ns

or
m

ot
or

0 10 20 30 40 50 60 70 80 90 100

0

0.2

0.4

0.6

0.8

1
motor0
motor1
motor2
motor3

0 10 20 30 40 50 60 70 80 90 100

pt

Figure 10: A behavioral switching trial for which ktop was set to 0.05. The temporal

profiles of the parametric bias, the motor outputs, and the sensor inputs are shown in

the top, the second, and the third rows, respectively. The vertical dotted line denotes

the moment when the object was moved from the center to the left-hand side of the

task space.

30

