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Abstract 
We developed a neural network model for studying neural mechanisms underlying 
complex syntactical songs of the Bengalese finch, which result from interactions 
between sensori-motor nuclei, the nucleus HVC (HVC) and the nucleus interfacialis 
(NIf). Results of simulations are tested by comparison with the song development of 
real young birds learning the same songs from their fathers. 

The model shows that complex syntactical songs can be reproduced from the simple 
interaction between the deterministic dynamics of a recurrent neural network and 
random noise. Features of the learning process in the simulations show similar trends to 
those observed in empirical data on the song development of real birds. These 
observations suggest that the temporal note sequences of songs take the form of a 
dynamical process involving recurrent connections in the network of the HVC, as 
opposed to feedforward activities, the mechanism proposed in the previous model. 

Key words: recurrent neural network, noise, birdsong, development, HVC, NIf, Zebra 

finch 

List of symbols:  

wij: weight value from the jth unit to the ith unit 

ui,t: internal state of the i th unit at time t 

xi,t : neural state of the i th unit at time t 

yi,t : activation of the i th unit at time t 

y*i,t : desired activation value of output units at time t 

e i,t, : error between desired value and actual value of output activation at time t 

E : learning error 

T : length of note sequences 

O : set of indexes corresponding to the output units 

N : total number of units 

α: learning rate 

θi : threshold of the ith unit 

G : noise added to the internal value of non-output units 

Fmax: transformed value of the unit with the highest activation in the winner-take-all computation 

Fmin: transformed value of all other output units in the winner-take-all computation 

A : component notes of a particular song 

D : a particular song syntax with a probabilistic distribution of strings 

PD(x) : occurrence probability of string x under distribution D 
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1. Introduction 
 Because of its similarity to human language in being a learned complex sequential 
behavior, birdsong, has become a widely studied topic in neuroscience. The Bengalese 
finch in particular learns highly complex songs that have syntactical structure, providing 
researchers with a good biological model for studying this phenomenon. 
 Figure 1 shows a typical sound spectrogram of the song note sequences of the 
Bengalese finch. The song consists of several varieties of "notes", the smallest units of a 
birdsong. Each note can be identified as a discrete element on a sound spectrogram and 
is denoted by a letter of the alphabet, for example "a", "b" or "c". 
 Note-to-note transitions follow rules. However, the transitions are not determined by 
the preceding note output alone, but are dependent on past sequences. This indicates 
that the Bengalese finch's song sequence has a hidden state in the sense that the next 
transition state cannot be uniquely determined by the output note. 
 Note-to-note transition rules of the Bengalese finch's song can be described using a 
finite state automaton (Honda and Okanoya 1999). Normally the automaton describing 
a Bengalese finch's song has probabilistic branching and recursive connections. A series 
of notes without branching constitutes what is referred to as a "chunk", and sequences 
of chunks generate diverse "motifs". Owing to the recursive structure of the automaton 
describing their songs, the Bengalese finch is considered to generate an almost infinite 
number of different motifs. The complexity of this song structure is in contrast to the 
linearity of the songs produced by the Zebra finch, a bird which is nonetheless a close 
relative of the Bengalese finch (Zann 1996). 
 The acquisition and production of songs is made possible by a group of discrete 
brain nuclei and their connecting pathways, referred to as the song system (Fig. 2) 
(Nottebohm 2005). Within the song system the nucleus HVC (HVC), a premotor 
nucleus, plays a key part in generating temporal patterns of songs. In lesion studies of 
the Canary, a lesion on the HVC severely disturbs the temporal structure of songs 
(Nottebohm et al. 1976). In electrophysiological studies of the Zebra finch, the 
activation pattern of each HVC neuron is highly context-dependent and corresponds to a 
particular moment in a song (Fee et al. 2004). Moreover HVC stimulation by a 
microelectrode of a singing bird causes an interruption in temporal patterns of the 
birdsong, whereas stimulation of the robust nucleus of arcopallium (RA), a downstream 
motor nucleus, affects only a particular note at the time of the stimulation (Vu et al. 
1994). These facts strongly suggest that the HVC is a temporal pattern generator for 
song note sequences. 
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Fig.1 Sound spectrogram of the song note sequence of Bengalese finches. 

Each note is identified as a discrete element on the sound spectrogram and is denoted by a letter of 

the alphabet. 

 

 
Fig.2 Neural basis of the birdsong referred to as the song system. 

The NIf-HVC-RA pathway acts as the song production pathway. The other pathway (not 

highlighted) is responsible for song learning. LMAN: lateral magnocellular nucleus of anterior 

nidopallium, DLM: medial nucleus of the dorsolateral thalamus, VTA: ventral tegmental area.  

 

 
Fig.3 Changes in a song automaton as the result of a lesion in the NIf. 

 The upper and lower graphs correspond to pre- and post-lesion automata, respectively. Numerals 

indicate the probabilities of each branch. (Graphs are modified from Hosino and Okanoya (2000) 

with permission). 
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 The nucleus interfacialis (NIf), one of the upstream parts of the HVC, is considered 
to be one of the essential regions that generate complexity in birdsongs. Lesions of the 
NIf reduce the branching of note-to-note transitions, however note sequences still 
correspond to paths on the original diagram (Fig. 3) (Hosino and Okanoya 2000). The 
reduction of complexity occurs only in birds having songs that are complex and not in 
birds that have simple songs. Based on this observation it is inferred that the NIf, in 
cooperation with the HVC, provides complexity for the generation of songs. 
 However, the types of interaction between the HVC and the NIf that can produce 
complex syntactical songs and the representation of the temporal patterns of songs in 
the HVC remain unclear. That these questions have not yet been answered is a 
consequence of the technical difficulties associated with investigating the actual 
interactions between brain regions of singing birds and developmental changes of such 
interactions.  
 In order to overcome these difficulties, a number of models have been proposed. For 
example, Fee's group proposed a model in which the HVC generates temporal patterns 
of songs by cooperating with the RA (Fee et al. 2004; Fiete et al. 2004). In this model, it 
is assumed that temporal patterns of songs are represented as feedforward activities of 
the HVC, the role of which is analogous to a recording "tape" (Fee et al. 2004). It is also 
assumed that these feedfoward activities innately exist and that the order of the notes in 
a song motif is acquired as a result of changes in connections between the HVC and the 
RA, where connections correspond to the mapping between an innately existing "tape" 
and each note sound. Doya and Sejnowski also developed a model based on the similar 
assumption (Doya and Sejnowski 1995). Although these models are sufficient for 
explaining the song generation of the Zebra finch, the songs of which are very linear, 
they are not sufficient to explain the song generation of the complex syntactical song of 
the Bengalese finch. 
 Only a few studies exist that consider the question of NIf function. Hoshino 
developed a statistical model of the song learning of the Bengalese finch using 
hierarchical Bayesian networks (Hoshino and Doya. 2000). In this model, the 
hierarchical structure of the note-chunk-motif is assumed to reflect the functional 
hierarchy of nuclei RA-HVC-NIf and the NIf is assumed to represent and control 
chunk-to-chunk transitions. However, the problem of this kind of model is that it is 
necessary to arbitrarily set a number of hyperparameters, for example different time 
constants for each hierarchy. Due to the difficulty of setting these parameters, the model 
was only successful in reproducing simple artificial model songs, and not in 
reproducing song sequences of the actual Bengalese finch. 
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 The objective of the current study is to investigate the following two questions. 
First, what types of neural connectivity are able to generate the complex syntactical 
song sequences of the Bengalese finch, which is considered to potentially generate an 
infinite number of motif patterns? Secondly, what is the contribution of the NIf in song 
production of the Bengalese finch? 
 In order to describe complex temporal sequences like those of the Bengalese finch's 
song, which have hidden states and recursive structure, systems with temporal delay and 
recurrent connections are superior to the linear system proposed in the previous study. 
Hidden Markov models (HMM), which are equivalent to probabilistic finite state 
automata, are one of the most popular examples of this kind of system. However, 
because HMMs use symbol level abstraction, they are not sufficient for describing the 
neural basis for the observed phenomenon. On the other hand, although physiologically 
detailed models such as those that use spiking neurons have become popular recently, it 
is still difficult to reconstruct complex sequential behavior like that of the real 
Bengalese finch's song starting at the level of such spiking neurons. 
 In the current study, in order to mediate between a symbol-level computational 
model and physiologically detailed neural model, we propose a macro-level neural 
dynamics model for reproducing song production of the Bengalese finch. Focus of the 
current model is on how behavior of the Bengalese finch can arise from dynamics of 
neural connections representing groups of neurons in discrete brain nuclei. 
 With some modifications, a recurrent neural network (RNN) model, a type of model 
with feedback connections and time delays, is used as the main component of the 
current model. Because of its capacity to preserve internal state associated with complex 
dynamics, the RNN is often used for modeling of temporal sequence learning (Elman, J 
1990, Jordan, MI and Rumelhart, DE 1992, Fetz EE and Shupe LE 2002). In a rate 
coding type neural network model, the model used in the current study, each unit's 
activity represents neural ensembles of groups of neurons, with dynamics, based on 
neural connectivity, providing spatiotemporal patterns of behavior. The RNN is thus 
considered to emulate characteristic features of actual neural systems, and the current 
model is considered consistent at the level of the macro-level mechanisms of biological 
neural systems. 
 For this reason, consistency in physiological details, such as features of neural 
activity at the level of individual neurons and characteristics of individual synapses, are 
not considered in detail. However, our macro-level model could easily be extended to a 
biologically precise model by adding different levels of modeling, such as for example a 
physiological model of individual neurons and synapses. 
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 The model network is trained to generate song sequences of the Bengalese finch 
using template song sequences obtained from real birds. Results of simulations are 
analyzed through comparison with the song development of real young Bengalese 
finches, birds which learned the same song templates from their fathers. 
 
 
 
 

 
Fig.4 Model overview 

Shaded circles are the output units of the RNN. Each output unit corresponds to a song note. Bars on 

the right top of the diagram indicate the activation of the output units at time t. Note "b" with the 

highest activation is selected to be the vocalized note sound at time t. The bars on the bottom of the 

diagram indicate the values of the output units after transformation, as dictated by the WTA 

computation. The value of the unit with the highest activation is set to Fmax, all other output values of 

RNN are set to Fmin. In the current experiment, for the normal feedback condition Fmax is set to 0.8 

and Fmin is set to 0.2. The transformed values of output units act as the input at time t+1. The level of 

noise added to the non-output units is assumed to correspond to the activity of the NIf.  
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2. Model 
2-1. Model overview 
The architecture of the proposed model is shown in Figure 4. The HVC is modeled as a 
fully connected RNN that learns to generate temporal patterns of song note sequences. 
Every unit of the RNN is connected to every other unit, including itself. This 
connectivity allows the RNN to store internal states and to generate contextual 
sequences. Values of connection weights are asymmetric, i.e. the weight value from the 
jth unit to the ith unit (wij) is in general different from the weight value from the ith unit 
to the jth unit (wji).  
 The number of RNN units, including output units, is set to 35 for all learning trials. 
This is the minimum value large enough to successfully allow the network to learn 
songs with maximum number of notes. The number of output units is the same as the 
number of notes in the song that the model learns. Each of the output units corresponds 
to a note sound. Although outputs take on real number values, the output note of the 
model at each time step is selected by winner-take-all (WTA) computation: the output 
unit with the highest activation is selected as the output note of the network. The 
selection of the output note by the WTA computation corresponds to the vocalization 
process of songbirds, in the sense that real birds only generate whole notes like "a" or 
"b", not mixed sounds like "a+b". In the process of vocalization, WTA-like dynamics is 
considered to occur at downstream parts of the HVC, such as the RA.  
 In real birds, vocalized note sounds are sent back to the HVC via an auditory 
feedback process. To implement this process, the values of output units are replaced 
based on the vocalization process (the WTA computation). This transformation process, 
referred to as auditory feedback, is only applied to the output units in the generation 
mode. The set of outputs at time t, which is transformed according to the auditory 
feedback process, serves as the inputs for time t+1. The discrete time step of the RNN is 
incremented with each note output of song sequences. 
 The NIf is assumed to generate random noises, which are fed into the RNN units of 
the HVC. The noise provides stochasticity for branching of note sequences, in 
cooperation with the RNN of the HVC. The noise follows a uniform distribution and is 
added to the internal value of all units other than output units. The level of noise is 
defined in terms of the interval of the noise distribution. For example, if the noise level 
is set to 0.5 then the noise follows a uniform distribution on the interval [-0.5, 0.5]. 
Noise is added only during the generation of sequences, not during the model learning. 
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2-2. Generation mode 
The model of neurons is a conventional firing rate model, in which the output of each 
unit is determined by applying a sigmoid function to the sum of all its inputs. The 
internal state (ui,t) and the activation (yi,t) of the ith unit at time t are determined by 
following formula 
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where O is the set of indices corresponding to the output units, xi,t is the neural state of 
the ith unit at time t, N is the total number of units, θi is a threshold of the ith unit, f( ) is 
a sigmoidal function f(x)=1/1+e-x , and G is the noise added to the internal value of 
non-output units. In the current sutdy, the value of G is set to 0.25 for all learning trials 
using six different template songs. This value is selected based on the average of 
optimal noise levels for all learning trials (c.f. Result). 
 After each time step, activation values of the non-output units, yi,t, are simply copied 
to the neural states of next time step, xi,t+1. Activation values of the output units, on the 
other hand, are transformed utilizing the WTA computation, described as follows.  
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Specifically, in the current study, the unit with the highest activation (Fmax) is set to 0.8, 
whereas all other output values of the RNN (Fmin) are set to 0.2. This limitation of the 
activation range of output units is basically performed in order to avoid divergence of 
weight values resulting from the sigmoid used in the activation function. This 
modification does not introduce any qualitative changes in results. The output of the 
network at time t is determined by selecting the note sound corresponding to the output 
unit with the highest activation level. The set of outputs at time t, transformed according 
to the WTA computation, serves as input for time t+1. The discrete time step of the 
RNN is incremented with each note output. 
 



       Developmental learning of syntactical birdsong.  10/22 

  10/22 

2-3. Training mode 
In song learning of real birds, template song sequences are taken to be stored 
somewhere in the brain; the bird modifies its vocal output until the auditory feedback it 
receives matches the memorized template (Funabiki and Konishi 2003). Therefore in 
the proposed model, a network is trained by means of supervised learning using 
template song sequences obtained from real birds. The conventional back-propagation 
through time (BPTT) algorithm is used for learning of the model network (Rumelhart 
and McClelland 1986). 
 For the calculation of network activation in the training mode, additive noise G in 
equation (1) is set to 0. As in the case of the generation mode, after each time step, 
activation levels of the non-output units, yi,t, are copied to the neural states of next time 
step, xi,t+1. On the other hand, instead of the WTA computation of the output units, the 
desired activation value of output units at time t, y*i,t, serves as input for the next time 
step t+1 (open loop learning). 
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 The objective of learning is to find optimal values of connective weights that 
minimize the value of E defined as the learning error between the template sequences 
and output sequences. The error function E is described as follows, 
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where T is the total length of teaching note sequences and |O| is number of output units. 
According to the individual difference in songs of real birds, each teaching sequence has 
different numbers of output units and length. To normalize this difference, E is divided 
by T and |O|. 
 Connective weights can reach their optimal levels by updating their values in the 
opposite direction of the gradient ∂E/∂w. 
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where α is the constant of the learning rate, and n is an index representing the iteration 
step in the learning process. ∂E/∂w is given by 
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and is recursively calculated from the following recurrence formula 
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where f'( ) is the derivative of the sigmoid function. Through the iterative calculation of 
the BPTT, the values of connective weights reach their optimal values in the sense that 
the error between the template sequences and the output sequences is minimized. 
 Throughout the learning trials, the learning rate α is fixed at 1.0. The initial values 
of connective weights are set randomly to values ranging between -0.25 and 0.25. For 
both training and generation, initial states of the network are set to their neutral value, 
i.e. the internal state of each neuron is set to 0.  
 

 
Table.1 Template songs used for the six learning trials. 

The songs are sampled from six different family lines and are described by sequences of letters. 

Each song differs in the number of note elements and in the diversity of note-to-note transition rules. 

Approximately ten song bouts for each template song are used for the learning of the model. 

Differences in the total number of notes is caused by differences in the length of each song bout. 

 
 

 
Fig. 5. Experimental procedure. 

 Song sequences of a real adult bird (teacher/father) are used as the template for the learning of the 

model. Song sequences of the model (simulated learner) in the learning process are compared with 

song sequences of a real young bird (learner/son) that learned from the same template song. 
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3. Experiments 
3-1. Experimental procedure 
Six learning trials are attempted using six different songs of real adult birds as teacher 
signals. The songs of the animal subjects are different from each other because the birds 
come from different family lines (Table.1). The songs of each animal subject were 
recorded for one hour, and all of them were used for training of the model as teacher 
signals. The number of song bouts in each recorded song varies from 8 to 10, wiht each 
consisting of about 60 to 80 notes. Thus the total number of notes in each subject bird's 
songs varies from 604 to 781. Songs of real birds are converted to sequences of letters 
through sound spectrogram analysis. 
 To compare the development of real birds with the learning process of the model, 
song sequences in the development of real young Bengalese finches that learned the 
same templates are also sampled. For each young bird, song note sequences are sampled 
at approximately 60-days of age when song notes are first identifiable and again at 
approximately 120-days of age when songs are crystallized. 
 The sequences generated by the model are also sampled twice in the early (100 
steps) and late (5,000 steps) stages of the learning process. Both in the early and late 
stages of learning, weight values are fixed and 100 sequences of 50 notes each are 
generated with noise added. The amount of noise is varied to investigate the role of 
noise. 
 To evaluate the learning processes and the performance of the model, the sequences 
generated are compared with the songs of real young Bengalese finches that learned the 
same template song (Fig. 5). Song note sequences of real young birds and those of the 
model are evaluated using measures determined as described in the following section. 
 
3-2. Analysis measure 
Analyses are conducted by counting the occurrence frequencies of letter blocks in each 
song sequence. The distribution of letter block occurrence probabilities reflects 
distinguishing features of each song. According to the previous study, the songs of the 
Bengalese finch can usually be satisfactorily reproduced using a third-order Markov 
model (Hosino and Okanoya 2000). Based on this, we examined letter blocks of length  
between 3 and 7. Results, however, did not show any qualitative difference. Also 
because the amount of actual birdsong data is limited, the longer the length of letter 
block is, the less reliable the calculated statistics are. Therefore, in the present study, 
results for a letter block length of 3 are shown. 
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 In order to evaluate the similarity between two song sequences, the 
Kullback-Leibler divergence (KL-divergence), a well-known distance measure of 
probabilistic distributions, is used (Cover and Thomas 1991). The KL-divergence is 
determined by the following formula:  
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where A corresponds to the component notes of a particular song, An is the set of all 
strings of length n that can be built from A, D and D' correspond to a particular song 
syntax, which has a probabilistic distribution of strings, and  PD(x) is the occurrence 
probability of string x under distribution D. Specifically, in the current study, D and D'  
correspond to syntaxes of the template song and the learner's song, respectively. As is 
standard, we set 0log0=0 and 0/0=1. In cases where there is a string with a null 
probability in D', but not in D, PD’(x) is set to a small value (1.0×10-6) to avoid division 
by zero. 
 To evaluate the diversity of transitions in songs, we use the block entropy, 
determined by the following formula 
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In both cases, n is set to 3.  
 Letter blocks not appearing in the template are ignored in the in the calculation of 
KL-divergence. Therefore to measure how many seemingly random transitions appear 
in the learner's sequences, we also calculate the occurrence rate of these letter blocks 
(out of template).  
 In order to investigate the influence of the occurrence rate of letter blocks in the 
template on the song produced by the learners, we calculate how many, of the ten most 
frequently appearing letter blocks in the template, are reproduced in the songs of the 
learners (10 most frequent blocks). 
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Fig.6 Example of a learned template, song note sequences of a real young bird in development, and 

song note sequences generated by the model (a) with noise and (b) without noise during the learning 

process. 

The top row illustrates a template song (Song A) learned by a real young bird and the model. The 

early stage (middle row) illustrates song note sequences of a 61-day-old bird in the case of a real 

young bird, and 100 steps of learning in the case of the model. The late stage (bottom row) illustrates 

song note sequences of a 127-day-old bird in a real bird and 5,000 steps of learning in the case of the 

model. In the simulations with noise, the nose level is set to 0.25. Bold letters indicate letter blocks 

that do not appear in the template. 

 
 
4. Results 
4-1. Performance of the model 
Performance of the model is evaluated by calculating the KL-divergence between the 
template songs and the learners' songs. The model is trained to imitate the song 
sequences of the Bengalese finch using songs of real adult birds as teacher signals. As a 
result of the learning process, KL-divergence decreases until it reaches a level that 
corresponds to the individual deviations typical of young Bengalese finches (Fig. 7a). 
This demonstrates that the proposed model successfully learns to generate complex 
syntactical songs nearly identical to those of young Bengalese finches. 
 In the case of the real birds, the early stage of development is defined as the moment 
when song notes are first identifiable. Even at this early stage, there are some birds 
whose KL-divergence has decreased to some extent. This indicates that in the case of 
real birds the learning of notes and learning of note-to-note transition rules occur in 
parallel with each other. Determination of the early stage in the learning process of the 
model is difficult, because the process of note learning is not implemented. In the 
current study, the early stage is determined as 100 steps of learning for all learning 
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trials. This value is selected since KL-divergence between the model and the templates 
is most similar to the KL-divergence between the real young birds and their fathers at 
this early stage. 
 
4-2. Comparison of the development of a real bird and the learning process of the 
model 
Figure. 6a. shows an example of a learned template, song note sequences of a real 
young bird in development, and song note sequences generated by the model with  
noise over the learning process. It may be observed that the template song consists of 
probabilistic combinations of the chunks "ccddee", "faaa", "gh" and the note "b". When 
they appear in direct succession, the chunks "ccddee" and "faaa" (which together form 
the chunk "ccddeefaaa") are often followed by "gh", but sometimes branches to "b". 
After the note "b", song sequences again branch to "ccddee" and "gh". This is a 
temporal song structure typical of the Bengalese finch. 
 At the beginning of the learning process, both in the songs of real birds and in the 
songs of the model, many transitions appear that are not present in the template song 
(bold letters). However, letter blocks that frequently appear in the template, for example 
"ccd", "cdd", "faa" and "aaa", which construct chunks "ccddee" and "faaa" of the 
template, are already reproduced at this early stage. 
 By the end of the learning process, both the model and the real young bird can 
almost completely replicate the features of the template song. Letter blocks that do not 
appear in the template disappear. Moreover, letter blocks that correspond to the 
branching points of chunks, such as "bcc","bgh" and "ghg", begin to be reproduced with 
probabilistic distributions similar to those of the template sequences. This observation 
suggests that the real birds first learn and reproduce chunks that most frequently appear 
in the template, and then next begin to reproduce chunk-to-chunk combinations with 
probabilistic distributions. These trends are also observed in the learning process of the 
model. 
 The similarity of trends between the development of the real bird and the learning of 
the model is also observed in the study of statistical measures. In the early stages of 
both the development of the real bird and the learning process of the model, there are 
many letter blocks that are seemingly random and do not appear in the template 
sequences (Fig. 7(c)). Thus the variety of generated sequences is initially large (Fig. 
7(b)). However, at the same time, letter blocks that appear frequently in the template 
sequences are reproduced at this very early stage (Fig. 7(d)).  



       Developmental learning of syntactical birdsong.  16/22 

  16/22 

 
Fig.7 Comparison of the development of real birds and the learning process of the model. 

 For each measure studied, the left-hand graph corresponds to real birds, whereas the right-hand 

graph corresponds to the model. (a) KL-divergence values at early and late stages of each process. 

(b) Changes in the block entropy. (c) Changes in the occurrence rates of the letter blocks that do not 

appear in the template sequences. (d) Changes in the 10 most frequent letter blocks of the template 

sequences. The amount of noise is fixed at 0.25 for all learning trials both in the early and later 

stages of learning. 

 

 

Fig.8 Example of the relationship between the KL-divergence and the level of noise added (Song B). 

 The graph indicates that there is an optimal noise range within which the model generates note 

sequences that have branching probability distributions very similar to the template. 
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 By the end of development and learning, letter blocks whose occurrence 
probabilities are relatively low are eventually also reproduced. Seemingly random 
transitions and letter blocks that do not appear in the template almost completely 
disappear (Figs. 7(c)). As a result, the diversity of the generated sequences is lower than 
the diversity at the early stages of each process (Figs. 7(b)). In terms of these measures, 
changes in the development of the real birds and in learning process of the model show 
similar trends. That is, the real birds first learn and reproduce chunks, and then begin to 
reproduce chunk-to-chunk combinations with probabilistic distributions. This suggests 
that the developmental learning process of note-to-note transition rules in real birds is 
similar to the learning process of the model, where the activation of the network 
represents probabilistic distributions of template sequences as dynamical systems. 
 In the case of the model, these features of the learning process can be explained in 
terms of changes in the effects of noise resulting from the changing structure of the 
network. In the learning process, the network dynamics of the model reproduce 
note-to-note transitions in probability form by updating connective weights to minimize 
the error between generated sequences and the teacher signal. 
 At the beginning of the learning process, since the connective weights have not yet 
converged, the effect of noise is large, and generated sequences seem random. In the 
process of learning, letter blocks that frequently appear in the templates are reproduced 
first. However, seemingly random transitions are still observed. As the structure of the 
network converges, the effect of noise gradually diminishes, and blocks that do not 
appear in the template eventually disappear. By the end of the learning process, the 
activation of the RNN represents the occurrence probabilities of each branch, as given 
by the template sequences. Therefore, the role of noise is to provide stochasticity for 
branching. Even less frequent letter blocks in the template are eventually replicated with 
occurrence probabilities close to that of the template. 
 
4-3. Function of noise 
To examine the role of noise in the model, the connective weights of the networks are 
fixed at the end stage of learning, and sequences are generated with various amounts of 
noise added. Figure 8 illustrates the relationship between the KL-divergence and the 
level of noise added for one trial (Song B). This curve shows that the KL-divergence is 
large both for extremely small and extremely large amounts of noise and that it reaches 
a minimum for intermediate amount of noise. This indicates that there is an optimal 
noise range within which the model generates note sequences that have branching 
probability distributions very similar to the template. 
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 Comparison of block entropies for sequences with and without noise reveals that, 
for songs with higher entropies, the entropy is reduced by the removal of noise. In 
contrast, for the low-entropy song (Song F), there is almost no effect (Fig. 9). This 
result is consistent with the previous NIf lesion study in that the entropy of high-entropy 
songs is reduced, whereas, in the case of low-entropy songs, almost no effect is 
observed. 
 The results of a simulated NIf lesion study can also be explained in terms of changes 
in the effects of noise on the network. At the end of the learning process, once weights 
are fixed, there is an optimal noise range within which the model generates note 
sequences that have branching probability distributions that are very similar to the 
template (Fig. 8). If the amount of noise is increased beyond the optimal range, 
seemingly random transitions appear, which do not occur in the template sequence. If 
the amount of noise is decreased from the optimal range, branches with lower 
occurrence probabilities disappear, and eventually only the most frequent path remains, 
despite the fact that the note sequences learned from the template contain some 
branching. However, in the case of a song with almost no branches, decreasing the 
amount of noise has almost no effect. Thus, the network that learns from a simple song 
template is not affected by the removal of noise.  
 
 
 

 
Fig.9 Comparison of block entropies on sequences with and without noise. 

 In the simulations with noise, the nose level is set to 0.25. For the songs with higher entropies, the 

entropy is reduced by the removal of noise. In contrast, for the low-entropy song (Song F), there is 

almost no effect. 
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5. Discussion 
5-1. Representation of the temporal pattern of song in the HVC 
Our biological observations on the song development process of real birds show that at 
the beginning of the learning process, real birds first learn and reproduce chunks that 
most frequently appear in the template, and then next begin to reproduce 
chunk-to-chunk combinations with probabilistic distributions. Even less frequent letter 
blocks in the template are eventually replicated with occurrence probabilities close to 
that of the template. This biological observation suggests that the previous model of 
temporal pattern acquisition in the HVC might not be applicable in the case of the 
Bengalese finch. 
 In the previous model developed by Fee's group, it is assumed that temporal patterns 
of songs are represented as feedforward activities of the HVC, the role of which is 
analogous to a recording "tape" (Fee et al. 2004). It is also assumed that these 
feedfoward activities innately exist and that the order of the notes in a song motif is 
acquired only as a result of changes in connections between the HVC and the RA, 
where connections correspond to the mapping between an innately existing "tape" and 
each note sound. They also hypothesized that birds whose song repertoire size is large 
have a large number of tapes (Fee et al. 2004). 
 According to the assumptions made in their model, a bird which generates an almost 
infinite number of different motifs, such as the Bengalese finch, should have an almost 
infinite number of tapes encoding these motifs. However, if certain chunks are 
independently generated based on different neural activities, even in cases where the 
final output sounds correspond to the same particular chunk, in Fee's model it is hard to 
explain the "chunking" phenomenon which is observed. 
 In the current proposed model, however, particular chunks correspond to certain 
neural states in a generalized manner, in the sense that particular chunks are encoded in 
one particular neural state even when they appear in different motifs. The appearance of 
particular chunks in the learning process is interpreted in a consistent way as resulting 
from certain neural states corresponding to certain chunks developed in the HVC. 
Therefore, biological observations suggest that the temporal note sequences of songs 
would take the form of recurrent dynamics of the kind that have been shown in our 
model, rather than feedforward activities, the mechanism proposed in the previous 
model. 
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5-2. Function of the NIf 
In the current model, additive noise, in cooperation with deterministic dynamics of the 
HVC, is enough to reproduce occurrence probabilities of branching in song note 
sequences, even though noise is provided from the NIf independent of the note 
sequence context. Moreover, the simulated functional change of the NIf also produces 
results that are consistent with a previous lesion study. 
 In the proposed model, activation of the HVC represents occurrence probabilities of 
each branch in song note sequences, with random activity of the NIf providing 
stochasticity for branching. Thus, reduction of noise reduces the level of branching and 
results in a decrease in the entropy of songs. In addition to changes in the entropy of 
songs, the model also predicts which particular path in the song note sequences should 
disappear as a result of the reduction of NIf activity. Specifically, if the amount of noise 
is decreased from the optimal range, branches with lower occurrence probabilities 
disappear first, and eventually only the most frequently traversed path remains. 
 Without noise, variability of songs is substantially limited, and the model repeatedly 
produces the same linear note sequence (Fig 6b). Lesions to the NIf, however, normally 
result in complete and irreversible inhibition of activity. Thus, in order to verify the 
prediction, instead of a lesion study we are conducting a neurophysiological experiment 
by using chemicals to reversibly control the activity of the NIf. 
 In the previous model, song diversity of the Bengalese finch is assumed to be 
provided by more complex, higher-level functions of the NIf corresponding to 
functional hierarchy of the nuclei RA-HVC-NIf (Hoshino and Doya. 2000). However 
the proposed model shows that only context independent noise is sufficient to reproduce 
occurrence probabilities of branching in song note sequences. Therefore, the present 
model suggests that the NIf may not need such a complex representation. 
 Our hypothesis is consistent with the fact that the NIf is a very small nucleus 
consisting of a small number of neurons and the fact that the activation pattern of the 
NIf is less context-dependent than the HVC and the RA (McCasland 1987). This is also 
consistent with the fact that the Bengalese finch and the Zebra finch, the songs of which 
are simple, are closely related and may indicate that there are no major functional 
differences between these species. 
 Moreover, the assumption that the NIf performs a noise-like function suggests a 
possible connection with the perspective adapted in the study of reinforcement learning. 
We hypothesize that the noise-like activity of the NIf could help exploration in the 
learning of note-to-note transition rules by generating fluctuations at each transition. 
This is similar to the hypothesis that states that the random activity of the lateral 
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magnocellular nucleus of anterior nidopallium (LMAN) helps exploration in note 
learning by fluctuating each individual sound (Ölveczky et al. 2005). Although the 
current model is trained using supervised teaching, in the near future, we plan to use 
reinforcement learning to further investigate the hypothesis regarding the possible role 
of noise-like activity of the NIf. 
 As shown earlier, each template song has an optimal noise range, within which the 
model generates note sequences with branching probability distributions that are very 
similar to the template. In the present study, although the amount of noise is fixed for all 
individual birds and for each learning period, we are able to enable the model to learn 
this optimal range by allowing the amount of noise to vary, in parallel with changes in 
connective weights. If the song generation of real birds is dependent on such a noise 
range, then we can speculate that NIf activity changes during the developmental process 
and that these dynamics may be reflected in differences between the Bengalese finch 
and the Zebra finch. That is, at the early stage of learning note-to-note transition rules, 
higher activity of the NIf is needed for exploration, whereas this activity is not 
necessary at the end of the learning process. In the Bengalese finch, however, NIf 
activity is relatively high at the end of the learning process, allowing the Bengalese 
finch to learn to sing complex songs with a syntactical structure. To confirm these 
predictions, changes of NIf activity during development and differences in NIf activity 
between the Bengalese finch and the Zebra finch need to be examined. 
 
6. Conclusion 
We proposed a novel hypothesis based on biologically supported assumptions that 
provides an explanation for the functional role of NIf-HVC interaction that generate 
complex syntactical songs of the Bengalese finch. The model shows that complex 
syntactical songs, described by a probabilistic finite state syntax, can be replicated by 
simple interactions between deterministic dynamics of a recurrent neural network and 
random noise. Features of the learning process in the simulations show similar trends to 
empirical data on the song development of real birds. This observation suggests that the 
temporal note sequences of songs take the form of a dynamical process involving 
recurrent connections in the network of the HVC, as opposed to feedforward activities, 
the mechanism proposed in the previous model.  
 Moreover a functional change simulating a NIf lesion induced by manipulating 
interactioins between determinisitc dynamics and random noise produces results that are 
consistent with a previous empirical lesion study of the NIf. The model also provides a 
number of testable hypotheses that could contribute to further studies of NIf functions.  
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