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Abstract. This paper examines the generalization capability in learn-
ing multiple temporal patterns by the recurrent neural network with
parametric bias (RNNPB). Our simulation experiments indicated that
the RNNPB can learn multiple patterns as generalized by extracting re-
lational structures shared among the training patterns. It was, however,
shown that such generalizations cannot be achieved when the relational
structures are complex. Our analysis clarified that the qualitative dif-
ferences appear in the self-organized internal structures of the network
between generalized cases and not-generalized ones.

1 Introduction
Learning temporal patterns from examples are important problems in various
domains including robot learning, adaptive process controls, auditory processing
and etc. Recurrent neural network (RNN) [1] has been investigated for this
purpose and it has been shown that an RNN is good at learning a single pattern
by self-organizing a corresponding attractor [1].

Then a question arises that how multiple temporal patterns can be learned
using RNNs. There are two distinct approach for the problem by using local rep-
resentation and distributed representation. In the local representation scheme,
each temporal pattern is learned to be stored in a local module network by uti-
lizing winner-take-all dynamics among the modules. Such examples can be seen
in [2, 3]. On the other hand in the distributed representation, multiple temporal
patterns are learned in a single network by sharing its neural units and synaptic
weights. One possible implementation is the scheme of recurrent neural network
with parametric biases (RNNPB) [4] in which the parametric bias (PB) plays
a role of modulation parameters of RNN dynamical structures. By modulating
the PB, different temporal patterns are generated. The values of PB for each of
target patterns are self-organized during learning processes.

An interesting characteristics of the RNNPB is that it can generate not
only learned patterns but also varieties of unlearned patterns by modulating the
PB values [4]. It is, however, not clear yet that how such unlearned patterns
are generated and under what sort of constraints they do. One of the most
essential characteristics in the distributed representation scheme is that each
pattern is learned not independently but as embedded in sorts of relational
structures among other learned patterns. Therefore, unlearned patterns can be
generated as constrained by such relational structures organized in the network.
It can be said that the learning of a set of patterns is generalized when such
relational structures among patterns are successfully extracted in the network.
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The current study examines this generalization characteristics of the RNNPB
learning by conducting a set of simulation experiments. In the first experiment,
we investigate how generalization is achieved in learning a set of training pat-
terns those share simple constraints. In the second experiment, we investigate a
representational case of not achieving the generalization with using training pat-
terns that are posed with more complex constraints. Through these experiments
we attempt to clarify the underlying mechanisms of achieving generalizations as
well as not achieving of them in learning multiple patterns in the RNNPB.

2 Model

First, here are the basic ideas behind our model. Figure 1 shows the neural net
architecture used in the current study.
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Fig. 1. The RNN associated with the PB inputs.

The architecture employs a Jordan-type [5] recurrent neural network (RNN)
associated with the PB nodes. The RNN learns to generate sequence patterns
by receiving xt as inputs and generating predictions of the next step inputs
x̂t+1 as outputs by using the context state ct and the PB vector p. Here, xt,
ct and p are vectors. Note that p is fixed while xt and ct change dynamically
during generating a temporal pattern. The current context state ct represented
by context nodes in the input layer is mapped to that in the next time step,
ct+1, represented by context output nodes. The PB vector plays the role of the
pattern modulator which is analogous to bifurcation parameters of nonlinear
dynamical systems. Each specific temporal pattern is generated while the PB
is clamped to its corresponding value. Specific values of PB for generating each
training pattern is self-determined through their prior learning processes (as will
be described later). The following subsections will describe the learning processes
in detail as well as the pattern generation processes.

2.1 The learning process
The idea of learning in the model is to search simultaneously for optimal synaptic
weights that are common for N of training sequence patterns and N of optimal
PB vectors each of which is specific to one of the training sequence patterns.

pn as the PB vector values at learning step n is updated iteratively for each
training pattern with using back-propagation through time (BPTT) algorithm
[5] while the synaptic weights in the network is updated. The BPTT utilizes a
window of a working memory that stores computational results in the current
learning step for each training sequence. The forward activation sequence by
cascade, the error sequence and the delta error sequence are stored. The step
length of the sequences stored in the working memory is denoted as L (that is
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equal to step length of the training sequence pattern). For each learning iteration,
L steps of the forward dynamics are computed by cascading the network for
each sequence. Once the L steps of the output sequence are generated, the errors
between the teaching targets xt+1 and its prediction outputs x̂t+1 are computed.
The error at each step is back-propagated through time in the sequence by which
the delta error at PB nodes at each step in the cascaded network is obtained.
The summation of this delta error over L steps provides the update direction
of the PB vector in order to minimize the total error for the training sequence.
The update equations for the ith unit of the PB at learning step n are:

δρi
n = kbp ·

L∑

t=0

δbpi

t (1)

∆ρi
n = ε · δρi

n + η · ∆ρi
n−1 (2)

pi
n = sigmoid(ρi

n) (3)

In Eq. (1) the δ force for the update of the internal potential values of the
PB ρ is obtained from the summation of the delta error at PB node δbpi

t for L
steps. Then, the ρn is updated by using the delta force by means of the steepest
descent method. The current PB pn are obtained by means of the sigmoidal
outputs of the internal potential values ρn.
2.2 The pattern generation
Once the synaptic weights in the RNN are determined by the learning process,
each of trained sequence pattern can be generated using the so-called closed-loop
mode with clamping the PB vector with the values obtained in the learning.
In the closed-loop mode, the RNN’s forward dynamics proceeds autonomously
without receiving the inputs xt externally. Instead, the prediction outputs x̂t+1

is fed-back to the inputs. It is noted that the RNN can generate various dynamic
patterns beyond learned ones by arbitrary setting the PB vector, of which char-
acteristics is the main discussion topics in the current paper.

3 Learning Experiments
In the learning experiments, 2 channels sinusoidal patterns are employed for
training patterns. In the experiments, two learning sets are used. The set 1
consists of 5 patterns each of which has different amplitude and frequency while
other properties, such as phase differences between two channels and offset, are
the same. The set 2 consists of 5 patterns each of which has different offset
and phase difference between channel 1 and 2 with other properties set as the
same. In the first simulations, only training set 1 is learned. In the subsequent
simulation, we examine the learning case with these two training sets merged
into one training set. The RNNPB used in these experiments has 2 input nodes
and 2 prediction output nodes for learning the forward dynamics of patterns. It
also had 2 PB nodes, 60 hidden nodes, and 60 context nodes. Parameter settings
in Eq. (1), (2) were kbp = 0.5, knb = 0.4, ε = 0.1, η = 0.9. In the learning, the
RNNPB learns all patterns in the training set simultaneously. The learning is
iterated for 100000 steps, starting from randomly set initial synaptic weights.
The final root-mean-square error of the output nodes was less than 0.0002 over
all learning results.
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3.1 Training set 1: amplitude and frequency

In the simulation 1, the RNNPB was trained using the set 1. After it was con-
firmed that the RNNPB can regenerate all patterns in the set 1, we examined
how much the RNNPB can also generate unlearned patterns that are possi-
bly generated by interpolating the training patterns in terms of amplitude and
frequency. For this purpose, interpolated patterns are prepared by taking inter-
mediate amplitude and frequency between selected pairs of the training patterns
as the targets. Then, the PB values are searched for best mimicking those inter-
polated patterns.

In Figure 2, it is observed that the RNNPB can generate the interpolated
patterns successfully. In Figure 2, the plot (b) shows the outputs generated by
the RNNPB, N2-3 that is interpolated between the (a) pattern 2 and (b) 3 in the
training set is generated with the PB of (0.22, 0.20). The amplitude of N2-3 is
intermediate between the pattern 2 and pattern 3 in the training set. In the same
way, other 3 patterns, N2-4, N3-5 and N4-5 have intermediate characteristics
among the training patterns. It is noted that those patterns are generated with
modulating only for their amplitude and frequency, but not for other properties.
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Fig. 2. The generated patterns correspond to intermediate patterns (a) N2-3 between
the pattern (a) 2 and (c)3 in the learning sample. The phase plots for (d) the amplitude
and (e) the periodicity for the outputs using the values of the parametric biases after
learning the training set 1.

Next, in order to clarify the structure of the mapping between the PB and
corresponding temporal pattern characteristics, a two-dimensional phase dia-
gram for the PB space was plotted. More specifically, the amplitude and the
periodicity of the generated patterns were plotted with two varying values of the
PB nodes. The amplitude and the periodicity for generated patterns was com-
puted while the two values of the PB were gradually changed at 0.01 intervals.
The sequences of 1000 step lengths were generated by the forward dynamics in
the closed-loop mode, and then the periodicity and the amplitude were calcu-
lated at each point in the PB space using the sequence from the 600th to the
1000th step in order to exclude the initial transient period.
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Figure 2 (d) and (e) show the phase plots generated for (d) amplitude and
(e) periodicity by using color grading from black to white. In Figure 2 (d), a
white tile denotes that the amplitude is 1.0 while a black one indicates zero
amplitude (meaning that the trajectory converges to a fixed point). In Figure 2
(e), a white tile denotes that the periodicity is more than 30 steps, while a black
one indicates the convergence to a fixed point. In figure 2 (d) and (e), N labels
indicate the PB values that generated the interpolated patterns. And T labels
indicate the PB values that regenerated the training patterns.

We observed that the amplitude and periodicity changes smoothly over the
PB space except for the region of fixed point dynamics. In the PB space, it is
observed that the PB vectors T1, T2, T3, T4 and T5 which can regenerate the
training patterns, are widely distributed in the limit cycling dynamics. And it is
also observed that each PB vector for the interpolated patterns, N2-3, N2-4 and
N3-5, is located in intermediate between T2 and T3, T2 and T4, and T3 and
T5, respectively. These observations conclude that the learning of the training
set 1 was well generalized by capturing the underlying regularity in the training
set 1, that is – in generating sinusoidal patterns their amplitude and periodicity
can be changed independently while other profiles are preserved.

Note that we obtained similar results for the set 2 in terms of offset and
phase difference.

3.2 Training set 1 and 2
In the simulation 2, the RNNPB was trained using both of the set 1 and 2. We
confirmed that the RNNPB can regenerate all patterns in the set 1 and 2.

Figure 3 shows the phase plots generated for (a) amplitude and (b) periodicity
using color grading from black to white.
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Fig. 3. The phase plots for (a) the amplitude and (b) the periodicity for the outputs
using the values of the parametric biases after learning the training set 1 and 2. The
diverse patterns (c) and (d) generated with the PB values in the region of complex
structures in a relatively small PB space.

It is observed that the PB space is self-organized with much more com-
plex structures compared to those in the simulation 1. The PB points those
correspond to the regenerations of the training patterns in the set 2 and their
interpolated patterns are placed in the orthogonal region from the top-left to
the down-right. On the other hand, those points corresponding to the set 1 are
placed as divided into two regions of the down-left and the top-right parts. At
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each of these regions, some of the PB points for the interpolations are found to
be way out from intermediate between two PB points that correspond to training
patterns to be interpolated.

In examining whole possible patterns generated in the all space of the PB,
non-periodic patterns were found frequently especially in the boundary between
the regions of the set 1 and the set 2. Figure 3 (c) and (d) show such fluctuated
patterns generated diversely, which cannot be explained by simple interpola-
tions among the training patterns. (c) NA was generated with the PB vector
(0.30, 0.45) and (d) NB with (0.23, 0.40). It is considered that these fluctuated
patterns are generated because the PB mapping in the boundary is highly dis-
torted in a nonlinear way where two distinct functional structures meet each
other in a conflicting manner. These observations suggest that generalization
in learning becomes much harder when embedding of different structures are
attempted in a relatively small PB space.

4 Summary

Our experiments showed that the RNNPB can learn multiple temporal patterns
by extracting certain common structures among them. In the successful learning
case, it was observed that the self-organized mapping between the PB and the
characteristics of generated patterns becomes smooth where patterns interpo-
lated among the training patterns can be generated. This explains the gener-
alization capability of the RNNPB when the training patterns share relatively
simple constraints. It was, however, observed that the RNNPB learning cannot
be generalized well in more complex situations where two distinct relationships
exist among training patterns. It seems that the PB mapping is self-organized
with substantial distortions by attempting to embed complex structures in a
relatively small PB space. In such situations, diverse fluctuated patterns, which
cannot be explained by simple interpolations among the trained patterns, tend
to be generated.
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