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Abstract— The current paper introduces neurorobotics 

experiment on acquisition of complex communicative skills with 

human via learning. A dynamic neural network model which is 

characterized by its multiple timescale dynamics characteristics 

was utilized as a neuronal model for controlling a humanoid robot. 

In the experimental task, the humanoid robot was trained to 

generate specific sequential movement patterns as responding to 

various sequences of imperative gesture patterns demonstrated by 

the human subjects by following predefined compositional 

semantic rules. The experimental results showed that (1) the 

MTRNN can learn to extract compositional semantic rules with 

generalization in the higher cognitive level, (2) the MTRNN can 

develop further higher-order cognition capability for controlling 

the internal contextual processes as situated to on-going task 

sequences without being provided with cues for explicitly 

indicating task segmentation points. The analysis on the dynamic 

characteristics developed in the MTRNN through learning 

indicated that the aforementioned cognitive mechanisms were 

achieved by developing adequate functional hierarchy by utilizing 

the constraint of the multiple timescale property and the 

topological connectivity imposed on the network configuration. 

 
Index Terms— Dynamic neural network model, Compositional 

semantics, Functional hierarchy, Higher-order cognition, 

Self-organization, Socially intelligent robot.  

I. INTRODUCTION 

Recently, research on socially intelligent robots have drawn 

significant attention in both academia and industries [1-3]. 

Investigating theories and methods for developing robots that 

can perform human-level interactions with other agents is the 

major interest of the aforementioned research [1]. Those 

research on socially intelligent robots have been conducted 

with the design philosophy that processes of thinking, acting, 

and communicating are one inseparable process [1, 2].  

Especially, researchers in the field referred to as 

developmental robotics [4, 5], have tried to apply various 

psychological aspects evidenced in human infant development, 

in building cognitive models of socially intelligent robots. 

Concurrently, to understand the underlying mechanism or 
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principles for the development of social cognitive functions, in 

robotic experiments, they have reconstructed cognitive 

functions by utilizing psychologically and neurobiologically 

plausible models [4, 5]. However, in most cases, those 

reconstructed functions have been limited to relatively simple 

ones as compared to those in even three-year-old human infants, 

because such studies in developmental robotics are still in an 

early stage.  

In the aforementioned research context, the current research 

aims for reconstruction of higher cognitive mechanisms via 

sensory-motor learning in a neurobiologically plausible manner.  

The communicative tasks, in this research, were designed to 

address the issue of systematicity. Systematicity is considered 

to be one of the indispensable competencies of the higher 

cognitive systems such as language systems [6, 7]. Here, 

systematicity in language processing refers to the cognitive 

capability of humans to infer the meaning of unknown 

sentences from known sentences, by extracting compositional 

semantic rules from them. In the adopted tasks, we utilize 

human gestures characterized by systematicity as a 

communicative mean. (It has been shown that human natural 

gesture recognition capability is also endowed by systematicity 

[8, 9].) More specifically, a humanoid robot is trained to 

generate specific compositional motor primitive patterns as 

corresponding to imperative gestures demonstrated by the 

human subject. It is noted that the imperative gestures 

demonstrated by the human subject consists of various 

combinatorial sequences of movement patterns by the 

predefined compositional semantic rules. Details of the tasks 

will be explained in Section III. 

The achievement of the complex communicative interactions 

between human and robot is considered to encounter with the 

following technical challenges. Solely from learning of lower 

level perceptual flows, without utilizing explicit cues for 

extracting task rules or segmenting phase, the robot should 

achieve following goals: (1) acquisition of compositional 

semantics with generalization for performing higher cognitive 

communicative tasks characterized by systematicity, (2) 

development of a further higher-order cognitive mechanism for 

controlling the turn-taking process, as well as controlling the 

contextual flow as situated to on-going task processes. These 

technical challenges of targeting development of higher-order 

Development of Compositional and Contextual 

Communication of Robots by using the Multiple 

Timescales Dynamic Neural Network 

Gibeom Park 
KAIST 

Daejeon, South Korea 

gbpark1124@gmail.com 

Jun Tani 
KAIST 

Daejeon, South Korea 

tani1216jp@gmail.com 

 

5th International Conference on Development and Learning
and on Epigenetic Robotics
Aug 13-16, 2015. Providence, RI USA

978-1-4673-9319-5/15/$31.00 ©2015 IEEE 176



 

cognitive competency out of lower level perceptual experiences 

could contribute significantly to the realization of truly 

human-like socially intelligent robots. 

 For the purpose of accomplishing the discussed challenges, 

the current study takes an approach based on the paradigm of 

dynamical systems and self-organization in modeling the 

development of the objective cognitive-behavioral processes. 

Because this is considered as a promising approach to account 

for the essence of the embodied cognition [10-12]. Especially, 

the current research follows the results from the study 

conducted by Yamashita and Tani [13], as they showed that 

functional hierarchy for generating complex behaviors can be 

developed through iterative learning of sensory-motor 

experiences by utilizing the reported multiple timescales 

recurrent neural network (MTRNN) model. Also, the current 

study is related to a robotics study on the associative learning 

between proto-language and behaviors conducted by Sugita 

and Tani [14] which utilized the recurrent neural network with 

parametric bias (RNNPB). This study investigated how the 

compositional semantic rules can be extracted with 

generalization from the iterated tutoring experience by 

learning. 

 The novelty of this study is twofold. First point is that 

intentional states to generate an adequate robot corresponding 

response to a human gesture was developed in the context units 

activity while perceiving a continuous human movement flow 

without using the  error regression scheme shown in the 

previous studies [13, 14]. This scheme is advantageous because 

the experimenter does not need to (1) segment responses and 

gestures in the continuous flows, (2) tune additional parameters 

such as time window length. The second point is that this study 

showed that the network can develop another level of the higher 

cognitive capability to control both turn-taking process and 

contextual flow of an on-going task without introducing 

additional experimenter-designed modules or mechanisms. The 

network developed this competency just learning through 

experience of continuous task sessions. Details of these claims 

are described throughout the paper. 

We conducted a set of neurorobotic experiments by 

following the aforementioned frameworks. Both quantitative 

and qualitative analysis on the results of the experiment clarify 

how the higher cognitive competency necessary for achieving 

human-like communicative skills can be developed in the 

course of self-organizing adequate dynamic structures in the 

adopted dynamic neural network model. Next section will 

describe details of the adopted network model. 

II. DYNAMIC NEURAL NETWORK MODEL 

A. Overview 

The MTRNN model adopted in this study is characterized by 

multiple timescales dynamics and hierarchical structure of 

multiple subnetworks [13]. In the current study, the intention 

for generation of a specific motor response is not set by the 

experimenter. The intention is expected to be developed in the 

internal (context) dynamics while perceiving continuous flow 

of the human gesture patterns starting from initial neutral value. 

After demonstration of a human gesture, the corresponding 

motor response is expected to be autonomously generated as 

reflected with the top-down intention developed in the internal 

dynamics so far. It is highly speculated that such mechanism of 

turn taking from observation of the gesture to generation of its 

action can be developed in the dynamical structure of the 

network model if the network is trained with sufficient amount 

of tutoring for pairing observation of the gesture and generation 

of its own corresponding motor response. Next subsections 

describe further details of the adopted network model. 

B. Model Architecture 

We modified the MTRNN model [13] which is composed of 

multiple levels of subnetworks characterized by different 

timescale dynamics. The typical architecture of MTRNN 

adopted in the current experiments is shown in Fig. 1. The 

network architecture consists of four context dynamics 

subnetworks. Input and output units are connected to the fast 

context dynamics subnetwork, the lowest-level subnetwork. As 

shown in Fig. 1, contexts in higher-level subnetworks have 

larger time constants than the ones in the lower-level. The 

numbers of the context units from lowest to highest 

subnetworks are 30, 30, 20, and 20, respectively. The same 

network configuration is used throughout the experiments, 

except for the one that is designed for examining importance of 

characteristics of the MTRNN: the multiple time scales 

dynamics and topological connectivity.   

The input is sent from the motion tracker (4 dimensional 

position data measured for left hand and right hand of the 

human subject as denoted by xV,t ) and from the NAO robot 

guided by the experimenter (the encoder reading of 4 DOF 

joints as denoted by xP,t). To sparsely encode the inputs, 

softmax transformation is independently applied to each dime- 

Fig 1. The whole system architecture for the performing the communicative 

tasks with MTRNN. SMT denotes softmax transformation. ,
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nsion of the inputs. These transformed data were used as the 

input and target-output of the network. 

 

C. Forward Dynamics 

For given connectivity weights, the forward dynamics of all 

neural units including output units and context units in different 

timescale subnetworks are computed by following (1~3).  
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where xt, ut, and ct represent the input, internal state, and 

context activation value at time , respectively,   is the time 

constant of the context unit, C, I and O are the neuron indices of 

the context, input and output layers, wij is the ith unit to jth unit 

connectivity. V and P are sets of indices corresponding to vision 

and proprioception, l(i) is the length of the ith dimension’s 

reference vector, and f() is hyperbolic tangent. We used 9 as l(i) 

for all i. The output yij,t+1 is computed by using the softmax 

function. This softmax output activation function is used to 

help learning by making the output activate sparsely. The 

forward dynamics generate a sequence of one-step prediction 

for the output vector. In the current study, the initial internal 

state of each context unit is set by a neutral value of 0.0. 

D. Training 

A learning scheme referred to as back-propagation through 

time (BPTT) algorithm [15] is utilized for training of the 

network. The network was trained to optimize its learnable 

parameters (θ) to minimize Kullbak-Leibler divergence (KLD) 

between target and prediction outputs as described in the 

following (4). 
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where yi,t+1 and 1,i tx   are prediction and target outputs. The 

learnable parameters that consist of connectivity and bias are 

updated in a direction of minimizing prediction error, i.e. 

opposite direction to that of the gradient as described in (5). 
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where α is learning rate. Detail equations for calculating delta 

parameters are described in the following [16].   

As can be seen in Fig. 1, the MTRNN is a type of deep neural 

network, which has a deep hierarchical structure of multiple 

subnetworks and each of them has different timescale dynamics 

with a different time constant. Therefore, the network would 

learn multiple timescale correlations and self-organize into a 

functional hierarchy between multiple subnetworks by utilizing 

its hierarchical structure and multiple timescale dynamics. As a 

result of the learning by means of prediction error minimization, 

the network becomes able to represent the states of both the 

environment and itself, and makes links between them at the 

level of the slow dynamics subnetwork. This permits the 

network to develop adequate higher-level cognition for 

communicating with others in the outer world. 

The initial learnable parameters, weights and biases, are 

randomly set with a Gaussian distribution. The range of the 

Gaussian distributions for the weights and biases were [-0.1, 

0.1] and [-1, 1] for the biases. The initial learning rate was set as 

0.1/Ttotalⅹd , where Ttotal is summation of the time step over all 

training sequences, and d is dimensionality of the output. 

In order to accelerate the learning speed as well as to achieve 

better generalization capability, a scheme of adaptive learning 

rate was employed. Details of the adaptive learning rate 

algorithm is given in Appendix A. Furthermore, because the 

learning error often fluctuates as the training proceeds, we 

employed a scheme of selecting the best learning parameters 

obtained in the course of the entire training process, whose 

exact scheme is described in Appendix-B. 

III. GENERAL TASK DESIGN 

Tasks in this paper were designed to investigate how robots 

employing the MTRNN model develop higher order 

communicative competency from sensory-motor learning. We 

designed the following communicative tasks for addressing the 

technical challenges aforementioned in Section I: (1) 

acquisition of compositional semantic rules from partial 

training exemplar, (2) further higher-order cognitive capability 

for adaptive control of the contextual memory.  

Communicative tasks in the current study consist of 

sequentially-combined imperative gestures demonstrated by a 

human and corresponding responses generated by a robot. 

Example pairs of imperative human gestures and robot 

response in the communicative tasks are shown in Fig. 2. As it 

can be seen in Fig. 2, an imperative is a sequential combination 

of human movement patterns: human movement primitives 

(HMPs), order commands, and speed commands. Three 

different HMPs determine corresponding robot motor  

Fig. 2. Examples of pairs in the communicative task. A human demonstrates an 

imperative gesture pattern, and after some delay, a robot generates the 
corresponding response. An imperative gesture consists of the movement 

primitives, order and speed commands. 
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primitives (RMPs). Two order commands are verb-like 

commands indicating either forward or reverse order in 

generation of motor primitive sequences. Three speed 

commands are adverb-like commands indicating generation 

speed of robot motor primitive, i.e. either fast, normal or slow.  

These communicative tasks have the following complexities. 

First, both imperative human gestures and the corresponding 

robot responses are a combination of movement patterns. 

Second, the same movement patterns could have different 

meanings depending on their previous pattern’s type. For 

example, in Pair-B in Fig. 2 although two succeeding reverse 

order command and the normal speed command are in the same 

shape, their types are different. Third, in Experiment 1 case, the 

imperative gesture is generated by the more complex 

compositional semantic rule; a human subject can demonstrate 

one to three movement primitives before demonstrating 

commands. The proposed network has to develop higher-order 

cognitive function to segment patterns and phases. Moreover 

the network has to extract the underlying meanings of each of 

segmented and combination of patterns, and acquire rules 

among those segments by entirely via iterative learning of the 

continuous sensory-motor flows. 

IV. EXPERIMENTAL RESULT AND ANALYSIS 

A series of experiments on human-robot communicative 

skills based on learning was conducted for the purpose of 

examining a set of essential problems described previously. 

The success rate was measured by counting the number of the 

sessions (consisting of a pair of human gesture part and robot 

response generation part) that the network successfully 

performed. If the mean KLD between motor target and 

prediction outputs was lower than 0.01 during the session, the 

session was considered as successful. 

A. Experiment 1: Achievement of Systematicity. 

In this experiment, the higher level generalization capability 

of the network in the higher cognitive level, extracting 

compositional semantic rules from gesture-response pairs, is 

examined. All possible 234 gesture-response pairs combined 

with the compositional rule are used. The network was trained 

using 156 pairs (including 12 validation pairs) and tested using 

remaining 78 pairs. The network was trained 3 times with 

different initial learnable parameters. The network 

configuration, which is explained in sub-section II-B were used. 

The average test result showed success rate of 87.0%. The 

network showed relatively good generalization result. The 

learning curve for the training and test pairs during training 

process is shown in Fig 3. As shown in Fig 3, both training and 

test errors gradually decreased as the training proceeded. 

Although test KLD curves fluctuated during learning, the 

fluctuation showed correlation with the training one. Therefore, 

by applying learning parameter selection scheme as described 

in Appendix B, it was possible to select the proper learning 

parameters that showed high success rate for test pairs. 

Fig. 4 shows how the slow context dynamics developed along 

with the perception of the human gesture patterns and 

generation of the motor response, respectively. As it can be 

seen in Fig. 4, the slow context unit activities in these two trials 

were the same before the demonstration of the third movement 

 

primitive, and differentiated after that. This implies that the 

slow context activities were developed to represents the current 

context by integrating the gesture sequence patterns perceived 

in the past. Also, the differently developed activities trigger 

generation of the corresponding motor primitive sequences. In 

profiles of fast context unit activity, on the contrary, we 

observed one to one mapping between patterns and profiles. In 

conclusion, it can be said that the slow dynamics subnetwork is 

successful in extracting longer time correlated structures such 

as semantic rules from observed perceptual sequences. The fast 

dynamics subnetwork, on the other hand, involves with 

processing detail features of on-going perceptual or motor 

primitive patterns. The current experiment results show that the 

adopted MTRNN model successfully achieve the goal. Table I 

shows success rates of the networks trained under same training 

condition 1 but different network configurations. This results 

imply that both topological connectivity among subnetworks 

and multiple timescales property are essential in achievement 

of the goal by developing adequate functional hierarchy. 

 

 

Fig. 4. Two examples of test trial results in (a) and (b), plotted with the slow 

context units activity. xV,t, yP,t , cs,t and cf,t  indicate the vision (Kinect) inputs, the 

motor (proprioception) output, and the slow and fast context units activities. 

Fig. 3. Evolution of mean KLD between motor target and prediction outputs for 

the training pairs (blue dotted line) and test ones (solid red line) during training. 
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TABLE I. 

COMPARISON OF SUCCESS RATES 

  

B. Experiment 2: Development of Further Higher Cognition 

In this experiment, we investigated how the network can 

acquire a certain high-order cognitive mechanism for 

controlling the contextual memory for both preserving and 

resetting it as situated to the on-going task process. Different 

from the previous experiment, this experiment was conducted 

in more natural task settings; multiple session iterates 

continuously without termination. This settings brings another 

technical challenge which is how the robot can segment task 

sequence into each session without receiving explicit cues of 

indicating onset or end of the session. Same as Experiment 1, 

the network has to keep the activity of context units to develop 

while receiving the sequences of gesture movement primitives. 

When the gesture demonstration is finished, the network should 

be able to trigger the turn taking for generating its own motor 

response. Furthermore, in iterated session case, when the motor 

response is finished, the context states should be reset for 

preparing for next session to be started. This sort of task process 

requires aforementioned cognitive mechanism. 

How can the network acquire such a sophisticated 

mechanism involving with a sort of “meta-level” control of the 

contextual memory? Our hypothesis was that such contextual 

control skills could be acquired if the network is trained for 

longer iterations of the sessions. We tested the hypothesis by 

conducting learning experiment in which the network was 

trained with 26 trials each of which consists of 9 sessions with 

simplified form of gesture-response pairs to focus on the 

current technical challenge. In this experiment, imperative 

gesture consisted of 3 concatenated movement primitives (12 

different primitive sequences were arbitrarily selected), 

followed by a forward order command and 3 different speed 

commands. All of the possible 36 gesture sequences were 

included in the training. 

 After training the network under the aforementioned 

conditions, the performance of the robot was examined by 

iterating 36 sessions in which the gesture sequence was 

randomly selected from 36 possible gesture sequences at each 

session. The test results showed that the robot performed with 

the success rate of 84.4%. This result is much better than the 

Fig. 5. Two examples of test trial results during iterative cycles of sessions 
plotted with slow context activities. xV,t, yP,t and cS,t  indicate vision input, 

proprioception output and fast context. Two solid line rectangles and two 
dashed line rectangles indicate portions of the same imperative gestures. At 

each end of session, the context activity becomes similar as pointed by red 

arrows of “neutralized context”. 

 

one where the network was trained with the single session 

condition and tested with the same condition, less than 10%.  

Fig. 5 shows examples of two different test trials for 

concatenated sessions. The same categories of imperative 

gestures showed similar slow context activities regardless of 

the task content in the previous session. Furthermore, the slow 

context activities seemed to be reset to a neutral value 

immediately before the onset of every new session, as seen in 

Fig. 5 denoted by red arrows of “neutralized context”. To 

investigate developed mechanisms more quantitatively, for all 

different sessions, variances of the internal states of the slow 

context units at the end of the sessions were computed for the 

cases of training with a single and 9 concatenated sessions. 

Surprisingly, the variances were obtained as 0.42 for the 

training with single session case and 0.0645 for the training 

with 9 concatenated session case. 

These results indicate that the mechanism for autonomous 

resetting of the context states at the end of each session can be 

developed provided that the network is trained with relatively 

long iterative cycles of sessions.  

V.   CONCLUSION 

In this study, we showed that the adopted MTRNN can 

achieve higher-order cognitive competency out of lower level 

perceptual experiences. In Experiment 1, the MTRNN 

recognized and generated not only learned compositional 

actions but also unlearned ones by extracting and applying 

complex semantic compositional rules hidden in sensory-motor 

flows. Moreover, we showed multiple timescales dynamics and 

deep hierarchical structure were essential for the achievement. 

Furthermore, in Experiment 2, the MTRNN developed further 

higher cognitive skill that is controlling the contextual memory 

when adapting to the task processes in terms of remembering 

and forgetting. It should be noted that the network developed 

the abilities entirely via sensory-motor learning without being 
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provided with any cues, such as symbols explicitly indicating 

the meaning of movement patterns or task phases.  

However, there are still rooms for further studies. In the 

current study, the network learned whole sequences at the same 

time, regardless of a complexity of them. It will be more natural 

to begin learning from a simple task: generation of the 

corresponding RMP after perceiving a single HMP, forward do 

and normal speed commands. And then, proceed further for 

more complex tasks. Studies on such staged developmental 

learning may crucial for both more deep understanding of 

development of human cognition and improving the 

competency of the model. Moreover, future study should focus 

on realization of truly open-ended human-robot social 

interactions. Also, investigation of learning methods should be 

done to remedy the shortcomings of current model and learning 

scheme: expensive computational time and hyper parameter 

tuning by trial and errors.  

APPENDIX 

A. Adaptive Learning Rate Algorithm 

In each epoch, the learning rate was updated by using the 

following algorithm [17]. 

(1) Calculate the delta errors using randomly selected  

percent of the training sequences. 

(2) Calculate the rate (r) of the KL-divergences before 

and after updating parameters using whole training 

and validation sequences. 

(3) If r  rth , then update α to ααdec and go back to (2). 

(4) If r  1, then update α to ααinc and go to the next 

epoch. 

In this study, we set rth  to 1.1, αdec to 0.7, and αinc to 1.2 based 

on the parameter setting used by Namikawa [17]. To improve 

generalization capability by reducing overfitting to the training 

data, we also considered error on validation data in updating the 

learning rate [18]. Validation sequences in this study were 

composed of the inexperienced human gestures and robot 

responses. Therefore, utilizing validation error in updating the 

learning rate has important meaning in general rule learning, 

because it can prevent the network to extract particular rules 

only be applicable to the training sequences.  

 

B. Criteria of Best Training Epoch 

The best iteration was selected after 300,000 epoch. The 

epoch that minimizes the following error function (B.1) was 

treated as the best epoch. 

 
,tr

tr val

val

N
E E E

N
   (B.1) 

where, Etr and Eval are the training and validation errors, and Ntr 

and Nval are the numbers of training and validation data, 

respectively. 
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