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Introduction: Motivation

The method of spontaneous symmetry breaking had an enormous
impact on theoretical physics in the 1960’s and 1970’s,
contributing to the development of the standard model of particle
physics which unifies three of the four known forces of nature: the
strong, weak, and electromagnetic forces.

Spontaneous symmetry breaking was abstracted to a general
abstract symmetry group in the 1960’s, allowing one to construct
connections and covariant derivatives transforming under these
groups, and is referred to as the ‘Method of Nonlinear
Realizations’ (also called the CCWZ Formalism) [1-2, 3 Sec. 19.6].

It was natural to ask whether one could apply the method of
spontaneous symmetry breaking to the fourth force of nature: the
gravitational field.
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Introduction: Motivation

In the 1973, Ogievetskii [4] showed that the general covariance
group of general relativity can be generated as the closure of the
affine group A(4) = GL(4,R)⊗s P4 with the conformal group
C(1, 3) ' SO(4, 2).

Then, using the previous result, Borisov and Ogievetskii [5] showed
that general relativity arises from the nonlinear realization of the
closure of these two groups, each ‘spontaneously breaking’ down to
the Lorentz group, the Nambu-Goldstone particles being Gravitons.

It was natural to ask whether one could apply this result to
supergravity, in particular eleven-dimensional supergravity.
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Introduction: Motivation

In 2000, West [6] constructed a partial analogue of the result of
Borisov and Ogievetskii for the bosonic sector of
eleven-dimensional supergravity, based on an algebra
G11 := {K a

b,R
a1a2a3 ,Ra1...a6 ;Pa}, which is an extension of A(4) by

the R3 and R6, again ‘breaking’ to the Lorentz group.

Without simultaneous use of the conformal group or its
supersymmetric extension, the dynamics is only fixed up to
constant factors (which must be chosen by hand when using G11),
they would presumably be uniquely fixed by simultaneous
(super)-conformal symmetry but this has not been derived
explicitly.

However there is evidence this would not be the right approach.
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Introduction: Motivation

It is known that when 11D supergravity is dimensionally reduced
on a torus down to 11− n dimensions (n = 1, . . . , 8), the resulting
Kaluza-Klein scalars can be written in terms of a non-linear
realisations [7].

Dimension Exceptional Symmetry Group Coset Space

10 (IIA) O(1, 1) -

10 (IIB) SL(2) SL(2)/SO(2)

9 GL(2) GL(2)/SO(2)

8 E3 ∼ SL(3)× SL(2) SL(3)× SL(2)/SO(3)× SO(2)

7 E4 ∼ SL(5) SL(5)/SO(5)

6 E5 ∼ SO(5, 5) SO(5, 5)/SO(5)× SO(5)

5 E6 E6/Sp(8)

4 E7 E7/SU(8)

3 E8 E8/SO(16)

Each local symmetry group is the maximal compact subgroup of
the exceptional symmetry group.

It was conjectured that in dimensions 2 and 1 we find an E9 and
E10 Exceptional Symmetry Group respectively [8]. 5 / 35



Introduction: E11

The G11 symmetry group used in the non-linear realization for 11D
supergravity contains none of this structure: G11 is not a
Kac-Moody algebra (although E3, ..,E9,E10 are), and the local
Lorentz subgroup chosen for G11 is not the maximal compact
subgroup of G11. However, G11 gets gravity.

In the highly-cited paper [9] that formed the beginning of the E11

program, it was shown that G11/{Pa} can be extended to the
Kac-Moody algebra E11 without affecting the dynamics arising
from the non-linear realization, and that the local Lorentz
subgroup can be extended to the maximal compact subgroup of
E11, denoted Ic(E11).

E11 tells us to accept an infinite collection of fields
gab,Aa1a2a3 ,Aa1,...,a6 , ha1...,a8,b, ... associated to the generators
K a

b,R
a1a2a3 ,Ra1...a6 ,Ra1...a8,b, ... of the Kac-Moody algebra.
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Introduction: E11

However generalizing from G11 to E11 still does not appear to fix
the dynamics of 11D supergravity uniquely as things stand, there is
still the ‘conformal group’ question.

In 2016 [10] it was shown that the non-linear realization of
E11 ⊗s l1, where we take the semi-direct product of E11 and its
vector representation, denoted l1, such that it spontaneously breaks
to the maximal compact subgroup Ic(E11), results uniquely in the
equations of motion of the bosonic sector of 11D supergravity.

This is due to the infinite-dimensional vector representation l1,
containing an infinite collection of generators Pa,Z

a1a2 ,Z a1...a5 , ...,
[11] the presence of which constrains the E11 symmetry to fix the
equations of motion uniquely [10].
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Kac-Moody Algebra

A Kac-Moody algebra (KMA) of rank r is defined [17] in terms of
an r × r (symmetric, indecomposable) generalized Cartan matrix
(GCM) Aab, which possesses the properties:

Aaa = 2 ;

Aab is a negative integer or zero for a 6= b

The KMA associated to a GCM is the Lie algebra generated by
elements Ha,Ea,Fa, a = 1, ..., r satisfying the ‘Chevalley-Serre’
relations

[Ha,Hb] = 0 , [Ha,Eb] = AabEb,

[Ea,Fb] = δabHb , [Ha,Fb] = −AabFb,

ad1−Aab
Ea

(Eb) = 0 , ad1−Aab
Fa

(Fb) = 0,

where adEa(Eb) = [Ea,Eb]. We can define an inner product and

the notion of a simple root αa to find Aab = 2 (αa,αb)
(αa,αa) which can be

represented via a Dynkin diagram consisting of r nodes and −Aab

lines between nodes a and b. This encompasses the symmetric
finite and affine simple Lie Algebras (LAs).
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Representations of Kac-Moody Algebra

As for finite simple LAs, an irrep can be specified by a highest
weight µ =

∑r
a=1 pala where the la are the fundamental weights

(αa, lb) = δij }.

Recall the fundamental weights of the classical LAs can be
associated to tensors and spinors, e.g. for SL(r) a rank 1 ≤ k ≤ r
anti-symmetric tensor T a1..ak is associated to λr−k . A root α can
be expressed in terms of the fundamental weights via
α =

∑
a Aablb.

The program SimpLie has automated the process of constructing
the generators of many Kac-Moody algebras at low ‘levels’.
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Kac-Moody Algebras: Example

The Lie algebra of A2 = SL(3) generated by K a
b, a, b = 1, 2, 3,

satisfy
∑

a K
a
a = 0 and [K a

b,K
c
d ] = δcbK

a
d − δadK c

b.
Setting Ha = K a

a − K a+1
a+1; E a = K a

a+1; Fa = K a+1
a; a = 1, 2.

We then have for example E 1 = K 1
2, E 2 = K 2

3 and so e.g.
[E 1,E 2] = K 1

3. The Lie algebra can be written as a GKM Algebra

with Aab =

[
2 −1
−1 2

]
, where the Serre relations hold. The Dynkin

diagram is thus . A2 can be fixed by first working with A1, ,
i.e. {H1,E

1,F1} and then adding H2,E
2,F2 s.t. Serre holds.

The l1 vector representation arises by adding a third node to form
, meaning we consider the generators KA

B ,
A,B = 0, 1, 2, 3 = 0, a. If A 6= 0,B 6= 0 we have K a

b and ,
however if A = 0 and B 6= 0 we have K 0

c := Pc . This transforms
as a vector under K a

b: [K a
b,Pc ] = −δacPb.

The construction of E11 and its l1 representation is roughly an
infinite-dimensional generalization of this example for
A10 = SL(11). 10 / 35



Non-Linear Realisations

Recall in SSB of a group G down to a subgroup H [3, Sec. 19.6], a
wave function can be parametrized as Ψ(x) = g(x)ψ̃(x), where
g(x) ∈ G/H defines the Nambu-Goldstone bosons, and ψ̃(x) lives
in a linear irrep of H.

Non-linear realizations simply work with the g(x) ∈ G/H directly,
without using wave functions.

The non-linear realisation of a group of the form G ⊗s l1 with
respect to a subgroup Ic(G ) is, by definition, a set of equations of
motion which are invariant under the transformations [18]

g → g0g , g0 ∈ G ⊗s l1, as well as g → gh, h ∈ Ic(G ).

Dynamics that are invariant under these transformations are
naturally constructed in terms of the Cartan forms.

Group elements of G ⊗s l1 can be parameterized as g = gGgl , with
gG ∈ G and gl ∈ l1.
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Non-Linear Realizations

Partial derivatives of Ψ(x) = g(x)ψ̃(x) will produce covariant
derivatives ψ̃(x), with Dµ = ∂µ + g−1∂µg [3].

We construct the dynamics of the G ⊗s l1 non-linear realisation in
terms of Cartan forms directly, which are given by

V ≡ g−1dg = VG + Vl ,

where

VG = g−1
G dgG = dzΠGΠ,αR

α and Vl = g−1
G (g−1

l dgl)gG = dzΠEΠ
AlA .

Here VG belongs to G , while Vl belongs to the l1 representation.

The forms VA and Vl are invariant under rigid transformations, and
under local Ic(G ) transformations they change as

VA → h−1VAh + h−1dh and Vl → h−1Vlh

From these transformations, EΠ
A can be interpreted as a vielbein,

V = dzΠEΠ
A(GA,αR

α + lA)

where GA,α = EA
ΠGΠ,α.
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E11 and it’s l1 Representation
The E11 Kac-Moody algebra is defined by the following Dynkin
diagram

⊗ 11
|

• − • − • − • − • − • − • − • − • − •
1 2 3 4 5 6 7 8 9 10

Taking node 11 as the central node, decomposed with respect to
it’s A10 subalgebra, this results in the generators

K a
b , Ra1a2a3 , Ra1a2a3 , Ra1..a6 , Ra1..a6 , Ra1..a8,b , . . .

R [a1a2a3] = Ra1a2a3 , R [a1...a6] = Ra1...a6 , R [a1...a8],b = Ra1...a8,b , R [a1...a8,b] = 0 , . . .

which satisfy an algebra that is fixed by implementing the Serre
relations step by step

[K a
b,K

c
d ] = δc bK

a
d − δadK c

b , [K a
b,R

c1...c3 ] = 3δ[c1
bR
|a|c2c3] ,

[Ra1a2a3 ,Ra4a5a6 ] = 2Ra1..a6 , [Ra1..a6 ,Rb1b2b3 ] = 3Ra1..a6[b1b2,b3] , . . .

E11 possesses an l1 vector representation containing the
generators

Pa , Z a1a2 , Z a1...a5 , Z a1...a8 , Z a1...a7,b , . . .

which transform under E11 as

[K a
b,Pc ] = −δacPb + 1

2
δabPc , [Ra1a2a3 ,Pb] = 3δ

[a1
b Z a2a3] , . . .
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E11 and it’s l1 Representation

The following map defines an involution on E11

K a
b → −ηacK d

cηdb , Ra1a2a3 → −ηa1b1 ..ηa3b3Rb1b2b3 ,

Ra1..a6 → ηa1b1 ..ηa6b6Rb1..b6 , Ra1..a8,b → −ηa1c1 ..ηa8c8ηbdRc1..c8,d , . . .

leading to an involution invariant subalgebra Ic(E11) generated by

Jab = ηacK
c
b − ηbcK c

a Sa1a2a3 = Rb1b2b3ηb1a1ηb2a2ηb3a3 − Ra1a2a3 ,

Sa1..a6 = Rb1..b6ηb1a1 ..ηb6a6 − Ra1..a6 , Sa1..a8,b = Rc1..c8,dηc1a1 ..ηc8a8ηdb − Ra1..a8,b

where, using the above commutators, the generators can be
shown to satisfy the commutation relations

[Jab, Jcd ] = ηbcJad − ηbdJac + ηadJbc − ηacJbd ,

[Sa1a2a3 , Sb1b2b3 ] = −18δ
[a1a2
[b1b2

Ja3]
b3] + 2Sa1a2a3

b1b2b3 ,

[Sa1a2a3 ,Pb] = 3δ[a1
bZ

a1a3], [Sa1a2a3 ,Z
b1b2 ] = Za1a2a3

b1b2 − 6δb1b2
[a1a2

Pa3] , . . .

14 / 35



The Nonlinear Realisation of E11 ⊗s l1/Ic(E11) [18]
We can now consider the nonlinear realization of E11 ⊗s l1 with
respect to the Ic(E11) subgroup. Elements of the coset
E11 ⊗s l1/Ic(E11) can be parametrized as

g = gEgl , gE = . . . eha1..a8,b
Ra1..a8,b

eAa1..a6
Ra1..a6

eAa1a2a3
Ra1a2a3

eha
bKa

b ,

gl = ex
aPaexabZ

ab

exa1..a5
Za1..a5

. . .

The dynamics of E11 can be constructed using the following
Cartan forms

V ≡ g−1dg = VE + Vl ,

for

VE = Ga
bK a

b + Ga1...a3R
a1...a3 + Ga1...a6R

a1...a6 + Ga1...a8,bR
a1...a8,b + . . .

where

Ga
b = (e−1de)a

b, Ga1...a3 = ea1

µ1 . . . ea3

µ3dAµ1...µ3

Ga1...a6 = ea1

µ1 . . . ea6

µ6 (dAµ1...µ6 − A[µ1...µ3
dAµ4...µ6])

Ga1...a8,b = ea1

µ1 . . . ea8

µ8eb
ν(dhµ1...µ8,ν − A[µ1...µ3

dAµ4µ5µ6Aµ7µ8]ν + 3A[µ1...µ6
dAµ7µ8]ν

+ A[µ1...µ3
dAµ4µ5µ6Aµ7µ8ν] − 3A[µ1...µ6

dAµ7µ8ν]).
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The Non-Linear Realisation of E11 ⊗s l1

The vielbein is given to low levels by

EΠ
A = (det e)−

1
2

[
eµ

a −3eµ
cAcb1b2

0 (e−1)[b1

µ1 (e−1)b2]
µ2

]
.

Under Ic(E11), the Cartan forms transform as

δGa
b = 18Λc1c2bGc1c2a − 2δa

bΛc1c2c3Gc1c2c3

δGa1a2a3 = −5!

2
Gb1b2b3a1a2a3Λb1b2b3 − 6G(c[a1)Λc

a2a3] , . . .

and Ic(E11) acts on the derivative indices via

δGa,• = −3G b1b2
,•Λb1b2a, δG a1a2

,• = 6Λa1a2bGb,•

for example

δGa1,a2a3a4 = δ[(E−1)a1

ΠGΠ,a2a3a4 ]

= −3Λb1b2a1G
b1b2

,b1b2a2a3a4 −
5!

2
Ga1,b1b2b3a2a3a4 Λb1b2b3 − 6Ga1,(d [a2)Λ

d
a3a4].
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E11 Graviton Dual-Graviton Duality Equations

E11 fixes the following first order equation of motion involving ∂a
derivatives uniquely

Da,b1b2 = (det e)1/2ωa,b1b2 −
1

4
εb1b2

e1..e9Ge1,e2..e9,a

relating the graviton and dual graviton. In order to do this, E11

actually fixes a generalization of this equation involving derivatives
involving all generalized coordinates ∂a1a2 , ∂a1...a5 , ...

Da,b1b2 =(det e)1/2ωa,b1b2 − 3G c2
a,c2b1b2 + 6G c

[b1,b2]ac

+ 2ηa[b1
G c2c3,

|c2c3|b2] −
1

4
εb1b2

e1..e9Ge1,e2..e9,a + ...
(1)

which varies under Ic(E11) into

δDa,b1b2 =− 36Λc8c9
aDb1b2c8c9 − 8ηa[b1

Db2]c1c2c3
Λc1c2c3

− 55

2
εd1..d10

[b1
Λb2]

c1c2Dd1..d10,ac1c2 −
55

18
ηa[b1

εb2]
d1..d10 Λc1c2c3Dd1..d10,c1c2c3

+ ∂aΛ̃b1b2 + ...
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E11 Graviton Dual-Graviton Duality Equations

In this result we defined the following first order duality equation
between the three form and six form

Da1a1a3a4 = G[a1,a2a3a4] −
1

2 · 4!
εa1..a4

b1..b7Gb1,b2..b7 .

and the term known to be part of a duality relation with terms
above level three:

Dd1..d10,ab1b2 = − 144

5 · 11!
εd1..d10

eG[e,ab1b2].

The variation only transforms up to additional terms (interpreted
as a ‘generalized gauge transformation’ [10])

∂aΛ̃b1b2 = −εb1b2
c1..c9 [

1

12
Ga,c1..c6Λc7c8c9 ].
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E11 3− 6 Duality Relations

We can also l1 extend the Da1...a4 = 0 equation by the requirement
that the variation fully anti-symmetrized Cartan forms, resulting in

Da1a2a3a4 = Ga1,a2a3a4 −
1

2 · 4!
εa1a2a3a4

b1..b7Gb1,b2..b7 +
1

2
G[a1a2,a3a4]

where

Ga1a2a3a4 = G[a1,a2a3a4] +
15

2
Gb1b2

,b1b2a1..a4
, Gb1,b2..b7

= G[b1,b2..b7] + 28G c1c2
,c1c2[b1..b6,b7].

The variation of Da1..a4 under Ic(E11) is then

δDa1..a4 =
1

4!
εa1a2a3a4

b1..b7Db1b2b3b4Λb5b6b7 + 3Dc,[a1a2
Λc

a3a4].
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E11 Equations of Motion

We can project Da1...a4 into Eµ1µ2µ3 = ∂ν [(det e)1/2Dνµ1µ2µ3 ]
giving

∂ν [(det e)1/2G [ν,µ1µ2µ3]) +
1

2 · 4!
(det e)−1εµ1µ2µ3τ1...τ8G[τ1,τ2τ3τ4]G[τ5,τ6τ7τ8] = 0,

familiar as the second order supergravity equation of motion for
Aµ1µ2µ3 .
This can be put back into tangent indices E a1a2a3 , and the
variation of a suitable l1 extension can be shown to give

δEa1a2a3 =
3

2
Eb

[a1Λ|b|a2a3] + . . .

where . . . indicates more contributions depending on Da1..a4 , and

Ea
b = (det e)Ra

b − 48G[a,c1c2c3]G
[b,c1c2c3] + 4δa

bG[c1,c2c3c4]G
[c1,c2c3c4].

is the supergravity Einstein equation of motion, reproducing the
correct energy-momentum tensor.
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E11 Equations of Motion

This can also be l1 extended

Eab = (det e)Ra
b − 48G[a,c1c2c3]G

[b,c1c2c3] + 4δa
bG[c1,c2c3c4]G

[c1,c2c3c4]

− 360G d1d2,
d!d2ac1c2c3G

[b,c1c2c3] − 360G d1d2,
d1d2

bc1c2c3G[a,c1c2c3]

+ 60δa
bG d1d2,

d1d2c1c2c3c4G
[c1,c2c3c4] − 12Gc1c2,ac3G

[b,c1c2c3] + 3Gc1c2,d
dG[a,

bc1c2]

− 6(det e)ea
λebµ∂[µ{(det e)−1/2G τ1τ2,

τ1τ2λ]}

− (det e)1/2ωc,b
cG d1d2,

d1d2a − 3(det e)1/2ωa,b
cG d1d2,

d1d2c ,

and it’s Ic(E11) variation can be shown to be

δEab =− 36Eac1c2 Λbc1c2 − 36E bc1c2 Λac1c2 + 8δa
bΛc1c2c3Ec1c2c3

− 2εac1...c7d1d2d3G
[b,c1c2c3]Dc4...c7 Λd1d2d3 − 2εbc1...c7d1d2d3G[a,c1c2c3]Dc4...c7 Λd1d2d3

+
1

3
δa

bεc1...c8d1d2d3Gc1,c2c3c4Dc5...c8 Λd1d2d3 .

Thus E11 exactly reproduces the equations of motion of the
bosonic sector of eleven-dimensional supergravity when we neglect
the effects of the higher level derivatives in these equations.
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E11 Equations of Motion (Dual Gravity)

In [17] similar techniques led to the derivation of the following
second order dual gravity equation of motion

Ea1...a8 ,b

=
1

9 · 2 (det e)
1
2 ecµ∂µGc,a1...a8 ,b +

1

2 · 9 (det e)
1
2 ecµ∂µ(8G[a1,a2...a8]c ,b − Gb,a1...a8 ,c)

− 4

9 · 9 (det e)
1
2 (8eb

µ∂µG[a1,a2...a8]c,
c + e[a1|

µ∂µGb|,a2...a8]c,
,c − 7e[a1

µ∂|µ|Ga2,a3...a8]bc,
c)

− 2 · 7
9 · 9 (G[a1,|e|

eGa2,a3...a8]bc,
c − 1

2
Gb,e

eG[a1,a2...a8]c,
c +

1

2
G[a1,|e

eGb|,a2...a8]c,
c)

+
1

9 · 4G
c,e

eGc,a1...a8,b +
1

9 · 4G
c,e

e(8G[a1,a2...a8]c,b − Gb,a1...a8,c)

− 1

2 · 9G
e,c

e(Gc,a1...a8,b + 8G[a1,a2...a8]c,b − Gb,a1...a8,c)

+
4 · 7
9 · 9{(Ga1,

c e + Ga1,
e c)Ga2,a3...a8be,c −

1

2
(Gb,

c e + Gb,
e c)Ga1,a2...a8e,c
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E11 Equations of Motion (Dual Gravity)

+
1

2
(Ga1,

c e + Ga1,
e c)Gb,a2...a8e,c}

− 1

9
(−2G[a1,|b|a2

cGa3,a4...a8]
c + 5G[a1,a2a3

cGa4,a5...a8]bc − 8Gb,[a1a2

cGa3,a4...a8]c

− G[a1,a2a3

cG|b|,a4...a8]c)

+
4

9 · 9 (7G[a1,a2

eG|e|,a3...a8]bc,
c − G[a1,|b

eGe|,a2...a8]c,
c − 8Gb,[a1

eG|e|,a2...a8]c,
c)

+ εc1c2e1...e9Ge1,e2...e9,[a1|G[c1,c2|a2...a8]],b

− 4 · 7
9 · 9 (6G[a1,a2

eGa3,a4...a8]bec,
c − G[a1,|b|

eGa2,a3...a8]ec,
c − 8Gb,[a1

eGa2,a3...a8]ec,
c

+ G[a1,a2

eG|b,e|a3...a8]c,
c)

− 4

9
Gc,[a1

eG|b,e|a2...a8],
c +

4

9
(Gc,[a1

eG c,
|e|a2...a8],b − Ge,[a1

cG|c|,
e
a2...a8],b)

+
1

9 · 2 (Gc,b
eG c,

[a1...a8],e − Ge,b
cGc,a1...a8,

e) +
7 · 4

9
G [c,

[a1

e]Ga2,|ce|a3...a8],b

+
4

9
Gc,b

eG[a1,a2...a8]
c
,e
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Quantization Attempt: Current Algebras

In 2017 at OIST, a radical preliminary proposal for quantizing E11

via the method of ‘current algebras’ was proposed in [19] by
Professor Sugawara, and used to study the M2 and M5 branes in
[20], and cosmology in [21].

The essence of this approach is to implement the Dirac-Schwinger
commutation relations

[Θ00(x),Θ00(y)] = −i{Θ0k(x) + Θ0k(y)}ηkl∂lδ(x− y)

to ensure covariance.

As it stands, the approach does not fully utilize the higher level
coordinates, but suggests a vast generalization of Dirac-Schwinger
may exist in E11.
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Interpreting E11

So E11 asks us to accept an infinite collection of fields
hab,Aa1a2a3 ,Aa1...a6 , ha1...a8,b, ... and to generalize our notion of
space-time to an infinite-dimensional ‘generalized space-time’
Pa,Z

a1a2 ,Z a1...a5 , ... implying the existence of a ‘generalized
geometry’ on this space-time, and deep links with Higher Spin
Theory [12].

What is the meaning of this? What have we bought into?

There is a famous saying in physics: ”Spacetime is Doomed” [13],
e.g., an infinitely precise measurement is thought to create a black
hole, space-time intuition is based on sufficiently low energies.

E11 is attempting to discuss the low energy limit of M-theory. The
higher fields and coordinates appear to be a low energy effect, and
that space-time must be replaced by some more fundamental
degrees of freedom in the final M-theoretical quantum theory of
gravity. This has happened in the past: 25 / 35



Interpreting E11

Kaluza-Klein dimensional reduction of 11D supergravity on a circle
gives the unique (non-chiral) ten-dimensional IIA supergravity
theory, the low energy limit of Type IIA superstring.

This was initially thought to illustrate a defect in the 11D theory
[14], since it implies the existence of extra Kaluza-Klein states that
were not initially seen in the 10D superstring theory.

However it was later recognized that the additional Kaluza-Klein
states do arise in the 10D superstring theories in the form of
‘soliton-like’ solutions associated to (mem)branes of the theory.

In other words, the ten-dimensional supergravity theory with the
additional soliton-like states appeared to be an 11D theory in
disguise [14].

‘E Theory’ appears to be an extension of 11D supergravity
containing new effects that may reflect the existence of a more
fundamental set of d.o.f. than ‘space-time’ in the final quantum
gravity [10], space-time is ‘extended’ in ‘E Theory’ from the get-go.
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A+++
1

11D supergravity reduces to Einstein gravity when we (ignore spin
and) set the 3-form Aa1a2a3 to zero. Thus a subset of a
Kac-Moody algebra, E11, seems to describe Einstein’s gravity in
11D as a special case.

In 2001 [15] it was conjectured that Einstein’s gravity in D
dimensions arises from a non-linear realization involving the
Kac-Moody algebra A+++

D−3 , specifically A+++
D−3 ⊗s l1/IC (A+++

D−3 ).

In 2020 [16] the dynamics of the nonlinear realization of
A+++

1 ⊗s l1/IC (A+++
1 ) were worked out, including a derivation of

the dual graviton equation of motion, which inspired a derivation
of the E11 dual graviton equation of motion [17].

In A+++
1 we are thus studying Einstein’s gravity along with

additional contributions presumably reflecting the breakdown of
gravity at higher energy scales (shorter distances).
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Future Research I

Ic(E11)⊗s l1 is reminiscent of the 4D Poincaré group
SO(1, 3)⊗s P4, indeed it contains the Poincaré group. In
Quantum Field Theory, particles are interpreted as irreducible
representations of the Poincaré group via the so-called
‘Wigner method’. In [22] it was conjectured that different
branes arise as irreducible representations of Ic(E11)⊗s l1 for
different choices of isotropy subgroups. In [22], [23], and [24],
partial results on the isotropy groups for the M2, M5 branes,
and IIA string, were presented. Much more research is needed
on this very difficult problem, no other approach to string
theory suggests a ‘Wigner method’ to branes in string theory.

The low energy effective action of the 26D bosonic string was
conjectured in [9] to arise from a nonlinear realization
involving the Kac-Moody algebra K27. The full power of E
theory has yet to be applied to this difficult algebra.
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Future Research II

The current algebra methods of [19 — 21] require further
study, they may apply to Einstein’s gravity in 4D via A+++

1

and may shed light on quantum gravity.

E9 recently appeared in the swampland program [25], E11?

How do the above results manifest in the E10 program [26]?

The E11 dual graviton was recently studied in the context of
‘generalized symmetries’ [27], what about the rest of E
theory?
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