gnuplot 5.0

An Interactive Plotting Program

Thomas Williams & Colin Kelley
Version 5.0 organized by: Ethan A Merritt and many others

Major contributors (alphabetic order):
Christoph Bersch, Hans-Bernhard Broker,
John Campbell, Robert Cunningham,
David Denholm, Gershon Elber,

Roger Fearick, Carsten Grammes,

Lucas Hart, Lars Hecking, Péter Juhész,
Thomas Koenig, David Kotz,

Ed Kubaitis, Russell Lang, Timothée Lecomte,
Alexander Lehmann, Jérome Lodewyck,
Alexander Mai, Bastian Markisch,

Ethan A Merritt, Petr Mikulik,

Carsten Steger, Shigeharu Takeno,

Tom Tkacik, Jos Van der Woude,

James R. Van Zandt, Alex Woo, Johannes Zellner
Copyright (©) 1986 - 1993, 1998, 2004 Thomas Williams, Colin Kelley
Copyright (©) 2004 - 2015 various authors

Mailing list for comments: gnuplot-info@lists.sourceforge.net
Mailing list for bug reports: gnuplot-bugs@lists.sourceforge.net
Web access (preferred): http://sourceforge.net/projects/gnuplot

This manual was originally prepared by Dick Crawford.
Version 5.0.2 (January 2016)

2 gnuplot 5.0 CONTENTS

Contents

I Gnuplot
Copyright
Introduction
Seeking-assistance

New features in version 5

New commands« . L e e e e e
Changes in version 5
Deprecated syntax
Batch/Interactive Operation
Canvas size
Command-line-editing
Comments
Coordinates
Datastrings
Enhanced text mode
Environment

Expressions
Functions o e
Elliptic integrals o e
Random number generator L L e
Value e
Counting and extracting words L

Operators o L e e

Ternary o e e e e e
SumMmation e e e e e e e e e e e e
Gnuplot-defined variables e

User-defined variables and functions

Fonts

17

17

17

18

19
20

20

21

21

22

22

23

23

23

24

25

CONTENTS gnuplot 5.0

Cairo (pdfcairo, pngcairo, epscairo, wxt terminals)
Gd (png, gif, jpeg terminals) o

Postscript (also encapsulated postscript *.eps)

Glossary

Iteration

Linetypes, colors, and styles

Colorspec e
Background color. Lo
Linecolor variable o
Rgbcolor variable oo

Dashtype o e

Linestyles vs linetypes oL

Layers

Mouse input

Bind space

Mouse variables

Persist

Plotting

Start-up (initialization)

String constants and string variables

Substitution and Command line macros

Substitution of system commands in backquotes

Substitution of string variables as macros

String variables, macros, and command line substitution

Syntax

Quote Marks e e e e

Time/Date data

II Plotting styles
Boxerrorbars

Boxes

33
33
34

34

35

35
36
36
37
37
37
38

38

38
39
40
40

40

41

41

41

42
42
42
43

44
44

45

46

46

46

4 gnuplot 5.0 CONTENTS
Boxplot 47
Boxxyerrorbars 48
Candlesticks 48
Circles 49
Ellipses 50
Dots 51
Filledcurves 51
Financebars 52
Fsteps 52
Fillsteps 53
Histeps 53
Histograms 53

Newhistogram L e e e 55

Automated iteration over multiple columnso L L 56
Image 56

Transparency e e 57

Image pixels L e 57
Impulses 57
Labels 58
Lines 58
Linespoints 59
Parallelaxes 59
Points 59
Polar 60
Steps 60
Rgbalpha 60
Rgbimage 60
Vectors 61

CONTENTS gnuplot 5.0 5
Xerrorbars 61
Xyerrorbars 61
Yerrorbars 62
Xerrorlines 62
Xyerrorlines 63
Yerrorlines 63
3D (surface) plots 63
2D projection (set view map) i 64
IIT Commands 65
Cd 65
Call 65
Example o L 66
Old-style o . o e e 66
Clear 66
Do 67
Evaluate 67
Exit 68
Fit 68
Adjustable parameters L e 70
Short introduction 70
Error estimates 71
Statistical overview L L 71
Practical guidelineso 72

Control e 73
Control variables L 73
Environment variables L e 74
Multi-branch 74
Starting values L e e e e 74
TIPS . o o e 75
Help 75
History 76

gnuplot 5.0 CONTENTS

For

Import

Load

Lower

76

... 76

77

77

78

78

78

ATray ..o e 81

Origin
Center

Rotate

Every . . o 85

Index . . . e e e e 86

CONTENTS gnuplot 5.0 7
Csplines o e 88

Mesplineso e e 88

Sbeziero e 89

Unique 89

Unwrap o oo e e e e 89

Frequency oL 89

Cumulative 89

Cnormal oL e 89

Kdensity o e 89
Special-filenames L e 89

Thru . . o e e s 91

USINg o 91
Using_examples 92

Pseudocolumns oL 93

Xticlabels o 93

X2ticlabels 94

Yticlabels 94

Y2ticlabels oL 94

Zticlabelso L 94

Volatile L e 94
Errorbars o e e 94
Errorlines e e 95
Functions L e e 95
Parametric Lo e 95
Ranges e e 96
Sampling e 97
For loops in plot command Lo 97
Title o e 98
With © . e e s 99
Print 101
Printerr 101
Pwd 101
Quit 101
Raise 101
Refresh 102
Replot 102
Reread 102

8 gnuplot 5.0 CONTENTS

Reset 103
Save 103
Set-show 104
Angles . . .o e 104
ATTOW . . L e 105
Autoscale L e 106
Parametric mode Lo e 107

Polar mode L 108

Bars . . .o e e 108
Bind . . . e e e 108
Bmargino e e 108
Border e 108
Boxwidth o e 109
Color . . o e e 110
ColorseqUence L e e e e e e 110
Clabel . . . o e e 110
CUD .« o o 111
Cutrlabel o e 111
Cntrparalmn e e 111
Color box e 113
Colornames e e 114
Contour e 114
Dashtype e 114
Data style e 115
Datafile e 115
Set datafile fortrano 115

Set datafile nofpe_trap 115

Set datafile missing L 115

Set datafile separator L. 116

Set datafile commentscharso o 117

Set datafile binary L 117
Decimalsigno e 117
Derid3d e 118
Dummy 119
Encoding e 120
Fit . o e 121
Fontpath e 122
Format o e 122
Gprintf e 123
Format specifiers e 123

Time/date specifiers L 124

CONTENTS gnuplot 5.0 9

Exampleso 125

Function style o L e 125
Functions e 125
Grid e 125
Hidden3d e 126
Historysize e e e e 128
History o o e e 128
Isosamples L e 128
Key . . o e 128
Key placement 130

Key samples e 131
Label . . o o e 131
Exampleso 132
Hypertext o o o e 133
Linetype o o e 134
Link . . oo 134
Lmargin 0. e 135
Loadpath e 135
Locale o o e e 135
Logscale o e e 135
Macros. 136
Mapping o e 136
Margin e 136
Monochrome e e e e e 137
Mouse L 137
Doubleclick o e e e 138
Mouseformat L 138
Scrolling e 139
XI1mouse 139
ZOOML © . o v vt i s e e e e e e 139
Multiplot e 139
MX2EICS . . o o e e e 141
MXEICS « . o o o o 141
My2tics . . . o o e e e e 142
Mybtics . . . o 0 o e 142
MzZEICS . . o o e e 142
Object . . . o e 142
Rectangle e 143
Ellipse . . . o o o o e 143
Circle e e 144
Polygon e 144

10 gnuplot 5.0 CONTENTS
Origin o o e 145
Output o e e 145
Parametric Lo e 145
Paxis e 146
Plot . . o e e 146
Pm3d . . . e 146

Algorithm L e 147
Position L L e e e 148
Scanorder L e e 148
CHPPINE .+« o o e e e 148
Color_assignment L 148
Corners2color e e 149
Border. L 149
Interpolate L 149
Deprecated_options 150
Palette e 150
Rgbformulae oL e 151
Defined e e 152
Functions o e e e 153
GIay . .« o oo e e e 153
Cubehelix L o 153

File . . . o e 154
Gamma correction oL oL e e e 154
Postscript o L e 154
Pointintervalbox oL 155
Pointsize o e e 155
Polar e 155
Print . . . o e e 156
Psdir o s 156
Raxis o e e 156
Rmargin e 156
Rrange o e 156
Rtics . . o o e 157
Samples . ..o e 157
SIZe . . e e 157
Style . . o e 158
Set style arrow L. e 158
Boxplot e e 159

Set styledata L 160

Set style fill oL e 160

Set style fill transparent Lo 161

Set style function L L e 161

CONTENTS gnuplot 5.0 11

Set style increment e 161

Set style line L 162

Set style circle L 163

Set style rectangle L e 163

Set style ellipse L 164

Set style textbox L. e 164
Surface L e 164
Table . . o e 165
Terminal L e 165
Termoption L 165
TiCS . o o o 166
Ticslevel o e e e 167
Ticscale o e 167
Timestamp L e e 167
Timefmt o e 167
Title o e 168
Tmargin oL 169
Trange o o e e e 169
Urange L 169
Variables L e e 169
VEISION . . . L o e e e e e 169
VIEW . . o e 169

Equalaxes e 170
Vrange e e e 170
X2data . ..o e 170
X2dEICS . o o o e e e e e 170
X2label . ..o e 170
X2MEICS . . v o o e e e e e e 170
X2range 171
K2EICS © v o e e 171
X2ZETOAXIS « v v v v e e e e e e e e e e e e e e e e e e e 171
Xdata . . .o e e e e e 171

Time o e e e 171
XAICS « o o e e e e e 172
Xlabel . . . o 172
XMEICS . . o o o o e e e e e e 173
XTANGE o e 173
KBICS .« o v o e e e 174

Xtics timedata oL e 177

Geographic e e 177

Xtics rangelimited Lo 177

12 gnuplot 5.0 CONTENTS

XZETOAXIS .« v v v v e e e e e e e e e e e e e e 178
Y2datao e 178
Y2dticso e e 178
Y2label . . .o e 178
Y2mbics o e 178
Y2rangeo e e e e e 179
Y20ICS . o o o 179
Y27€r0aXiSo e e e e e e 179
Ydata e 179
Ydtics . . . o e e e 179
Ylabel . . . o e e 179
Ymbics . . . o o o e e e e 179
Yrange 179
YHICS « . o o e e 179
YZeroaxiso e e e e e e 179
Zdata ... e e e 179
ZAEICS . . . e e 180
Z7€TOAXIS . .« . . .o e e e e e e 180
Chdata e 180
ChAtics o o 180
ZETO « o o ot e e e 180
ZETOAXIS « .« v v i e e e e e 180
Zlabel . . . L 181
ZmbiCS . .« . oL e e 181
ZTange e 181
ZEICS . o o o o e e 181
Chlabel e 181
Chmtics o o 181
Chrange o v o i e 181
CDEiCS . . v v e 181
Shell 181
Splot 182
Data-file o 182
Matrix . . . o e e e e e 183
Uniformo 183

Nonuniform e 184

Exampleso 184

Example datafileo 185

Grid data oL e 185

Splot surfaces oL e e 186

CONTENTS gnuplot 5.0 13
Stats (Statistical Summary) 186
System 187
Test 188
Undefine 188
Unset 188
Linetype o o o o e 188
Monochrome e e e e e 189
Output . . . o e e e 189
Terminal L e e 189
Update 189
While 189
IV Terminal types 190
Complete list of terminals 190
Aifm . oo e 190
Aqua. . .o e 190
Be . . 190
Command-line_options 191
Monochrome options 191
COolorresources v v v i e e e e e 191
Grayscale TESOUTCES v v v v v e e e e e e e e 192
Lineresources L e e 192
Cairolatex e e e e e 193
Canvaso e 195
Cgim . . o 196
Cgm font e e s 196

Cgm fontsize L e e e 197

Cgm linewidth o e 197
Cgmrotate e e 198
Cgmsolid L o 198

Cgm SIZE . . . o e e 198

Cgm width o 198

Cgm nofontlist L 198

Context e e 198
Requirements L e e e 200

Calling gnuplot from ConTeXt 200

Corel e 200

14

gnuplot 5.0 CONTENTS

Debug e 201
Dumb . . o e 201
Dxf . e e 201
Dxy800a v o e 201
Eepic . . o . e 201
Emf . e 202
Emxvga oL 203
Epscairoo e e 203
Epslatex o o e 203
Epson_180dpi o e e 206
Excl . . e 207
Fig . o e 207
e 208
Gif . e 208

Examples L 209
GDIC . . oo e 210
Grass . . . v e 210
Hp2623a o o e 210
Hp2648 e 211
Hpb00c . . . o e 211
Hpgl . . e 211
HpLil . o o e e 212
Hppj . . o o e e e 212
Imagen 212
Jpeg . e 212
Kyo . o e 213
Latex . . o o o e 213
Linux . . . o e 214
Lua . . . e 214

Lua tikz o o e 214
ME e 216

METAFONT Instructions 0 e e e e e e e 217
Mif . o e e 218
MDD . o e 218

Metapost Instructions Lo Lo 219
Next . . o o e 220
Openstep (MEXE) o o o o 221
Pbm . . o e 221
Pdf . e 221
Pdfcairo e 222
Pm . e 223

CONTENTS gnuplot 5.0 15

Examples e e e 224
Pngecairo L e e 224
Postscript o L e 225

Editing postscript L e 227

Postscript fontfile 227

Postscript prologue L 229

Postscript adobeglyphnameso 229
Pslatex and pstex e 229
Pstricks o L 231
QINS . . 231
Qb o o 231
Regis o e 232
SUNL . . o 232
SVE o o e 232
SVEA .« o o v e e e 233
Tek40 . . . o e 233
Tek410X . . . o o o e e e e e 233
Texdraw L e e e e 234
Tgif . . e 234
Tikz . . . e e 235
Tkeanvas e e 235
Tpic . . o o e e 235
Vigagl . . o o e 236
VWS 236
Windows L e 237

Graph-menu e 237

Printing L 238

Text-menuo e e 238

Wenuplot.mnu 0oL e 238

Wegnuplot.ini 0L 239
WXt o e 240
X1 o e e 241

X11fonts . . . o oo e e 242

Command-lineoptions L 243

COlOT TESOUTCES . .« .« v vt et e e e e e e e e e 244

Grayscale TeSOUTCES o v v vt e e 244

Lineresources Lo e e e 245

X11 pm3d.reSOUrces vt e i e e e e e e e e e e 245

X11 other_resources o . L e e e 246
XID oo 246

16 gnuplot 5.0 CONTENTS

Known limitations 247

External libraries 247

VI Index 247

gnuplot 5.0 17

Part 1
Gnuplot

Copyright
Copyright (C) 1986 - 1993, 1998, 2004, 2007 Thomas Williams, Colin Kelley

Permission to use, copy, and distribute this software and its documentation for any purpose with or without
fee is hereby granted, provided that the above copyright notice appear in all copies and that both that
copyright notice and this permission notice appear in supporting documentation.

Permission to modify the software is granted, but not the right to distribute the complete modified source
code. Modifications are to be distributed as patches to the released version. Permission to distribute binaries
produced by compiling modified sources is granted, provided you
1. distribute the corresponding source modifications from the
released version in the form of a patch file along with the binaries,
2. add special version identification to distinguish your version
in addition to the base release version number,
3. provide your name and address as the primary contact for the
support of your modified version, and
4. retain our contact information in regard to use of the base software.

Permission to distribute the released version of the source code along with corresponding source modifications
in the form of a patch file is granted with same provisions 2 through 4 for binary distributions.

This software is provided "as is" without express or implied warranty to the extent permitted by applicable
law.

AUTHORS
Original Software:
Thomas Williams, Colin Kelley.
Gnuplot 2.0 additions:
Russell Lang, Dave Kotz, John Campbell.
Gnuplot 3.0 additions:
Gershon Elber and many others.
Gnuplot 4.0 and 5.0 additioms:
See list of contributors at head of this document.

Introduction

Gnuplot is a portable command-line driven graphing utility for Linux, OS/2, MS Windows, OSX, VMS,
and many other platforms. The source code is copyrighted but freely distributed (i.e., you don’t have to
pay for it). It was originally created to allow scientists and students to visualize mathematical functions and
data interactively, but has grown to support many non-interactive uses such as web scripting. It is also used
as a plotting engine by third-party applications like Octave. Gnuplot has been supported and under active
development since 1986.

Gnuplot supports many types of plots in either 2D and 3D. It can draw using lines, points, boxes, contours,
vector fields, surfaces, and various associated text. It also supports various specialized plot types.

Gnuplot supports many different types of output: interactive screen terminals (with mouse and hotkey
input), direct output to pen plotters or modern printers, and output to many file formats (eps, emf, fig, jpeg,
LaTeX, pdf, png, postscript, ...). Gnuplot is easily extensible to include new output modes. Recent additions
include interactive terminals based on wxWidgets (usable on multiple platforms), and Qt. Mouseable plots
embedded in web pages can be generated using the svg or HIML5 canvas terminal drivers.

The command language of gnuplot is case sensitive, i.e. commands and function names written in lowercase
are not the same as those written in capitals. All command names may be abbreviated as long as the

18 gnuplot 5.0

abbreviation is not ambiguous. Any number of commands may appear on a line, separated by semicolons
(;). Strings may be set off by either single or double quotes, although there are some subtle differences. See
syntax (p. 44) and quotes (p. 44) for more details. Example:

set title "My First Plot"; plot ’data’; print "all done!"

Commands may extend over several input lines by ending each line but the last with a backslash (\). The
backslash must be the last character on each line. The effect is as if the backslash and newline were not there.
That is, no white space is implied, nor is a comment terminated. Therefore, commenting out a continued line
comments out the entire command (see comments (p. 23)). But note that if an error occurs somewhere
on a multi-line command, the parser may not be able to locate precisely where the error is and in that case
will not necessarily point to the correct line.

In this document, curly braces ({}) denote optional arguments and a vertical bar (|) separates mutually
exclusive choices. Gnuplot keywords or help topics are indicated by backquotes or boldface (where
available). Angle brackets (<>) are used to mark replaceable tokens. In many cases, a default value of the
token will be taken for optional arguments if the token is omitted, but these cases are not always denoted
with braces around the angle brackets.

For built-in help on any topic, type help followed by the name of the topic or help ? to get a menu of
available topics.

A large set of demo plots is available on the web page
http://www.gnuplot.info/demo/

When run from command line, gnuplot is invoked using the syntax
gnuplot {OPTIONS} filel file2 ...

where filel, file2, etc. are input file as in the load command. On X11-based systems, you can use
gnuplot {X110PTIONS} {OPTIONS} filel file2 ...

see your X11 documentation and x11 (p. 241) in this document.

Options interpreted by gnuplot may come anywhere on the line. Files are executed in the order specified, as
are commands supplied by the -e option, for example

gnuplot filel.in -e "reset" file2.in
The special filename "-" is used to force reading from stdin. Gnuplot exits after the last file is processed. If

no load files are named, Gnuplot takes interactive input from stdin. See help batch/interactive (p. 21)
for more details. The options specific to gnuplot can be listed by typing

gnuplot --help

See command line options (p. 21) for more details.

In sessions with an interactive plot window you can hit 'h’ anywhere on the plot for help about hotkeys and
mousing features. Section seeking-assistance will help you to find further information, help and FAQ.

Seeking-assistance

The canonical gnuplot web page can be found at
http://www.gnuplot.info
Before seeking help, please check file FAQ.pdf or the above website for
FAQ (Frequently Asked Questions) list.
If you need help as a gnuplot user, please use the newsgroup
comp.graphics.apps.gnuplot

Instructions for subscribing to gnuplot mailing lists may be found via the gnuplot development website on
SourceForge

http://www.gnuplot.info/demo/
http://www.gnuplot.info
http://www.gnuplot.info/faq/

gnuplot 5.0 19

http://sourceforge.net/projects/gnuplot

Please note that before you write to any of the gnuplot mailing lists, you have to subscribe to the list first.
This is necessary to keep the spam level down.

The address for mailing to list members is:
gnuplot-info@lists.sourceforge.net

Bug reports and code contributions should be uploaded to the trackers at
http://sourceforge.net/projects/gnuplot/support

Please check previous bug reports if the bug you want to report has not been already fixed in a newer version.

A mailing list for those interested in development version of gnuplot is:
gnuplot-beta@lists.sourceforge.net

When posting a question, please include full details of the gnuplot version, the terminal type, and the
operating system you are using. A small script demonstrating the problem may be useful. Function plots
are preferable to datafile plots.

New features in version 5

* The dot-dash pattern of a line can now be specified independent of other line properties. See dashtype
(p. 37), set dashtype (p. 114), set linetype (p. 134).

* Text markup now supports bold and italic font settings in addition to subscript, superscript, font size and
other previously available properties. Enhanced text mode is now enabled by default. See enhanced text

(p- 24).

* Interactive terminals support hypertext labels that only appear when the mouse hovers over the label’s
anchor point.

* New coordinate system (Degrees, Minutes, Seconds). See set xtics geographic (p. 177).

* The default format for axis labels is "% h" ("$%h$" for LaTeX terminals). This format is like the C
standard format %g except that the exponential term, if present, is written using a superscript. E.g. 1.2 x
1075 rather than 1.2E05.

* Command scripts may place in-line data in a named data block for repeated plotting. See inline data
(p. 87).

* Support for 32-bit Alpha channel + RGB color #AARRGGBB. See colorspec (p. 36).

* Support for HSV color space via a translation function hsv2rgb(H,S,V).

* Secondary axes (x2, y2) may be locked to the primary axis via a mapping function. In the simplest case
this guarantees that the primary and secondary axis ranges are identical. In the general case it allows you to
define a non-linear axis, something that previously was possible only for log scaling. See set link (p. 134).

* Each function in a plot command may optionally be preceded by a sampling range. This does not affect
the overall range of the plot, only the range over which this function is sampled. See plot (p. 79) and
piecewise.dem.

* If the external library libcerf is available, it is used to provide complex math routines cerf, cdawson, erfi,
faddeeva, and the Voigt profile VP (x,sigma,gamma).

* The import command attaches a user-defined function name to a function provided by an external shared
object (support is operating-system dependent). A template header and example source and make files for
creating a suitable external shared object are provided in the demo collection.

* Previous commands in the history list of an interactive session can be reexecuted by number. For example,
history !5 will reexecute the command numbered 5 in the history list.

* Bit-shift operators >> and <<.
* New plot styles: with parallelaxes, with table, labeled contours.

* Shell invocation of gnuplot can pass parameters to a gnuplot script. gnuplot -c scriptfile.gp ARG1 ARG2
ARG3 ...

http://sourceforge.net/projects/gnuplot

20 gnuplot 5.0

New commands

e import f(x) from "plugin.so" # load function from shared library

e set history {quiet|numers} {fulll|trim} # controls output of history command

e history !N # re-execute prior command by number

e plot <datafile> skip N # skip lines at start of ascii data file

e plot ... smooth mcsplines # monotonic cubic spline fit to data

e reset session # restore initial state of current session

e set arrow <tag> from <start> length <len> angle <ang>
e set colorsequence default]|classic|podo colors used by successive plot elements
e set monochrome alternative set of linetypes
e set dashtype <tag> <dash-spec> user-defined dash patterns
e set link x2 via f(x) inverse g(x) allows non-linear axis scaling
e set fit quiet|results|brief|verbose control the amount of fit output
e set contours; splot ... with labels label contour lines with numeric values
e set style textbox text elements can be enclosed in a box

e set view map {scale} allows resizing a 3D projection plot

= H# H OH OH OH OH OH H

e set multiplot {next|previous} navigate within the auto-layout grid

Changes in version 5

These changes introduced in version 5 may cause certain scripts written for earlier versions of gnuplot to
behave differently.

* Revised handling of input data containing NaN, inconsistent number of data columns, or other unexpected
content. See Note under missing (p. 115) for examples and figures.

* Time coordinates are stored internally as the number of seconds relative to the standard unix epoch 1-
Jan-1970. Earlier versions of gnuplot used a different epoch internally (1-Jan-2000). This change resolves
inconsistencies introduced whenever time in seconds was generated externally. The epoch convention used
by a particular gnuplot installation can be determined using the command print strftime("%F",0). Time
is now stored to at least millisecond precision.

* The function timecolumn(N,"timeformat") now has 2 parameters. Because the new second parameter
is not associated with any particular data axis, this allows using the timecolumn function to read time data
for reasons other than specifying the x or y coordinate. This functionality replaces the command sequence
set xdata time; set timefmt "timeformat". It allows combining time data read from multiple files with
different formats within a single plot.

* The reverse keyword of the set [axis|range command affects only autoscaling. It does not invert or
otherwise alter the meaning of a command such as set xrange [0:1]. If you want to reverse the direction
of the x axis in such a case, say instead set xrange [1:0].

* The call command is implemented by providing a set of variables ARGC, ARGO, ..., ARG9. ARGO
holds the name of the script file being executed. ARG1 to ARG9 are string variables and thus may either be
referenced directly or expanded as macros, e.g. @QARG1. The older convention for referencing call parameters
as tokens $0 ... $9 is deprecated.

* The optional bandwidth for the kernel density smoothing option is taken from a keyword rather than a
data column. See smooth kdensity (p. 89).

* unset xrange (and other axis ranges) restores the original default range.

* unset terminal restores the original terminal of the gnuplot session.

gnuplot 5.0 21

Deprecated syntax

Gnuplot version 4 deprecated certain syntax used in earlier versions but provided a configuration option that
allowed backward compatibility. Support for the old syntax has now been removed.

Deprecated in version 4 and removed in version 5:
set title "01ld4d" 0,-1
set data linespoints
plot 1 2 4 # horizontal line at y=1

Current equivalent:
TITLE = "New"
set title TITLE offset char O, char -1
set style data linespoints
plot 1 linetype 2 pointtype 4

Deprecated but present in version 5 if configured —enable-backwards-compatibility
if (defined (VARNAME))
set style increment user
plot ’file’ thru f(x)
call ’script’ 1.23 ABC
(in script: print $0, "$1", "number of args = $#")

Current equivalent:
if (exists("VARNAME"))
set linetype
plot ’file’ using 1:(f(column(2)))
call ’script’ 1.23 "ABC"
(in script: print ARG1, ARG2, "number of args = ", ARGC

Batch/Interactive Operation

Gnuplot may be executed in either batch or interactive modes, and the two may even be mixed together
on many systems.

Any command-line arguments are assumed to be either program options (first character is -) or names of
files containing gnuplot commands. The option -e "command" may be used to force execution of a gnuplot
command. Each file or command string will be executed in the order specified. The special filename "-" is
indicates that commands are to be read from stdin. Gnuplot exits after the last file is processed. If no load
files and no command strings are specified, gnuplot accepts interactive input from stdin.

Both the exit and quit commands terminate the current command file and load the next one, until all have
been processed.

Examples:

To launch an interactive session:
gnuplot

To launch a batch session using two command files "inputl" and "input2":
gnuplot inputl input2

To launch an interactive session after an initialization file "header" and followed by another command file
"trailer":
gnuplot header - trailer

To give gnuplot commands directly in the command line, using the "-persist" option so that the plot remains
on the screen afterwards:
gnuplot -persist -e "set title ’Sine curve’; plot sin(x)"

To set user-defined variables a and s prior to executing commands from a file:
gnuplot -e "a=2; s=’file.png’" input.gpl

22 gnuplot 5.0

Canvas size

In earlier versions of gnuplot, some terminal types used the values from set size to control also the size
of the output canvas; others did not. The use of ’set size’ for this purpose was deprecated in version 4.2.
Almost all terminals now behave as follows:

set term <terminal type> size <XX>, <Y Y> controls the size of the output file, or "canvas". By
default, the plot will fill this canvas.

set size <XX>, <YY> scales the plot itself relative to the size of the canvas. Scale values less than 1 will
cause the plot to not fill the entire canvas. Scale values larger than 1 will cause only a portion of the plot
to fit on the canvas. Please be aware that setting scale values larger than 1 may cause problems on some
terminal types.

The major exception to this convention is the PostScript driver, which by default continues to act as it has
in earlier versions. Be warned that some future version of gnuplot may change the default behaviour of the
PostScript driver as well.

Example:

set size 0.5, 0.5

set term png size 600, 400
set output "figure.png"
plot "data" with lines

These commands will produce an output file "figure.png" that is 600 pixels wide and 400 pixels tall. The
plot will fill the lower left quarter of this canvas. This is consistent with the way multiplot mode has always
worked.

Command-line-editing

Command-line editing and command history are supported using either an external gnu readline library,
an external BSD libedit library, or a built-in equivalent. This choice is a configuration option at the time
gnuplot is built.

The editing commands of the built-in version are given below. Please note that the action of the DEL key
is system-dependent. The gnu readline and BSD libedit libraries have their own documentation.

’ Command-line Editing Commands

Character Function
] Line Editing
"B move back a single character.
°F move forward a single character.
~A move to the beginning of the line.
“E move to the end of the line.
“H delete the previous character.
DEL delete the current character.
~D delete current character. EOF if line is empty.
“K delete from current position to the end of line.
"L, "R redraw line in case it gets trashed.
U delete the entire line.
W delete previous word.
] History
“P move back through history.
°N move forward through history.

gnuplot 5.0 23

Comments

Comments are supported as follows: a # may appear in most places in a line and gnuplot will ignore the
rest of the line. It will not have this effect inside quotes, inside numbers (including complex numbers), inside
command substitutions, etc. In short, it works anywhere it makes sense to work.

See also set datafile commentschars (p. 117) for specifying comment characters in data files. Note that
if a comment line ends in ’\’ then the subsequent line is also treated as a comment.

Coordinates

The commands set arrow, set key, set label and set object allow you to draw something at an arbitrary
position on the graph. This position is specified by the syntax:

{<system>} <x>, {<system>} <y> {,{<system>} <z>}

Each <system> can either be first, second, graph, screen, or character.

first places the x, y, or z coordinate in the system defined by the left and bottom axes; second places it
in the system defined by the x2,y2 axes (top and right); graph specifies the area within the axes — 0,0
is bottom left and 1,1 is top right (for splot, 0,0,0 is bottom left of plotting area; use negative z to get to
the base — see set xyplane (p. 178)); screen specifies the screen area (the entire area — not just the
portion selected by set size), with 0,0 at bottom left and 1,1 at top right; and character gives the position
in character widths and heights from the bottom left of the screen area (screen 0,0), character coordinates
depend on the chosen font size.

If the coordinate system for x is not specified, first is used. If the system for y is not specified, the one used
for x is adopted.

In some cases, the given coordinate is not an absolute position but a relative value (e.g., the second position
in set arrow ... rto). In most cases, the given value serves as difference to the first position. If the given
coordinate belongs to a log-scaled axis, a relative value is interpreted as multiplier. For example,

set logscale x
set arrow 100,5 rto 10,2

plots an arrow from position 100,5 to position 1000,7 since the x axis is logarithmic while the y axis is linear.

If one (or more) axis is timeseries, the appropriate coordinate should be given as a quoted time string
according to the timefmt format string. See set xdata (p. 171) and set timefmt (p. 167). Gnuplot
will also accept an integer expression, which will be interpreted as seconds relative to 1 January 1970.

Datastrings

Data files may contain string data consisting of either an arbitrary string of printable characters containing
no whitespace or an arbitrary string of characters, possibly including whitespace, delimited by double quotes.
The following line from a datafile is interpreted to contain four columns, with a text field in column 3:

1.000 2.000 "Third column is all of this text" 4.00

Text fields can be positioned within a 2-D or 3-D plot using the commands:

plot ’datafile’ using 1:2:4 with labels
splot ’datafile’ using 1:2:3:4 with labels

A column of text data can also be used to label the ticmarks along one or more of the plot axes. The example
below plots a line through a series of points with (X,Y) coordinates taken from columns 3 and 4 of the input
datafile. However, rather than generating regularly spaced tics along the x axis labeled numerically, gnuplot
will position a tic mark along the x axis at the X coordinate of each point and label the tic mark with text
taken from column 1 of the input datafile.

24 gnuplot 5.0

set xtics
plot ’datafile’ using 3:4:xticlabels(l) with linespoints

There is also an option that will interpret the first entry in a column of input data (i.e. the column heading)
as a text field, and use it as the key title for data plotted from that column. The example given below will
use the first entry in column 2 to generate a title in the key box, while processing the remainder of columns
2 and 4 to draw the required line:

plot ’datafile’ using 1:(£($2)/$4) with lines title columnhead(2)

Another example:

plot for [i=2:6] ’datafile’ using i title "Results for ".columnhead(i)

See labels (p. 58), using xticlabels (p. 93), plot title (p. 98), using (p. 91).

Enhanced text mode

Many terminal types support an enhanced text mode in which additional formatting information is embedded
in the text string. For example, "x"2" will write x-squared as we are used to seeing it, with a superscript
2. This mode is selected by default when you set the terminal, but may be toggled afterward using "set
termoption [noJenhanced", or by marking individual strings as in "set label 'x_2’ noenhanced".

Enhanced Text Control Codes
Control Example Result Explanation

- a"x a® superscript

_ a_x Ay subscript

¢ a@~b_{cd} ab, phantom box (occupies no width)

& d&{space}b duuuoub inserts space of specified length

- ~a{.8-} a overprints -’ on ’a’; raised by .8

times the current fontsize

{/Times abc} abc print abc in font Times at current size
{/Times*2 abc} abc print abc in font Times at twice current size
{/Times:Italic abc} abc print abc in font Times with style italic
{/Arial:Bold=20 abc} abc print abc in boldface Arial font size 20

The markup control characers act on the following single character or bracketed clause. The bracketed clause
may contain a string of characters with no additional markup, e.g. 2°{10}, or it may contain additional
markup that changes font properties. This example illustrates nesting one bracketed clause inside another to
produce a boldface A with an italic subscript i, all in the current font. If the clause introduced by :Normal
were omitted the subscript would be both italic and boldface.

{/:Bold A_{/:Normal{/:Italic il}}}

Font specifiers MUST be preceeded by a ’/’ character that immediately follows the opening *{’.

The phantom box is useful for a@~b_c to align superscripts and subscripts but does not work well for
overwriting an accent on a letter. For the latter, it is much better to use an encoding (e.g. is0_8859_1 or
utf8) that contains a large variety of letters with accents or other diacritical marks. See set encoding
(p. 120). Since the box is non-spacing, it is sensible to put the shorter of the subscript or superscript in
the box (that is, after the @).

Space equal in length to a string can be inserted using the ’&’ character. Thus

>abc&{def}ghi’

would produce

’abc ghi’.

gnuplot 5.0 25

The '~ 7 character causes the next character or bracketed text to be overprinted by the following character
or bracketed text. The second text will be horizontally centered on the first. Thus *~ a/’ will result in an
‘a’ with a slash through it. You can also shift the second text vertically by preceding the second text with a
number, which will define the fraction of the current fontsize by which the text will be raised or lowered. In
this case the number and text must be enclosed in brackets because more than one character is necessary. If
the overprinted text begins with a number, put a space between the vertical offset and the text (°~ {abc}{.5
000}’); otherwise no space is needed (*~ {abc}{.5 — }’). You can change the font for one or both strings (*~
a{.5 /*.2 o}’ — an ’a’ with a one-fifth-size 0’ on top — and the space between the number and the slash is
necessary), but you can’t change it after the beginning of the string. Neither can you use any other special
syntax within either string. You can, of course, use control characters by escaping them (see below), such
as 7 a{\"}’

You can specify special symbols numerically by giving a character code in octal, e.g. {/Symbol \245} is
the symbol for infinity in the Adobe Symbol font. This does not work for multibyte encodings like UTF-8,
however. In a UTF-8 environment, you should be able to enter multibyte sequences implicitly by typing or
otherwise selecting the character you want.

You can escape control characters using \, e.g., \\, \{, and so on.

Note that strings in double-quotes are parsed differently than those enclosed in single-quotes. The major
difference is that backslashes may need to be doubled when in double-quoted strings.

The file "ps_guide.ps" in the /docs/psdoc subdirectory of the gnuplot source distribution contains more
examples of the enhanced syntax, as does the demo

enhanced_utf8.dem

Environment

A number of shell environment variables are understood by gnuplot. None of these are required, but may
be useful.

GNUTERYM, if defined, is used as the default terminal type on start-up. This can be overridden by the
~ /.gnuplot (or equivalent) start-up file (see startup (p. 41)) and of course by later explicit set term
commands.

GNUHELP may be defined to be the pathname of the HELP file (gnuplot.gih).

On VMS, the logical name GNUPLOT$HELP should be defined as the name of the help library for gnuplot.
The gnuplot help can be put inside any VMS system help library.

On Unix, HOME is used as the name of a directory to search for a .gnuplot file if none is found in the current
directory. On MS-DOS, Windows and OS/2, GNUPLOT is used. On Windows, the NT-specific variable
USERPROFILE is also tried. VMS, SYS$LOGIN: is used. Type help startup.

On Unix, PAGER is used as an output filter for help messages.
On Unix, SHELL is used for the shell command. On MS-DOS and OS/2, COMSPEC is used for the shell

command.

FIT_SCRIPT may be used to specify a gnuplot command to be executed when a fit is interrupted — see
fit (p. 68). FIT_LOG specifies the default filename of the logfile maintained by fit.

GNUPLOT_LIB may be used to define additional search directories for data and command files. The variable
may contain a single directory name, or a list of directories separated by a platform-specific path separator,
eg. "> on Unix, or ’;’ on DOS/Windows/OS/2 platforms. The contents of GNUPLOT_LIB are appended to
the loadpath variable, but not saved with the save and save set commands.

Several gnuplot terminal drivers access TrueType fonts via the gd library. For these drivers the font search
path is controlled by the environmental variable GDFONTPATH. Furthermore, a default font for these
drivers may be set via the environmental variable GNUPLOT_DEFAULT_GDFONT.

The postscript terminal uses its own font search path. It is controlled by the environmental vari-
able GNUPLOT_FONTPATH. The format is the same as for GNUPLOT_LIB. The contents of GNU-
PLOT_FONTPATH are appended to the fontpath variable, but not saved with the save and save set

http://www.gnuplot.info/demo/enhanced_utf8.html

26 gnuplot 5.0

commands.

GNUPLOT_PS_DIR is used by the postscript driver to search for external prologue files. Depending on the
build process, gnuplot contains either a built-in copy of those files or a default hardcoded path. You can
use this variable have the postscript terminal use custom prologue files rather than the default files. See
postscript prologue (p. 229).

Expressions

In general, any mathematical expression accepted by C, FORTRAN, Pascal, or BASIC is valid. The prece-
dence of these operators is determined by the specifications of the C programming language. White space
(spaces and tabs) is ignored inside expressions.

Complex constants are expressed as {<real>,<imag>}, where <real> and <imag> must be numerical
constants. For example, {3,2} represents 3 + 2i; {0,1} represents 'i’ itself. The curly braces are explicitly
required here.

Integer constants are interpreted via the C library routine strtoll(). This means that constants beginning
with "0" are interpreted as octal, and constants beginning with "0x" or "0X" are interpreted as hexadecimal.

Floating point constants are interpreted via the C library routine atof().

Note that gnuplot uses both "real" and "integer" arithmetic, like FORTRAN and C. Integers are entered as
"1 "-10", ete; reals as "1.0", "-10.0", "lel", 3.5e-1, etc. The most important difference between the two
forms is in division: division of integers truncates: 5/2 = 2; division of reals does not: 5.0/2.0 = 2.5. In
mixed expressions, integers are "promoted" to reals before evaluation: 5/2e0 = 2.5. The result of division
of a negative integer by a positive one may vary among compilers. Try a test like "print -5/2" to determine
if your system chooses -2 or -3 as the answer.

The integer expression "1/0" may be used to generate an "undefined" flag, which causes a point to ignored.
Or you can use the pre-defined variable NaN to achieve the same result. See using (p. 91) for an example.

The real and imaginary parts of complex expressions are always real, whatever the form in which they are
entered: in {3,2} the "3" and "2" are reals, not integers.

Gnuplot can also perform simple operations on strings and string variables. For example, the expression
("A" . "B" eq "AB") evaluates as true, illustrating the string concatenation operator and the string equality
operator.

A string which contains a numerical value is promoted to the corresponding integer or real value if used in
a numerical expression. Thus ("3" + "4" == 7) and (6.78 == "6.78") both evaluate to true. An integer,
but not a real or complex value, is promoted to a string if used in string concatenation. A typical case is
the use of integers to construct file names or other strings; e.g. ("file" . 4 eq "filed") is true.

Substrings can be specified using a postfixed range descriptor [beg:end]. For example, "ABCDEF"[3:4] ==
"CD" and "ABCDEF"[4:*] == "DEF" The syntax "string"[beg:end] is exactly equivalent to calling the
built-in string-valued function substr("string" ,beg,end), except that you cannot omit either beg or end from
the function call.

Functions

Arguments to math functions in gnuplot can be integer, real, or complex unless otherwise noted. Functions
that accept or return angles (e.g. sin(x)) treat angle values as radians, but this may be changed to degrees
using the command set angles.

] Math library functions

Function Arguments Returns
abs(x) any absolute value of z, |x|; same type
abs(x) complex length of z, \/real(r)? + imag(z)2
acos(x) any cos~ !tz (inverse cosine)

gnuplot 5.0

27

Math library functions

Function Arguments Returns
acosh(x) any cosh™" z (inverse hyperbolic cosine) in radians
airy(x) any Airy function Ai(x)
arg(x) complex the phase of z
asin(x) any sin~! z (inverse sin)
asinh(x) any sinh™' z (inverse hyperbolic sin) in radians
atan(x) any tan~! z (inverse tangent)
atan2(y,x) int or real tan~!(y/x) (inverse tangent)
atanh(x) any tanh ™' 2 (inverse hyperbolic tangent) in radians
EllipticK (k) real k € (-1:1) K (k) complete elliptic integral of the first kind
EllipticE(k) real k € [-1:1] E(k) complete elliptic integral of the second kind
EllipticPi(n,k) real n<1, real k € (-1:1) II(n, k) complete elliptic integral of the third kind
besj0(x) int or real Jo Bessel function of z, in radians
besj1(x) int or real J1 Bessel function of z, in radians
besy0(x) int or real Yy Bessel function of z, in radians
besyl(x) int or real Y7 Bessel function of z, in radians
ceil(x) any [x], smallest integer not less than z (real part)
cos(x) any cos z, cosine of x
cosh(x) any cosh z, hyperbolic cosine of = in radians
erf(x) any erf(real(x)), error function of real(z)
erfc(x) any erfc(real(z)), 1.0 - error function of real(z)
exp(x) any e®, exponential function of x
expint(n,x) int n >0, real z >0 E,(z) = [[°t e~ dt, exponential integral of z
floor(x) any |], largest integer not greater than x (real part)
gamma(x) any gamma(real(z)), gamma function of real(x)
ibeta(p,q,x) any ibeta(real(p, ¢, x)), ibeta function of real(p,q,z)
inverf(x) any inverse error function of real(x)
igamma(a,x) any igamma(real(a, x)), igamma function of real(a,z)
imag(x) complex imaginary part of x as a real number
invnorm(x) any inverse normal distribution function of real(x)
int(x) real integer part of z, truncated toward zero
lambertw(x) real Lambert W function
lgamma(x) any lgamma(real(x)), lgamma function of real(z)
log(x) any log, x, natural logarithm (base e) of x
log10(x) any logo x, logarithm (base 10) of
norm(x) any normal distribution (Gaussian) function of real(x)
rand(x) int pseudo random number in the interval [0:1]
real(x) any real part of =
sgn(x) any 1ifx>0,-1ifz<0,0if x =0. imag(x) ignored
sin(x) any sin x, sine of x
sinh(x) any sinh z, hyperbolic sine of = in radians
sqrt(x) any \/x, square root of
tan(x) any tanz, tangent of x
tanh(x) any tanh x, hyperbolic tangent of = in radians
2
voigt(x,y) real Voigt /Faddeeva function £ [(fcft()iziy)zdt
Note: voigt(z,y) = real(faddeeva(z + iy))
Special functions from libcerf (only if available)
Function Arguments Returns
cerf(z) complex complex error function
cdawson(z) complex complex extension of Dawson’s integral D(z) = @e*f erfi(z)

faddeeva(z) complex

rescaled complex error function w(z) = e erfc(—iz)

28 gnuplot 5.0

] Special functions from libcerf (only if available)

Function Arguments Returns
erfi(x) real imaginary error function erf(z) = —i % er f(iz)
VP(x,0,7) real Voigt profile VP(z,0,7) = [*_G(a';0)L(x — a';y)da’

String functions

Function Arguments Returns
gprintf(” format” x,...) any string result from applying gnuplot’s format parser
sprintf(” format” x,...) multiple string result from C-language sprintf
strlen(”string”) string int length of string in bytes
strstrt (7 string” " key”) strings int index of first character of substring ”key”
substr(”string” ,beg,end) multiple string ”string” [beg:end|
strftime(” timeformat” ,t) any string result from applying gnuplot’s time parser
strptime(” timeformat”) string seconds since year 1970 as given in string s
system(” command”) string string containing output stream of shell command
word(”string” ,n) string, int returns the nth word in ”string”
words(”string”) string returns the number of words in ”string”

other gnuplot functions ‘

Function Arguments Returns
column(x) int or string column z during datafile manipulation.
columnhead(x) int string containing first entry of column x in datafile.
exists(”X”) string returns 1 if a variable named X is defined, 0 otherwise.
hsv2rgb(h,s,v) h,s,v € [0:1] 24bit RGB color value.
stringcolumn(x) int or string content of column x as a string.
timecolumn(N,”timeformat”) int, string time data from column N during data input.
tm_hour(x) int the hour
tm_mday(x) int the day of the month
tm_min(x) int the minute
tm_mon(x) int the month
tm_sec(x) int the second
tm_wday (x) int the day of the week
tm_yday(x) int the day of the year
tm_year(x) int the year
time(x) any the current system time
valid(x) int test validity of column(z) during datafile manip.
value("name”) string returns the value of the named variable.

Elliptic integrals

The EllipticK (k) function returns the complete elliptic integral of the first kind, i.e. the definite integral
between 0 and pi/2 of the function (1-(k*sin(p))**2)**(-0.5). The domain of k is -1 to 1 (exclusive).

The EllipticE(k) function returns the complete elliptic integral of the second kind, i.e. the definite integral
between 0 and pi/2 of the function (1-(k*sin(p))**2)**0.5. The domain of k is -1 to 1 (inclusive).

The EllipticPi(n,k) function returns the complete elliptic integral of the third kind, i.e. the definite integral
between 0 and pi/2 of the function (1-(k*sin(p))**2)**(-0.5)/(1-n*sin(p)**2). The parameter n must
be less than 1, while k must lie between -1 and 1 (exclusive). Note that by definition EllipticPi(0,k) ==
EllipticK (k) for all possible values of k.

Random number generator

The function rand() produces a sequence of pseudo-random numbers between 0 and 1 using an algorithm
from P. L’Ecuyer and S. Cote, "Implementing a random number package with splitting facilities", ACM

gnuplot 5.0 29

Transactions on Mathematical Software, 17:98-111 (1991).

rand (0) returns a pseudo random number in the interval [0:1]
generated from the current value of two internal
32-bit seeds.

rand(-1) resets both seeds to a standard value.
rand (x) for integer O < x < 2731-1 sets both internal seeds
to x.
rand({x,y}) for integer O < x,y < 2731-1 sets seedl to x and
seed2 to y.
Value

B = value("A") is effectively the same as B = A, where A is the name of a user-defined variable. This is
useful when the name of the variable is itself held in a string variable. See user-defined variables (p. 32).
It also allows you to read the name of a variable from a data file. If the argument is a numerical expression,
value() returns the value of that expression. If the argument is a string that does not correspond to a
currently defined variable, value() returns NaN.

Counting and extracting words

word("string",n) returns the nth word in string. For example, word("one two three",2) returns the
string "two".

words("string") returns the number of words in string. For example, words(" a b ¢ d") returns 4.

The word and words functions provide limited support for quoted strings, both single and double quotes
can be used:

print words("\"double quotes\" or ’single quotes’") # 3

A starting quote must either be preceeded by a white space, or start the string. This means that apostrophes
in the middle or at the end of words are considered as parts of the respective word:

print words("Alexis’ phone doesn’t work") # 4

Escaping quote characters is not supported. If you want to keep certain quotes, the respective section must
be surrounded by the other kind of quotes:

s = "Keep \"’single quotes’\" or ’\"double quotes\"’"
print word(s, 2) # ’single quotes’
print word(s, 4) # "double quotes"

Note, that in this last example the escaped quotes are necessary only for the string definition.

Operators
The operators in gnuplot are the same as the corresponding operators in the C programming language,

except that all operators accept integer, real, and complex arguments, unless otherwise noted. The **
operator (exponentiation) is supported, as in FORTRAN.

Parentheses may be used to change order of evaluation.

Unary

The following is a list of all the unary operators and their usages:

30 gnuplot 5.0

’ Unary Operators

Symbol Example Explanation
- -a unary minus
+a unary plus (no-operation)
- ~a * one’s complement
! la * logical negation
! al * factorial
$ $3 * call arg/column during ‘using‘ manipulation

(*) Starred explanations indicate that the operator requires an integer argument.

Operator precedence is the same as in Fortran and C. As in those languages, parentheses may be used to
change the order of operation. Thus -2**2 = -4, but (-2)**2 = 4.

The factorial operator returns a real number to allow a greater range.

Binary

The following is a list of all the binary operators and their usages:

’ Binary Operators

Symbol Example Explanation

*% ax*xb exponentiation

* axb multiplication

/ a/b division

yA a%b * modulo

+ atb addition

- a-b subtraction

== a== equality

1= al=b inequality

< a<b less than

<= a<=b less than or equal to
> a>b greater than

>= a>=b greater than or equal to

<< Oxff<<1 left shift unsigned
>> 0xff>>1 right shift unsigned
a&b * bitwise AND

- a"b * bitwise exclusive OR
| alb * bitwise inclusive OR
&& a&&b * logical AND

I allb * logical OR
= a=>b assignment

, (a,b) serial evaluation

. A.B string concatenation
eq A eq B string equality

ne A ne B string inequality

(*) Starred explanations indicate that the operator requires integer arguments. Capital letters A and B
indicate that the operator requires string arguments.

Logical AND (&&) and OR (]|) short-circuit the way they do in C. That is, the second && operand is not
evaluated if the first is false; the second || operand is not evaluated if the first is true.

Serial evaluation occurs only in parentheses and is guaranteed to proceed in left to right order. The value of
the rightmost subexpression is returned.

Ternary

There is a single ternary operator:

gnuplot 5.0 31

’ Ternary Operator

Symbol Example FExplanation
7 a?b:c ternary operation

The ternary operator behaves as it does in C. The first argument (a), which must be an integer, is evaluated.
If it is true (non-zero), the second argument (b) is evaluated and returned; otherwise the third argument (c)
is evaluated and returned.

The ternary operator is very useful both in constructing piecewise functions and in plotting points only when
certain conditions are met.

Examples:

Plot a function that is to equal sin(x) for 0 <=x < 1, 1/x for 1 <= x < 2, and undefined elsewhere:
f(x) = 0<=x && x<1 7 sin(x) : 1<=x && x<2 7 1/x : 1/0
plot f£(x)

Note that gnuplot quietly ignores undefined values, so the final branch of the function (1/0) will produce
no plottable points. Note also that f(x) will be plotted as a continuous function across the discontinuity if
a line style is used. To plot it discontinuously, create separate functions for the two pieces. (Parametric
functions are also useful for this purpose.)

For data in a file, plot the average of the data in columns 2 and 3 against the datum in column 1, but only
if the datum in column 4 is non-negative:

plot ’file’ using 1:($4<0 ? 1/0 : ($2+$3)/2)

For an explanation of the using syntax, please see plot datafile using (p. 91).

Summation

A summation expression has the form
sum [<var> = <start> : <end>] <expression>

<var> is treated as an integer variable that takes on successive integral values from <start> to <end>. For
each of these, the current value of <expression> is added to a running total whose final value becomes the
value of the summation expression. Examples:
print sum [i=1:10] i
55.
Equivalent to plot ’data’ using 1:($2+$3+$4+$5+$6+...)
plot ’data’ using 1 : (sum [col=2:MAXCOL] column(col))

It is not necessary that <expression> contain the variable <var>. Although <start> and <end> can be
specified as variables or expressions, their value cannot be changed dynamically as a side-effect of carrying
out the summation. If <end> is less than <start> then the value of the summation is zero.

Gnuplot-defined variables

Gnuplot maintains a number of read-only variables that reflect the current internal state of the program and
the most recent plot. These variables begin with the prefix "GPVAL_". Examples include GPVAL_TERM,
GPVAL_X_MIN, GPVAL_X_MAX, GPVAL_Y_MIN. Type show variables all to display the complete list
and current values. Values related to axes parameters (ranges, log base) are values used during the last plot,
not those currently set.

Example: To calculate the fractional screen coordinates of the point [X,Y]
GRAPH_X = (X - GPVAL_X_MIN) / (GPVAL_X_MAX - GPVAL_X_MIN)
GRAPH_Y = (Y - GPVAL_Y_MIN) / (GPVAL_Y_MAX - GPVAL_Y_MIN)
SCREEN_X = GPVAL_TERM_XMIN + GRAPH_X * (GPVAL_TERM_XMAX - GPVAL_TERM_XMIN)
SCREEN_Y = GPVAL_TERM_YMIN + GRAPH_Y * (GPVAL_TERM_YMAX - GPVAL_TERM_YMIN)
FRAC_X = SCREEN_X * GPVAL_TERM_SCALE / GPVAL_TERM_XSIZE
FRAC_Y = SCREEN_Y * GPVAL_TERM_SCALE / GPVAL_TERM_YSIZE

32 gnuplot 5.0

The read-only variable GPVAL_ERRNO is set to a non-zero value if any gnuplot command terminates early
due to an error. The most recent error message is stored in the string variable GPVAL_ERRMSG. Both
GPVAL_ERRNO and GPVAL_ERRMSG can be cleared using the command reset errors.

Interactive terminals with mouse functionality maintain read-only variables with the prefix "MOUSE_".
See mouse variables (p. 40) for details.

The fit mechanism uses several variables with names that begin "FIT_". It is safest to avoid using such
names. When using set fit errorvariables, the error for each fitted parameter will be stored in a variable
named like the parameter, but with "_err" appended. See the documentation on fit (p. 68) and set fit
(p. 121) for details.

See user-defined variables (p. 32), reset errors (p. 103), mouse variables (p. 40), and fit (p. 68).

User-defined variables and functions

New user-defined variables and functions of one through twelve variables may be declared and used anywhere,
including on the plot command itself.
User-defined function syntax:

<func-name>(<dummyl1> {,<dummy2>} ... {,<dummyl12>}) = <expression>

where <expression> is defined in terms of <dummy1> through <dummy12>.

User-defined variable syntax:
<variable-name> = <constant-expression>

Examples:
w=2
q = floor(tan(pi/2 - 0.1))
f(x) = sin(w*x)
sinc(x) = sin(pi*x)/(pi*x)
delta(t) = (t == 0)
ramp(t) = (¢t >0) 27t : 0
min(a,b) = (a<b) ?7a: b
comb(n,k) = n!/(k!'*(n-k)!)
len3d(x,y,z) = sqrt(x*x+y*y+z*z)
plot f(x) = sin(x*a), a = 0.2, f(x), a = 0.4, £(x)

file = "mydata.inp"
file(n) = sprintf("run_j%d.dat",n)

The final two examples illustrate a user-defined string variable and a user-defined string function.

Note that the variables pi (3.14159...) and NaN (IEEE "Not a Number") are already defined. You can
redefine these to something else if you really need to. The original values can be recovered by setting:

NaN = GPVAL_NaN
pi = GPVAL_pi

Other variables may be defined under various gnuplot operations like mousing in interactive terminals or
fitting; see gnuplot-defined variables (p. 31) for details.

You can check for existence of a given variable V by the exists("V") expression. For example
a =10
if (exists("a")) print "a is defined"
if (lexists("b")) print "b is not defined"

Valid names are the same as in most programming languages: they must begin with a letter, but subsequent
characters may be letters, digits, or "_".
Each function definition is made available as a special string-valued variable with the prefix '"GPFUN_".

Example:

gnuplot 5.0 33

set label GPFUN_sinc at graph .05,.95

See show functions (p. 125), functions (p. 95), gnuplot-defined variables (p. 31), macros (p. 42),
value (p. 29).

Fonts

Gnuplot does not provide any fonts of its own. It relies on external font handling, the details of which
unfortunately vary from one terminal type to another. Brief documentation of font mechanisms that apply
to more than one terminal type is given here. For information on font use by other individual terminals, see
the documentation for that terminal.

Although it is possible to include non-alphabetic symbols by temporarily switching to a special font, e.g. the
Adobe Symbol font, the preferred method is now to specify the unicode entry point for the desired symbols
using their UTF-8 encoding. See encoding (p. 120) and locale (p. 135).

Cairo (pdfcairo, pngcairo, epscairo, wxt terminals)

These terminals find and access fonts using the external fontconfig tool set. Please see the
fontconfig user manual.

It is usually sufficient in gnuplot to request a font by a generic name and size, letting fontconfig substitute
a similar font if necessary. The following will probably all work:

set term pdfcairo font "sans,12"
set term pdfcairo font "Times,12"
set term pdfcairo font "Times-New-Roman,12"

Gd (png, gif, jpeg terminals)

Font handling for the png, gif, and jpeg terminals is done by the external library libgd. Five basic fonts are
provided directly by libgd. These are tiny (5x8 pixels), small (6x12 pixels), medium, (7x13 Bold), large
(8x16) or giant (9x15 pixels). These fonts cannot be scaled or rotated. Use one of these keywords instead
of the font keyword. E.g.

set term png tiny

On most systems libgd also provides access to Adobe Type 1 fonts (*.pfa) and TrueType fonts (*.ttf). You
must give the name of the font file, not the name of the font inside it, in the form "<face> {,<pointsize>}".
<face> is either the full pathname to the font file, or the first part of a filename in one of the directories
listed in the GDFONTPATH environmental variable. That is, ’set term png font "Face"’ will look for a font
file named either <somedirectory>/Face.ttf or <somedirectory>/Face.pfa. For example, if GDFONTPATH
contains /usr/local/fonts/ttf: /usr/local/fonts/pfa then the following pairs of commands are equivalent

set term png font "arial"

set term png font "/usr/local/fonts/ttf/arial.ttf"

set term png font "Helvetica"

set term png font "/usr/local/fonts/pfa/Helvetica.pfa"

To request a default font size at the same time:

set term png font "arial,11"

Both TrueType and Adobe Type 1 fonts are fully scalable and rotatable. If no specific font is requested in
the "set term" command, gnuplot checks the environmental variable GNUPLOT_DEFAULT_GDFONT to
see if there is a preferred default font.

http://fontconfig.org/fontconfig-user.html

34 gnuplot 5.0

Postscript (also encapsulated postscript *.eps)

PostScript font handling is done by the printer or viewing program. Gnuplot can create valid PostScript or
encapsulated PostScript (*.eps) even if no fonts at all are installed on your computer. Gnuplot simply refers
to the font by name in the output file, and assumes that the printer or viewing program will know how to
find or approximate a font by that name.

All PostScript printers or viewers should know about the standard set of Adobe fonts Times-Roman,
Helvetica, Courier, and Symbol. It is likely that many additional fonts are also available, but the specific
set depends on your system or printer configuration. Gnuplot does not know or care about this; the output
* ps or *.eps files that it creates will simply refer to whatever font names you request.

Thus
set term postscript eps font "Times-Roman, 12"

will produce output that is suitable for all printers and viewers.
On the other hand

set term postscript eps font "Garamond-Premier-Pro-Italic"

will produce an output file that contains valid PostScript, but since it refers to a specialized font, only some
printers or viewers will be able to display the specific font that was requested. Most will substitute a different
font.

However, it is possible to embed a specific font in the output file so that all printers will be able to use it.
This requires that the a suitable font description file is available on your system. Note that some font files
require specific licensing if they are to be embedded in this way. See postscript fontfile (p. 227) for more
detailed description and examples.

Glossary

Throughout this document an attempt has been made to maintain consistency of nomenclature. This cannot
be wholly successful because as gnuplot has evolved over time, certain command and keyword names have
been adopted that preclude such perfection. This section contains explanations of the way some of these
terms are used.

A "page" or "screen" or "canvas" is the entire area addressable by gnuplot. On a desktop it is a full
window; on a plotter, it is a single sheet of paper; in svga mode it is the full monitor screen.

A screen may contain one or more "plots". A plot is defined by an abscissa and an ordinate, although these
need not actually appear on it, as well as the margins and any text written therein.

A plot contains one "graph". A graph is defined by an abscissa and an ordinate, although these need not
actually appear on it.

A graph may contain one or more "lines". A line is a single function or data set. "Line" is also a plotting
style. The word will also be used in sense "a line of text". Presumably the context will remove any ambiguity.

The lines on a graph may have individual names. These may be listed together with a sample of the plotting
style used to represent them in the "key", sometimes also called the "legend".

The word "title" occurs with multiple meanings in gnuplot. In this document, it will always be preceded by
the adjective "plot", "line", or "key" to differentiate among them. A 2D graph may have up to four labeled
axes. The names of the four axes are "x" for the axis along the bottom border of the plot, "y" for the axis
along the left border, "x2" for the top border, and "y2" for the right border. See axes (p. 80).

A 3D graph may have up to three labeled axes — "x", "y" and "z". It is not possible to say where on the
graph any particular axis will fall because you can change the direction from which the graph is seen with
set view.

When discussing data files, the term "record" will be resurrected and used to denote a single line of text
in the file, that is, the characters between newline or end-of-record characters. A "point" is the datum
extracted from a single record. A "datablock" is a set of points from consecutive records, delimited by blank
records. A line, when referred to in the context of a data file, is a subset of a datablock. Note that the term
"datablock" may also be used when referring to a named inline data block (see datablocks (p. 87)).

gnuplot 5.0 35

Iteration

Version 4.6 of gnuplot introduced command iteration

and block-structured if/else/while/do constructs. See
if (p. 76), while (p. 189), and do (p. 67). Simple
iteration is possible inside plot or set commands. See

plot for (p. 97). General iteration spanning multiple
commands is possible using a block construct as shown

below. For a related new feature, see the summation
(p. 31) expression type. Here is an example using sev-
eral of these new syntax features:

set multiplot layout 2,2
fourier(k, x) = sin(3./2%k)/k * 2./3*cos(k*x)
do for [power = 0:3] {
TERMS = 10**power
set title sprintf("g term Fourier series",TERMS)
plot 0.5 + sum [k=1:TERMS] fourier(k,x) notitle

1 term Fourier series 10 term Fourier series

100 term Fourier series 1000 term Fourier series

}

unset multiplot

Linetypes, colors, and styles

In older gnuplot versions, each terminal type provided a set of distinct "linetypes" that could differ in
color, in thickness, in dot/dash pattern, or in some combination of color and dot/dash. These colors and
patterns were not guaranteed to be consistent across different terminal types although most used the color
sequence red/green/blue/magenta/cyan/yellow. You can select this old behaviour via the command set
colorsequence classic, but by default gnuplot version 5 uses a terminal-independent sequence of 8 colors.

You can further customize the sequence of linetype properties interactively or in an initialization file. See
set linetype (p. 134). Several sample initialization files are provided in the distribution package.

The current linetype properties for a particular terminal can be previewed by issuing the test command
after setting the terminal type.

Successive functions or datafiles plotted by a single command will be assigned successive linetypes in the
current default sequence. You can override this for any individual function, datafile, or plot element by
giving explicit line prooperties in the plot command.

Examples:
plot "foo", "bar" # plot two files using linetypes 1, 2
plot sin(x) linetype 4 # use linetype color 4

In general, colors can be specified using named colors, rgb (red, green, blue) components, hsv (hue, saturation,
value) components, or a coordinate along the current pm3d palette.

Examples:

plot sin(x) 1t rgb "violet" # one of gnuplot’s named colors

plot sin(x) 1t rgb "#FFOOFF" # explicit RGB triple in hexadecimal

plot sin(x) 1t palette cb -45 # whatever color corresponds to -45

in the current cbrange of the palette

plot sin(x) 1t palette frac 0.3 # fractional value along the palette

See colorspec (p. 36), show colornames (p. 114), hsv (p. 28), set palette (p. 150), cbrange
(p. 181). See also set monochrome (p. 137).

Linetypes also have an associated dot-dash pattern although not all terminal types are capable of using it.
Gnuplot version 5 allows you to specify the dot-dash pattern independent of the line color. See dashtype

(p- 37).

36 gnuplot 5.0

Colorspec

Many commands allow you to specify a linetype with an explicit color.
Syntax:

. {linecolor | 1lc} {"colorname" | <colorspec> | <n>}
... {textcolor | tc} {<colorspec> | {linetype | 1t} <n>}

where <colorspec> has one of the following forms:

rgbcolor "colorname" # e.g. "blue"

rgbcolor "OxRRGGBB" # string containing hexadecimal constant
rgbcolor "OxAARRGGBB" # string containing hexadecimal constant
rgbcolor "#RRGGBB" # string containing hexadecimal in x11 format
rgbcolor "#AARRGGBB" # string containing hexadecimal in x11 format
rgbcolor <integer val> # integer value representing AARRGGBB
rgbcolor variable # integer value is read from input file
palette frac <val> # <val> runs from O to 1

palette cb <value> # <val> lies within cbrange

palette z

variable # color index is read from input file
bgnd # background color

black

The "<n>" is the linetype number the color of which is used, see test (p. 188).

"colorname" refers to one of the color names built in to gnuplot. For a list of the available names, see show
colornames (p. 114).

Hexadecimal constants can be given in quotes as "#RRGGBB" or "0xRRGGBB", where RRGGBB rep-
resents the red, green, and blue components of the color and must be between 00 and FF. For example,
magenta = full-scale red + full-scale blue could be represented by "OxFFOOFF", which is the hexadecimal
representation of (255 << 16) + (0 << 8) + (255).

"#AARRGGBB" represents an RGB color with an alpha channel (transparency) value in the high bits.
An alpha value of 0 represents a fully opaque color; i.e., "#00RRGGBB" is the same as "#RRGGBB".
An alpha value of 255 (FF) represents full transparency. Note: This convention for the alpha channel is
backwards from that used by the "with rgbalpha" image plot mode in earlier versions of gnuplot.

The color palette is a linear gradient of colors that smoothly maps a single numerical value onto a particular
color. Two such mappings are always in effect. palette frac maps a fractional value between 0 and 1 onto
the full range of the color palette. palette cb maps the range of the color axis onto the same palette. See
set cbrange (p. 181). See also set colorbox (p. 113). You can use either of these to select a constant
color from the current palette.

"palette z" maps the z value of each plot segment or plot element into the cbrange mapping of the palette.
This allows smoothly-varying color along a 3d line or surface. It also allows coloring 2D plots by palette
values read from an extra column of data (not all 2D plot styles allow an extra column). There are two
special color specifiers: bgnd for background color and black.

Background color

Most terminals allow you to set an explicit background color for the plot. The special linetype bgnd will
draw in this color, and bgnd is also recognized as a color. Examples:

This will erase a section of the canvas by writing over it in the

background color

set term wxt background rgb "gray75"

set object 1 rectangle from x0,y0 to x1,yl fillstyle solid fillcolor bgnd
This will draw an "invisible" line along the x axis

plot O 1t bgnd

gnuplot 5.0 37

Linecolor variable

Ic variable tells the program to use the value read from one column of the input data as a linetype index,
and use the color belonging to that linetype. This requires a corresponding additional column in the using
specifier. Text colors can be set similarly using tc variable.

Examples:

Use the third column of data to assign colors to individual points
plot ’data’ using 1:2:3 with points lc variable

A single data file may contain multiple sets of data, separated by two
blank lines. Each data set is assigned as index value (see ‘index‘)

that can be retrieved via the ‘using‘ specifier ‘column(-2)°¢.

See ‘pseudocolumns‘. This example uses to value in column -2 to

draw each data set in a different line color.

plot ’data’ using 1:2:(column(-2)) with lines lc variable

Rgbcolor variable

You can assign a separate color for each data point, line segment, or label in your plot. lc rgbcolor variable
tells the program to read RGB color information for each line in the data file. This requires a corresponding
additional column in the using specifier. The extra column is interpreted as a 24-bit packed RGB triple.
If the value is provided directly in the data file it is easiest to give it as a hexidecimal value (see rgbcolor
(p- 36)). Alternatively, the using specifier can contain an expression that evaluates to a 24-bit RGB color
as in the example below. Text colors are similarly set using tc rgbcolor variable.

Example:

Place colored points in 3D at the x,y,z coordinates corresponding to
their red, green, and blue components

rgb(r,g,b) = 65536 * int(r) + 256 * int(g) + int(b)

splot "data" using 1:2:3:(rgb($1,$2,$3)) with points lc rgb variable

Dashtype

In gnuplot version 5 the dash pattern (dashtype) is a seperate property associated with each line, analogous
to linecolor or linewidth. It is not necessary to place the current terminal in a special mode just to draw
dashed lines. Le. the command set term <termname> {solid|dashed} is now ignored.

All lines have the property dashtype solid unless you specify otherwise. You can change the default for a
particular linetype using the command set linetype so that it affects all subsequent commands, or you can
include the desired dashtype as part of the plot or other command.

Syntax:

dashtype N # predefined dashtype invoked by number
dashtype "pattern" # string containing a combination of the characters
dot (.) hyphen (-) underscore(_) and space.
dashtype (sl,el,s2,e2,s3,e3,s4,e4) # dash pattern specified by 1 to 4
numerical pairs <solid length>, <emptyspace length>

Example:

Two functions using linetype 1 but distinguished by dashtype
plot f1(x) with lines 1t 1 dt solid, f2(x) with lines 1t 1 dt 3

Some terminals support user-defined dash patterns in addition to whatever set of predefined dash patterns
they offer.

Examples:

38 gnuplot 5.0

plot f(x) dt 3

plot f(x) dt ".. "

plot f(x) dt (2,5,2,15)
set dashtype 11 (2,4,4,7)
plot f(x) dt 11

use terminal-specific dash pattern 3
construct a dash pattern on the spot
numerical representation of the same pattern
define new dashtype to be called by index
plot using our new dashtype

H OH H HH

If you specify a dash pattern using a string the program will convert this to a sequence of <solid>,<empty>
pairs. The command show dashtype will show both the original string and the converted numerical
sequence.

Linestyles vs linetypes

A linestyle is a temporary association of properties linecolor, linewidth, dashtype, and pointtype. It is
defined using the command set style line. Once you have defined a linestyle, you can use it in a plot
command to control the appearance of one or more plot elements. In other words, it is just like a linetype
except for its lifetime. Whereas linetypes are permanent (they last until you explicitly redefine them),
linestyles last until the next reset of the graphics state.

Examples:

define a new line style with terminal-independent color cyan,

linewidth 3, and associated point type 6 (a circle with a dot in it).
set style line 5 1t rgb "cyan" 1lw 3 pt 6

plot sin(x) with linespoints 1ls 5 # user-defined line style 5

Layers

A gnuplot plot is built up by drawing its various components in a fixed order. This order can be modified by
assigning some components to a specific layer using the keywords behind, back, or front. For example, to
replace the background color of the plot area you could define a colored rectangle with the attribute behind.

set object 1 rectangle from graph 0,0 to graph 1,1 fc rgb "gray" behind

The order of drawing is
behind
back
the plot itself
the plot legend (‘key‘)
front

Within each layer elements are drawn in the order
objects (rectangles, circles, ellipses, polygons) in numerical order
labels in numerical order
arrows in numerical order

In the case of multiple plots on a single page (multiplot mode) this order applies separately to each component
plot, not to the multiplot as a whole.

Mouse input

Many terminals allow interaction with the current plot using the mouse. Some also support the definition
of hotkeys to activate pre-defined functions by hitting a single key while the mouse focus is in the active
plot window. It is even possible to combine mouse input with batch command scripts, by invoking the
command pause mouse and then using the mouse variables returned by mouse clicking as parameters for
subsequent scripted actions. See bind (p. 39) and mouse variables (p. 40). See also the command set
mouse (p. 137).

gnuplot 5.0 39

Bind

Syntax:

bind {allwindows} [<key-sequence>] ["<gnuplot commands>"]
bind <key-sequence> "'
reset bind

The bind allows defining or redefining a hotkey, i.e. a sequence of gnuplot commands which will be executed
when a certain key or key sequence is pressed while the driver’s window has the input focus. Note that bind
is only available if gnuplot was compiled with mouse support and it is used by all mouse-capable terminals.
A user-specified binding supersedes any builtin bindings, except that <space> and ’q’ cannot normally be
rebound. For an exception, see bind space (p. 40).

Only mouse button 1 can be bound, and only for 2D plots.

You get the list of all hotkeys by typing show bind or bind or by typing the hotkey 'h’ in the graph window.
Key bindings are restored to their default state by reset bind.

Note that multikey-bindings with modifiers must be given in quotes.

Normally hotkeys are only recognized when the currently active plot window has focus. bind allwindows
<key> ... (short form: bind all <key> ...) causes the binding for <key> to apply to all gnuplot plot
windows, active or not. In this case gnuplot variable MOUSE_KEY_WINDOW is set to the ID of the
originating window, and may be used by the bound command.

Examples:
- set bindings:
bind a "replot"
bind "ctrl-a" "plot x*x"
bind "ctrl-alt-a" ’print "great"’

bind Home "set view 60,30; replot"
bind all Home ’print "This is window ",MOUSE_KEY_WINDOW’

- show bindings:

+H+

bind "ctrl-a" shows the binding for ctrl-a
bind shows all bindings
show bind # show all bindings

+H*

- remove bindings:

bind "ctrl-alt-a" "" # removes binding for ctrl-alt-a
(note that builtins cannot be removed)
reset bind # installs default (builtin) bindings

- bind a key to toggle something;:

v=0
bind "ctrl-r" "v=v+1l;if (v%2)set term x11 noraise; else set term x11 raise"

Modifiers (ctrl / alt) are case insensitive, keys not:
ctrl-alt-a == CtRl-alT-a
ctrl-alt-a != ctrl-alt-A

List of modifiers (alt == meta):
ctrl, alt

List of supported special keys:
"BackSpace", "Tab", "Linefeed", "Clear", "Return", "Pause", "Scroll_Lock",
"Sys_Req" s "Escape" s "Delete" s "Home" s "lLeft" s "Up" , "Right" s "Down" s
"PageUp", "PageDown", "End", "Begin",

40 gnuplot 5.0

"KP_Space", "KP_Tab", "KP_Enter", "KP_F1", "KP_F2", "KP_F3", "KP_F4",
"KP_Home", "KP_Left", "KP_Up", "KP_Right", "KP_Down", "KP_PageUp",
"KP_PageDown", "KP_End", "KP_Begin", "KP_Insert", "KP_Delete", "KP_Equal",
"KP_Multiply", "KP_Add", "KP_Separator", "KP_Subtract", "KP_Decimal",
"KP_Divide",

llKP_lll - "KP_9" s IIFlIl —_ I|F12ll

The following are window events rather than actual keys

"Buttonl" "Close"

See also help for mouse (p. 137).

Bind space

If gnuplot was built with configuration option —enable-raise-console, then typing <space> in the plot window
raises gnuplot’s command window. This hotkey can be changed to ctrl-space by starting gnuplot as ’gnuplot
-ctrlq’, or by setting the XResource ’gnuplot*ctrlq’. See x11 command-line-options (p. 243).

Mouse variables

When mousing is active, clicking in the active window will set several user variables that can be accessed
from the gnuplot command line. The coordinates of the mouse at the time of the click are stored in MOUSE_X
MOUSE_Y MOUSE_X2 and MOUSE_Y2. The mouse button clicked, and any meta-keys active at that time,
are stored in MOUSE_BUTTON MOUSE_SHIFT MOUSE_ALT and MOUSE_CTRL. These variables are
set to undefined at the start of every plot, and only become defined in the event of a mouse click in the
active plot window. To determine from a script if the mouse has been clicked in the active plot window, it
is sufficient to test for any one of these variables being defined.

plot ’something’

pause mouse

if (exists("MOUSE_BUTTON")) call ’something_else’; \
else print "No mouse click."

It is also possible to track keystrokes in the plot window using the mousing code.

plot ’something’
pause mouse keypress
print "Keystroke ", MOUSE_KEY, " at ", MOUSE_X, " ", MOUSE_Y

When pause mouse keypress is terminated by a keypress, then MOUSE_KEY will contain the ascii
character value of the key that was pressed. MOUSE_CHAR will contain the character itself as a string
variable. If the pause command is terminated abnormally (e.g. by ctrl-C or by externally closing the plot
window) then MOUSE_KEY will equal -1.

Note that after a zoom by mouse, you can read the new ranges as GPVAL_X_MIN, GPVAL_X_MAX,
GPVAL_Y_MIN, and GPVAL_Y_MAX, see gnuplot-defined variables (p. 31).

Persist

Many gnuplot terminals (aqua, pm, qt, x11, windows, wxt, ...) open separate display windows on the screen
into which plots are drawn. The persist option tells gnuplot to leave these windows open when the main
program exits. It has no effect on non-interactive terminal output. For example if you issue the command

gnuplot -persist -e ’plot [-5:5] sinh(x)’

gnuplot 5.0 41

gnuplot will open a display window, draw the plot into it, and then exit, leaving the display window containing
the plot on the screen. Depending on the terminal type, some mousing operations may still be possible in
the persistent window. However operations like zoom/unzoom that require redrawing the plot are generally
not possible because the main program has already exited.

You can also specify persist or nopersist at the time you set a new terminal type. For example
set term qt persist size 700,500

Plotting

There are four gnuplot commands which actually create a plot: plot, splot, replot, and refresh. plot
generates 2D plots, splot generates 3D plots (actually 2D projections, of course), and replot appends its
arguments to the previous plot or splot and executes the modified command. refresh reexecutes the
previous plot or splot command using previously stored data rather than rereading data from a file.

Much of the general information about plotting can be found in the discussion of plot; information specific
to 3D can be found in the splot section.

plot operates in either rectangular or polar coordinates — see set polar (p. 155). splot operates in
Cartesian coordinates, but will accept azimuthal or cylindrical coordinates on input. See set mapping
(p- 136). plot also lets you use each of the four borders — x (bottom), x2 (top), y (left) and y2 (right) —
as an independent axis. The axes option lets you choose which pair of axes a given function or data set is
plotted against. A full complement of set commands exists to give you complete control over the scales and
labeling of each axis. Some commands have the name of an axis built into their names, such as set xlabel.
Other commands have one or more axis names as options, such as set logscale xy. Commands and options
controlling the z axis have no effect on 2D graphs.

splot can plot surfaces and contours in addition to points and/or lines. See set isosamples (p. 128) for
information about defining the grid for a 3D function. See splot datafile (p. 182) for information about
the requisite file structure for 3D data. For contours see set contour (p. 114), set cntrlabel (p. 111),
and set cntrparam (p. 111).

In splot, control over the scales and labels of the axes are the same as with plot except that there is also a
z axis and labeling the x2 and y2 axes is possible only for pseudo-2D plots created using set view map.

Start-up (initialization)

When gnuplot is run, it first looks for a system-wide initialization file gnuplotrc. The location of this file
is determined when the program is built and is reported by show loadpath. The program then looks in
the user’s HOME directory for a file called .gnuplot on Unix-like systems or GNUPLOT.INI on other
systems. (OS/2 will look for it in the directory named in the environment variable GNUPLOT; Windows
will use APPDATA). Note: The program can be configured to look first in the current directory, but this
is not recommended because it is bad security practice.

String constants and string variables

In addition to string constants, most gnuplot commands also accept a string variable, a string expression,
or a function that returns a string. For example, the following four methods of creating a plot all result in
the same plot title:

four = "4"

graph4 = "Title for plot #4"

graph(n) = sprintf("Title for plot #%d",n)

plot ’data.4’ title "Title for plot #4"
plot ’data.4’ title graph4

plot ’data.4’ title "Title for plot #".four
plot ’data.4’ title graph(4)

42 gnuplot 5.0

Since integers are promoted to strings when operated on by the string concatenation operator, the following
method also works:

N=4

plot ’data.’.N title "Title for plot #".N

In general, elements on the command line will only be evaluated as possible string variables if they are not
otherwise recognizable as part of the normal gnuplot syntax. So the following sequence of commands is legal,
although probably should be avoided so as not to cause confusion:

plot = "my_datafile.dat"

title = "My Title"

plot plot title title

Three binary operators require string operands: the string concatenation operator ".", the string equality
operator "eq" and the string inequality operator "ne". The following example will print TRUE.

lf (IlAlI‘IIBII eq "AB") print "TRUE"

See also the two string formatting functions gprintf (p. 123) and sprintf (p. 28).

Substrings can be specified by appending a range specifier to any string, string variable, or string-valued
function. The range specifier has the form [begin:end], where begin is the index of the first character of the
substring and end is the index of the last character of the substring. The first character has index 1. The
begin or end fields may be empty, or contain "*’, to indicate the true start or end of the original string. E.g.
str[:] and str[*:*] both describe the full string str.

Substitution and Command line macros

When a command line to gnuplot is first read, i.e. before it is interpreted or executed, two forms of lexical
substitution are performed. These are triggered by the presence of text in backquotes (ascii character 96) or
preceded by @ (ascii character 64).

Substitution of system commands in backquotes

Command-line substitution is specified by a system command enclosed in backquotes. This command is
spawned and the output it produces replaces the backquoted text on the command line. Some implementa-
tions also support pipes; see plot datafile special-filenames (p. 89).

Command-line substitution can be used anywhere on the gnuplot command line, except inside strings
delimited by single quotes.

Example:
This will run the program leastsq and replace leastsq (including backquotes) on the command line with

its output:
f(x) = ‘leastsq‘

or, in VMS

f(x) = ‘run leastsq‘

These will generate labels with the current time and userid:
set label "generated on ‘date +%4Y-Ym-%d‘ by ‘whoami‘" at 1,1
set timestamp "generated on %Y-Y%m-%d by ‘whoami‘"

Substitution of string variables as macros

The character @ is used to trigger substitution of the current value of a string variable into the command
line. The text in the string variable may contain any number of lexical elements. This allows string variables
to be used as command line macros. Only string constants may be expanded using this mechanism, not
string-valued expressions. For example:

gnuplot 5.0 43

stylel = "lines 1t 4 1lw 2"

style2 = "points 1t 3 pt 5 ps 2"

rangel = "using 1:3"

range2 = '"using 1:5"

plot "foo" @rangel with @stylel, "bar" @range2 with @style2

The line containing @ symbols is expanded on input, so that by the time it is executed the effect is identical
to having typed in full

plot "foo" using 1:3 with lines 1t 4 1lw 2, \
"bar" using 1:5 with points 1t 3 pt 5 ps 2

The function exists() may be useful in connection with macro evaluation. The following example checks that
C can safely be expanded as the name of a user-defined variable:

C = "pl
if (exists(C)) print c," =", @C

Macro expansion does not occur inside either single or double quotes. However macro expansion does occur
inside backquotes.

Macro expansion is handled as the very first thing the interpreter does when looking at a new line of
commands and is only done once. Therefore, code like the following will execute correctly:

A = "g=1"
QA

but this line will not, since the macro is defined on the same line and will not be expanded in time

A = "c=1"; @A # will not expand to c=1

For execution of complete commands the evaluate command may also be handy.

String variables, macros, and command line substitution

The interaction of string variables, backquotes and macro substitution is somewhat complicated. Backquotes
do not block macro substitution, so

filename = "mydata.inp"

lines = ¢ wc --lines @filename | sed "s/ .x//"

results in the number of lines in mydata.inp being stored in the integer variable lines. And double quotes do
not block backquote substitution, so

mycomputer = "‘uname -n‘"

results in the string returned by the system command uname -n being stored in the string variable mycom-
puter.

However, macro substitution is not performed inside double quotes, so you cannot define a system command
as a macro and then use both macro and backquote substitution at the same time.

machine_id = "uname -n"
mycomputer = "‘G@machine_id‘" # doesn’t work!!

This fails because the double quotes prevent @machine_id from being interpreted as a macro. To store a
system command as a macro and execute it later you must instead include the backquotes as part of the
macro itself. This is accomplished by defining the macro as shown below. Notice that the sprintf format
nests all three types of quotes.

machine_id = sprintf(’"‘uname -n‘"’)
mycomputer = @machine_id

44 gnuplot 5.0

Syntax

Options and any accompanying parameters are separated by spaces whereas lists and coordinates are sep-
arated by commas. Ranges are separated by colons and enclosed in brackets [], text and file names are
enclosed in quotes, and a few miscellaneous things are enclosed in parentheses.

Commas are used to separate coordinates on the set commands arrow, key, and label; the list of variables
being fitted (the list after the via keyword on the fit command); lists of discrete contours or the loop
parameters which specify them on the set cntrparam command; the arguments of the set commands
dgrid3d, dummy, isosamples, offsets, origin, samples, size, time, and view; lists of tics or the loop
parameters which specify them; the offsets for titles and axis labels; parametric functions to be used to
calculate the x, y, and z coordinates on the plot, replot and splot commands; and the complete sets of
keywords specifying individual plots (data sets or functions) on the plot, replot and splot commands.

Parentheses are used to delimit sets of explicit tics (as opposed to loop parameters) and to indicate compu-
tations in the using filter of the fit, plot, replot and splot commands.

(Parentheses and commas are also used as usual in function notation.)
Square brackets are used to delimit ranges given in set, plot or splot commands.

Colons are used to separate extrema in range specifications (whether they are given on set, plot or splot
commands) and to separate entries in the using filter of the plot, replot, splot and fit commands.

Semicolons are used to separate commands given on a single command line.

Curly braces are used in the syntax for enhanced text mode and to delimit blocks in if/then/else statements.
They are also used to denote complex numbers: {3,2} = 3 + 2i.

The EEPIC, Imagen, Uniplex, LaTeX, and TPIC drivers allow a newline to be specified by \\ in a single-
quoted string or \\\\ in a double-quoted string.

Quote Marks

Gnuplot uses three forms of quote marks for delimiting text strings, double-quote (ascii 34), single-quote
(ascii 39), and backquote (ascii 96).

Filenames may be entered with either single- or double-quotes. In this manual the command examples
generally single-quote filenames and double-quote other string tokens for clarity.

String constants and text strings used for labels, titles, or other plot elements may be enclosed in either
single quotes or double quotes. Further processing of the quoted text depends on the choice of quote marks.

Backslash processing of special characters like \n (newline) and \345 (octal character code) is performed for
double-quoted strings. In single-quoted strings, backslashes are just ordinary characters. To get a single-
quote (ascii 39) in a single-quoted string, it has to be doubled. Thus the strings "d\" s’ b\\" and ’d" s’’ b\’
are completely equivalent.

Text justification is the same for each line of a multi-line string. Thus the center-justified string

"This is the first line of text.\nThis is the second line."

will produce
This is the first line of text.
This is the second line.

but
’This is the first line of text.\nThis is the second line.’

will produce
This is the first line of text.\nThis is the second line.

Enhanced text processing is performed for both double-quoted text and single-quoted text, but only by
terminals supporting this mode. See enhanced text (p. 24).

Back-quotes are used to enclose system commands for substitution into the command line. See substitution
(p. 42).

gnuplot 5.0 45

Time/Date data

gnuplot supports the use of time and/or date information as input data. This feature is activated by the
commands set xdata time, set ydata time, etc.

Internally all times and dates are converted to the number of seconds from the year 1970. The command
set timefmt defines the default format for all inputs: data files, ranges, tics, label positions — anything that
accepts a time data value defaults to receiving it in this format. Only one default format can be in effect at
a given time. Thus if both x and y data in a file are time/date, by default they are interpreted in the same
format. However this default can be replaced when reading any particular file or column of input using the
timecolumn function in the corresponding using specifier.

The conversion to and from seconds assumes Universal Time (which is the same as Greenwich Standard
Time). There is no provision for changing the time zone or for daylight savings. If all your data refer to the
same time zone (and are all either daylight or standard) you don’t need to worry about these things. But if
the absolute time is crucial for your application, you’ll need to convert to UT yourself.

Commands like show xrange will re-interpret the integer according to timefmt. If you change timefmt,
and then show the quantity again, it will be displayed in the new timefmt. For that matter, if you reset
the data type flag for that axis (e.g. set xdata), the quantity will be shown in its numerical form.

The commands set format or set tics format define the format that will be used for tic labels, whether
or not input for the specified axis is time/date.

If time/date information is to be plotted from a file, the using option must be used on the plot or splot
command. These commands simply use white space to separate columns, but white space may be embedded
within the time/date string. If you use tabs as a separator, some trial-and-error may be necessary to discover
how your system treats them.

The time function can be used to get the current system time. This value can be converted to a date
string with the strftime function, or it can be used in conjunction with timecolumn to generate relative
time/date plots. The type of the argument determines what is returned. If the argument is an integer, time
returns the current time as an integer, in seconds from 1 Jan 1970. If the argument is real (or complex), the
result is real as well. The precision of the fractional (sub-second) part depends on your operating system.
If the argument is a string, it is assumed to be a format string, and it is passed to strftime to provide a
formatted time/date string.

The following example demonstrates time/date plotting.
Suppose the file "data" contains records like

03/21/95 10:00 6.02e23

This file can be plotted by

set xdata time

set timefmt "Y%m/%d/%y"

set xrange ["03/21/95":"03/22/95"]
set format x "%m/%d"

set timefmt "Ym/%d/%y %H:%M"

plot "data" using 1:3

which will produce xtic labels that look like "03/21".

Gnuplot tracks time to millisecond precision. Time formats have been modified to match this. Example:
print the current time to msec precision

print strftime("%H:%M:%.3S %d-%b-%Y",time(0.0))
18:15:04.253 16-Apr-2011

See time_specifiers (p. 124).

46 gnuplot 5.0

Part 11
Plotting styles

Many plotting styles are available in gnuplot. They are listed alphabetically below. The commands set style
data and set style function change the default plotting style for subsequent plot and splot commands.

You can also specify the plot style explicitly as part of the plot or splot command. If you want to mix plot
styles within a single plot, you must specify the plot style for each component.

Example:

plot ’data’ with boxes, sin(x) with lines

Each plot style has its own expected set of data entries in a data file. For example, by default the lines style
expects either a single column of y values (with implicit x ordering) or a pair of columns with x in the first
and y in the second. For more information on how to fine-tune how columns in a file are interpreted as plot
data, see using (p. 91).

Boxerrorbars

The boxerrorbars style is only relevant to 2D data plotting. It is a combination of the boxes and yer-
rorbars styles. It requires 3, 4, or 5 columuns of data. An additional (4th, 5th or 6th) input column may be
used to provide variable (per-datapoint) color information (see linecolor (p. 36) and rgbcolor variable
(p. 37)). The error bar will be drawn in the same color as the border of the box.

3 columns: x y ydelta

4 columns: x y ydelta xdelta # boxwidth != -2
4 columns: x y ylow yhigh # boxwidth == -2
5 columns: x y ylow yhigh xdelta

The boxwidth will come from the fourth column if the
y errors are given as "ydelta" and the boxwidth was with boxerrorbars C——
not previously set to -2.0 (set boxwidth -2.0) or from
the fifth column if the y errors are in the form of "ylow
vhigh". The special case boxwidth = -2.0 is for four-

column data with y errors in the form "ylow yhigh". In

this case the boxwidth will be calculated so that each d] [

box touches the adjacent boxes. The width will also be I:P @ =

calculated in cases where three-column data are used.

The box height is determined from the y error in the
same way as it is for the yerrorbars style — either from y-ydelta to y-+ydelta or from ylow to yhigh,
depending on how many data columns are provided.

Boxes

The boxes style is only relevant to 2D plotting. It draws a box centered about the given x coordinate that
extends from the x axis (not from the graph border) to the given y coordinate. It uses 2 or 3 columns of
basic data. Additional input columns may be used to provide information such as variable line or fill color
(see rgbcolor variable (p. 37)).

2 columns: x vy
3 columns: x y x_width

gnuplot 5.0

47

The width of the box is obtained in one of three ways.
If the input data has a third column, this will be used to
set the width of the box. If not, if a width has been set
using the set boxwidth command, this will be used. If
neither of these is available, the width of each box will be
calculated automatically so that it touches the adjacent
boxes.

The interior of the boxes is drawn according to the cur-
rent fillstyle. See set style fill (p. 160) for details.
Alternatively a new fillstyle may be specified in the plot

with boxes H—

command. For fillstyle empty the box is not filled. For fillstyle solid the box is filled with a solid rectangle
of the current drawing color. An optional fillstyle parameter controls the fill density; it runs from 0 (back-
ground color) to 1 (current drawing color). For fillstyle pattern the box is filled in the current drawing color

with a pattern.

Examples:

To plot a data file with solid filled boxes with a small vertical space separating them (bargraph):

set boxwidth 0.9 relative
set style fill solid 1.0
plot ’file.dat’ with boxes

To plot a sine and a cosine curve in pattern-filled boxes style:

set style fill pattern
plot sin(x) with boxes, cos(x) with boxes

The sin plot will use pattern 0; the cos plot will use pattern 1. Any additional plots would cycle through

the patterns supported by the terminal driver.
To specify explicit fillstyles for each dataset:

plot ’filel’ with boxes fs solid 0.25, \
’file2’ with boxes fs solid 0.50, \
’file3’ with boxes fs solid 0.75, \
’file4’ with boxes fill pattern 1, \
’fileb’ with boxes fill empty

Boxplot

Boxplots are a common way to represent a statistical dis-
tribution of values. Quartile boundaries are determined
such that 1/4 of the points have a value equal or less
than the first quartile boundary, 1/2 of the points have
a value equal or less than the second quartile (median)
value, etc. A box is drawn around the region between
the first and third quartiles, with a horizontal line at
the median value. Whiskers extend from the box to
user-specified limits. Points that lie outside these limits
are drawn individually.

Examples

160
140
120
100
80
60
40
20

Place a boxplot at x coordinate 1.0 representing the y values in column 5

plot ’data’ using (1.0):5

Same plot but suppress outliers and force the width of the boxplot to 0.3

set style boxplot nooutliers
plot ’data’ using (1.0):5:(0.3)

48 gnuplot 5.0

By default only one boxplot is produced that represents all y values from the second column of the using
specification. However, an additional (fourth) column can be added to the specification. If present, the
values of that column will be interpreted as the discrete levels of a factor variable. As many boxplots will be
drawn as there are levels in the factor variable. The separation between these boxplots is 1.0 by default, but
it can be changed by set style boxplot separation. By default, the value of the factor variable is shown
as a tic label below (or above) each boxplot.

Example

Suppose that column 2 of ’data’ contains either "control" or "treatment"
The following example produces two boxplots, one for each level of the
factor

plot ’data’ using (1.0):5:(0):2

The default width of the box can be set via set boxwidth <width> or may be specified as an optional
3rd column in the using clause of the plot command. The first and third columns (x coordinate and width)
are normally provided as constants rather than as data columns.

By default the whiskers extend from the ends of the box to the most distant point whose y value lies within
1.5 times the interquartile range. By default outliers are drawn as circles (point type 7). The width of the
bars at the end of the whiskers may be controlled using set bars.

These default properties may be changed using the set style boxplot command. See set style boxplot
(p. 159), bars (p. 108), boxwidth (p. 109), fillstyle (p. 160), candlesticks (p. 48).

Boxxyerrorbars

The boxxyerrorbars style is only relevant to 2D data
plotting. It is similar to the xyerrorbars style ex- with boxxyerrorbars ——
cept that it draws rectangular areas rather than simple
crosses. It uses either 4 or 6 basic columns of input data.
Additional input columns may be used to provide infor-

mation such as variable line or fill color (see rgbcolor ! I:llj H D
variable (p. 37)). Dl:l

4 columns: x y xdelta ydelta
6 columns: x y xlow xhigh ylow yhigh

]
[]

The box width and height are determined from the x and y errors in the same way as they are for the
xyerrorbars style — either from xlow to xhigh and from ylow to yhigh, or from x-xdelta to x+xdelta and
from y-ydelta to y+ydelta, depending on how many data columns are provided.

An additional (5th or 7th) input column may be used to provide variable (per-datapoint) color information
(see linecolor (p. 36) and rgbcolor variable (p. 37)).

The interior of the boxes is drawn according to the current fillstyle. See set style fill (p. 160) and boxes
(p. 46) for details. Alternatively a new fillstyle may be specified in the plot command.

Candlesticks

gnuplot 5.0 49

The candlesticks style can be used for 2D data plotting
of financial data or for generating box-and-whisker plots 1 with candlesticks ——
of statistical data. The symbol is a rectangular box,
centered horizontally at the x coordinate and limited
vertically by the opening and closing prices. A vertical @ @ } D 9

line segment at the x coordinate extends up from the
top of the rectangle to the high price and another down ﬂ
to the low. The vertical line will be unchanged if the ﬂ
low and high prices are interchanged.

Five columns of basic data are required:

financial data: date open 1low high close
whisker plot: x box_min whisker_min whisker_high box_high

The width of the rectangle can be controlled by the set boxwidth command. For backwards compatibility
with earlier gnuplot versions, when the boxwidth parameter has not been set then the width of the candlestick
rectangle is controlled by set bars <width>.

Alternatively, an explicit width for each box-and-whiskers grouping may be specified in an optional 6th
column of data. The width must be given in the same units as the x coordinate.

An additional (6th, or 7th if the 6th column is used for width data) input column may be used to provide
variable (per-datapoint) color information (see linecolor (p. 36) and rgbcolor variable (p. 37)).

By default the vertical line segments have no crossbars at the top and bottom. If you want crossbars, which
are typically used for box-and-whisker plots, then add the keyword whiskerbars to the plot command. By
default these whiskerbars extend the full horizontal width of the candlestick, but you can modify this by
specifying a fraction of the full width.

The usual convention for financial data is that the rectangle is empty if (open < close) and solid fill if (close
< open). This is the behavior you will get if the current fillstyle is set to "empty". See fillstyle (p. 160).
If you set the fillstyle to solid or pattern, then this will be used for all boxes independent of open and close
values. See also set bars (p. 108) and financebars (p. 52). See also the

candlestick
and

finance
demos.

Note: To place additional symbols, such as the median value, on a box-and-whisker plot requires additional
plot commands as in this example:

Data columns:X Min 1stQuartile Median 3rdQuartile Max

set bars 4.0

set style fill empty

plot ’stat.dat’ using 1:3:2:6:5 with candlesticks title ’Quartiles’, \
»? using 1:4:4:4:4 with candlesticks 1t -1 notitle

Plot with crossbars on the whiskers, crossbars are 50% of full width
plot ’stat.dat’ using 1:3:2:6:5 with candlesticks whiskerbars 0.5

See set boxwidth (p. 109), set bars (p. 108), set style fill (p. 160), and boxplot (p. 47).

Circles

http://www.gnuplot.info/demo/candlesticks.html
http://www.gnuplot.info/demo/finance.html

50 gnuplot 5.0

The circles style plots a circle with an explicit radius ”s
at each data point. If three columns of data are present,
they are interpreted as x, y, radius. The radius is always
interpreted in the units of the plot’s horizontal axis (x
or x2). The scale on y and the aspect ratio of the plot L0
are both ignored. If only two columns are present, the 0.5
radius is taken from set style circle. In this case the
radius may be given in graph or screen coordinates.

2.0

0.0

-0.5

By default a full circle will be drawn. It is possible to o
plot arc segments instead of full circles by specifying a 25 20 -15 -10 -0.5 00 05 10 15

start and end angle in the 4th and 5th columns. An optional 4th or 6th column can specify per-circle color.
The start and end angles of the circle segments must be specified in degrees. See set style circle (p. 163)
and set style fill (p. 160).

Examples:

draws circles whose area is proportional to the value in column 3
set style fill transparent solid 0.2 noborder
plot ’data’ using 1:2:(sqrt($3)) with circles, \

’data’ using 1:2 with linespoints

draws Pac-men instead of circles
plot ’data’ using 1:2:(10):(40):(320) with circles

draw a pie chart with inline data

set xrange [-15:15]

set style fill transparent solid 0.9 noborder
plot ’-’ using 1:2:3:4:5:6 with circles lc var

0 0 5 0 30 1
0 0 5 30 70 2
0 0 5 70 120 3
0 0 5 120 230 4
0 0 5 230 360 5
e

The result is similar to using a points plot with variable size points and pointstyle 7, except that the circles
will scale with the x axis range. See also set object circle (p. 144) and fillstyle (p. 160).

Ellipses

The ellipses style plots an ellipse at each data point. :
This style is only relevant for 2D plotting. Each ellipse . with ellipses <=
is described in terms of its center, major and minor di- Sy
ameters, and the angle between its major diameter and
the x axis.

2 columns: x y

3 columns: x y major_diam

4 columns: x y major_diam minor_diam

5 columns: x y major_diam minor_diam angle

If only two input columns are present, they are taken as the coordinates of the centers, and the ellipses will
be drawn with the default extent (see set style ellipse (p. 164)). The orientation of the ellipse, which is
defined as the angle between the major diameter and the plot’s x axis, is taken from the default ellipse style
(see set style ellipse (p. 164)). If three input columns are provided, the third column is used for both
diameters. The orientation angle defaults to zero. If four columns are present, they are interpreted as x, vy,
major diameter, minor diameter. Note that these are diameters, not radii. An optional 5th column may be

gnuplot 5.0 51

used to specify the orientation angle in degrees. The ellipses will also be drawn with their default extent if
either of the supplied diameters in the 3-4-5 column form is negative.

In all of the above cases, optional variable color data may be given in an additional last (3th, 4th, 5th or
6th) column. See colorspec (p. 36) for further information.

By default, the major diameter is interpreted in the units of the plot’s horizontal axis (x or x2) while the
minor diameter in that of the vertical (y or y2). This implies that if the x and y axis scales are not equal,
then the major/minor diameter ratio will no longer be correct after rotation. This behavior can be changed
with the units keyword, however.

There are three alternatives: if units xy is included in the plot specification, the axes will be scaled as
described above. units xx ensures that both diameters are interpreted in units of the x axis, while units
yy means that both diameters are interpreted in units of the y axis. In the latter two cases the ellipses will
have the correct aspect ratio, even if the plot is resized.

If units is omitted, the default setting will be used, which is equivalent to units xy. This can be redefined
by set style ellipse.

Example (draws ellipses, cycling through the available line types):
plot ’data’ using 1:2:3:4:(0):0 with ellipses

See also set object ellipse (p. 143), set style ellipse (p. 164) and fillstyle (p. 160).

Dots

The dots style plots a tiny dot at each point; this is
useful for scatter plots with many points. Either 1 or 2
columns of input data are required in 2D. Three columns
are required in 3D.

For some terminals (post, pdf) the size of the dot can
be controlled by changing the linewidth.

1 column y # x is row number
2 columns: x y
Xy

3 columns:

z # 3D only (splot)

Filledcurves

The filledcurves style is only relevant to 2D plotting. 10

I
Three variants are possible. The first two variants re- W“'l; filledcurves
. . . . above
quire either a function or two columns of input data, and 25 below HEEE [

curve] ——
20 CUIVe 2 me—

may be further modified by the options listed below.

Syntax:
15

plot ... with filledcurves [option]
10
where the option can be one of the following

[closed | {above | below} 250 300 350 400 450 500
{x1 | x2 | y | r}[=<a>] | xy=<x>,<y>]

The first variant, closed, treats the curve itself as a closed polygon. This is the default if there are two
columns of input data.

The second variant is to fill the area between the curve and a given axis, a horizontal or vertical line, or a
point.

52 gnuplot 5.0

filledcurves closed ... just filled closed curve,

filledcurves x1 ... x1 axis,

filledcurves x2 ... x2 axis, etc for yl and y2 axes,
filledcurves y=42 ... line at y=42, i.e. parallel to x axis,
filledcurves xy=10,20 ... point 10,20 of x1,yl axes (arc-like shape).

filledcurves above r=1.5 the area of a polar plot outside radius 1.5

The third variant requires three columns of input data: the x coordinate and two y coordinates corresponding
to two curves sampled at the same set of x coordinates; the area between the two curves is filled. This is the
default if there are three or more columns of input data.

3 columns: x yl1 y2

Example of filling the area between two input curves.
fill between curves demo.

plot ’data’ using 1:2:3 with filledcurves

The above and below options apply both to commands of the form

. filledcurves above {x1|x2|y|r}=<val>

and to commands of the form
. using 1:2:3 with filledcurves below

In either case the option limits the filled area to one side of the bounding line or curve.

Notes: Not all terminal types support this plotting mode.
The x= and y= keywords are ignored for 3 columns data plots

Zooming a filled curve drawn from a datafile may produce empty or incorrect areas because gnuplot is
clipping points and lines, and not areas.

If the values of <a>, <x>, <y> are out of the drawing boundary, then they are moved to the graph
boundary. Then the actually filled area in the case of option xy=<x>,<y> will depend on xrange and
yrange.

Financebars

The financebars style is only relevant for 2D data plotting of financial data. It requires 1 x coordinate
(usually a date) and 4 y values (prices).

5 columns: date open 1low high close

An additional (6th) input column may be used to provide variable (per-record) color information (see line-
color (p. 36) and rgbcolor variable (p. 37)).

The symbol is a vertical line segment, located horizon-
tally at the x coordinate and limited vertically by the with financebars
high and low prices. A horizontal tic on the left marks
the opening price and one on the right marks the closing
price. The length of these tics may be changed by set ‘r T r J ‘[

bars. The symbol will be unchanged if the high and
low prices are interchanged. See set bars (p. 108) and j
candlesticks (p. 48), and also the j

finance demo.

F'steps

http://www.gnuplot.info/demo/fillbetween.html
http://www.gnuplot.info/demo/finance.html

gnuplot 5.0 593

The fsteps style is only relevant to 2D plotting. It con-
nects consecutive points with two line segments: the first with fsteps
from (x1,y1) to (x1,y2) and the second from (x1,y2) to
(x2,y2). The input column requires are the same as for
plot styles lines and points. The difference between
fsteps and steps is that fsteps traces first the change
in y and then the change in x. steps traces first the
change in x and then the change in y.

See also

steps demo.

Fillsteps

The fillsteps style is exactly like steps except that the area between the curve and y=0 is filled in the
current fill style. See steps (p. 60).

Histeps

The histeps style is only relevant to 2D plotting. It
is intended for plotting histograms. Y-values are as- with histeps
sumed to be centered at the x-values; the point at x1 is
represented as a horizontal line from ((x0+x1)/2,y1) to
((x14x2)/2,y1). The lines representing the end points
are extended so that the step is centered on at x. Adja-
cent points are connected by a vertical line at their aver-
age x, that is, from ((x14x2)/2,y1) to ((x1+x2)/2,y2).
The input column requires are the same as for plot styles
lines and points.

If autoscale is in effect, it selects the xrange from the data rather than the steps, so the end points will
appear only half as wide as the others. See also

steps demo.

Histograms

The histograms style is only relevant to 2D plotting. It produces a bar chart from a sequence of parallel
data columns. Each element of the plot command must specify a single input data source (e.g. one column of
the input file), possibly with associated tic values or key titles. Four styles of histogram layout are currently
supported.

set style histogram clustered {gap <gapsize>}

set style histogram errorbars {gap <gapsize>} {<linewidth>}
set style histogram rowstacked

set style histogram columnstacked

set style histogram {title font "name,size" tc <colorspec>}

The default style corresponds to set style histogram clustered gap 2. In this style, each set of parallel
data values is collected into a group of boxes clustered at the x-axis coordinate corresponding to their
sequential position (row #) in the selected datafile columns. Thus if <n> datacolumns are selected, the first
cluster is centered about x=1, and contains <n> boxes whose heights are taken from the first entry in the
corresponding <n> data columns. This is followed by a gap and then a second cluster of boxes centered
about x=2 corresponding to the second entry in the respective data columns, and so on. The default gap
width of 2 indicates that the empty space between clusters is equivalent to the width of 2 boxes. All boxes
derived from any one column are given the same fill color and/or pattern (see set style fill (p. 160)).

http://www.gnuplot.info/demo/steps.html
http://www.gnuplot.info/demo/steps.html

54 gnuplot 5.0

Each cluster of boxes is derived from a single row of the input data file. It is common in such input files that
the first element of each row is a label. Labels from this column may be placed along the x-axis underneath
the appropriate cluster of boxes with the xticlabels option to using.

The errorbars style is very similar to the clustered style, except that it requires additional columns of
input for each entry. The first column holds the height (y value) of that box, exactly as for the clustered
style.

2 columns: y yerr bar extends from y-yerr to yt+err
3 columns: y ymin ymax bar extends from ymin to ymax

The appearance of the error bars is controlled by the current value of set bars and by the optional
<linewidth> specification.

Two styles of stacked histogram are supported, chosen by the command set style histogram
{rowstacked|columnstacked}. In these styles the data values from the selected columns are collected
into stacks of boxes. Positive values stack upwards from y=0; negative values stack downwards. Mixed
positive and negative values will produce both an upward stack and a downward stack. The default stacking
mode is rowstacked.

The rowstacked style places a box resting on the x-axis for each data value in the first selected column;
the first data value results in a box a x=1, the second at x=2, and so on. Boxes corresponding to the second
and subsequent data columns are layered on top of these, resulting in a stack of boxes at x=1 representing
the first data value from each column, a stack of boxes at x=2 representing the second data value from each
column, and so on. All boxes derived from any one column are given the same fill color and/or pattern (see
set style fill (p. 160)).

The columnstacked style is similar, except that each stack of boxes is built up from a single data column.
Each data value from the first specified column yields a box in the stack at x=1, each data value from the
second specified column yields a box in the stack at x=2, and so on. In this style the color of each box is
taken from the row number, rather than the column number, of the corresponding data field.

Box widths may be modified using the set boxwidth command. Box fill styles may be set using the set
style fill command.

Histograms always use the x1 axis, but may use either y1 or y2. If a plot contains both histograms and other
plot styles, the non-histogram plot elements may use either the x1 or the x2 axis.

Examples:

Suppose that the input file contains data values in
columns 2, 4, 6, ... and error estimates in columns 3,
5, 7, ... This example plots the values in columns 2 and
4 as a histogram of clustered boxes (the default style).
Because we use iteration in the plot command, any num-
ber of data columns can be handled in a single command.
See plot for (p. 97).

ClassB .
ClassA

set boxwidth 0.9 relative

set style data histograms

set style histogram cluster

set style fill solid 1.0 border 1t -1
plot for [COL=2:4:2] ’file.dat’ using COL

S = N W A U1 N O ©
T
1

This will produce a plot with clusters of two boxes (vertical bars) centered at each integral value on the
x axis. If the first column of the input file contains labels, they may be placed along the x-axis using the
variant command

plot for [COL=2:4:2] ’file.dat’ using COL:xticlabels(1)

gnuplot 5.0 95

If the file contains both magnitude and range informa-
tion for each value, then error bars can be added to the
plot. The following commands will add error bars ex-
tending from (y-<error>) to (y+<error>), capped by
horizontal bar ends drawn the same width as the box
itself. The error bars and bar ends are drawn with
linewidth 2, using the border linetype from the current
fill style.

Histogram with error bars

—
[=}

set bars fullwidth

set style fill solid 1 border 1t -1

set style histogram errorbars gap 2 1lw 2
plot for [COL=2:4:2] ’file.dat’ using COL:COL+1

S B N W A U1 O N ©® ©
T
1

This shows how to plot the same data as a rowstacked histogram. Just to be different, this example lists the
separate columns explicitly rather than using iteration.

set style histogram rowstacked
plot ’file.dat’ using 2, ’’ using 4:xtic(1)

This will produce a plot in which each vertical bar cor- 10 Rowstacked
responds to one row of data. Each vertical bar contains ClassB £

. . . ClassA
a stack of two segments, corresponding in height to the g]

values found in columns 2 and 4 of the datafile.

Finally, the commands

set style histogram columnstacked
plot ’file.dat’ using 2, ’’ using 4

will produce two vertical stacks, one for each column
of data. The stack at x=1 will contain a box for each
entry in column 2 of the datafile. The stack at x=2 will
contain a box for each parallel entry in column 4 of the
datafile.

Because this interchanges gnuplot’s usual interpretation
of input rows and columns, the specification of key titles
and x-axis tic labels must also be modified accordingly.
See the comments given below.

ClassA ClassB

set style histogram columnstacked
plot ’’ u 5:key(1) # uses first column to generate key titles
plot ’’ u 5 title columnhead # uses first row to generate xtic labels

Note that the two examples just given present exactly the same data values, but in different formats.

Newhistogram

Syntax:

newhistogram {"<title>" {font "name,size"} {tc <colorspec>}}
{1t <linetype>} {fs <fillstyle>} {at <x-coord>}

More than one set of histograms can appear in a single plot. In this case you can force a gap between them,
and a separate label for each set, by using the newhistogram command. For example

set style histogram cluster
plot newhistogram "Set A", ’a’ using 1, ’’ using 2, ’’ using 3, \
newhistogram "Set B", ’b’ using 1, ’’ using 2, ’’ using 3

56 gnuplot 5.0

The labels "Set A" and "Set B" will appear beneath the respective sets of histograms, under the overall x
axis label.

The newhistogram command can also be used to force histogram coloring to begin with a specific color
(linetype). By default colors will continue to increment successively even across histogram boundaries. Here
is an example using the same coloring for multiple histograms
plot newhistogram "Set A" 1t 4, ’a’ using 1, ’’ using 2, ’’ using 3, \
newhistogram "Set B" 1t 4, ’b’ using 1, ’’ using 2, ’’ using 3

Similarly you can force the next histogram to begin with a specified fillstyle. If the fillstyle is set to pattern,
then the pattern used for filling will be incremented automatically.

The at <x-coord> option sets the x coordinate position

of the following histogram to <x-coord>. For example Z T (éllzsszé _I]
set style histogram cluster ;: ClassA _:
set style data histogram ClassB 200
set style fill solid 1.0 border -1 i: :
set xtic 1 offset character 0,0.3 .l)
plot newhistogram "Set A", \ .1 i
’file.dat’ ult 1, > u2t 2, \ 1
newhistogram "Set B" at 8, \ 0 i B i i 3
’file.dat’ u 2t 2, > u2t?2 L SO S A

will position the second histogram to start at x=8.

Automated iteration over multiple columns

If you want to create a histogram from many columns of data in a single file, it is very convenient to use
the plot iteration feature. See plot for (p. 97). For example, to create stacked histograms of the data in
columns 3 through 8

set style histogram columnstacked
plot for [i=3:8] "datafile" using i title columnhead

Image

The image, rgbimage, and rgbalpha plotting styles all project a uniformly sampled grid of data values
onto a plane in either 2D or 3D. The input data may be an actual bitmapped image, perhaps converted from
a standard format such as PNG, or a simple array of numerical values.

This figure illustrates generation of a heat map from an 2D Heat map from in-line array of values
array of scalar values. The current palette is used to map 0 1 2 3 4
each value onto the color assigned to the corresponding
pixel.

plot ’-’ matrix with image 1

54310

22001 2

00010

01243 3

e

e

gnuplot 5.0 57

Each pixel (data point) of the input 2D image will be-
come a rectangle or parallelipiped in the plot. The co-
ordinates of each data point will determine the center
of the parallelipiped. That is, an M x N set of data
will form an image with M x N pixels. This is differ-
ent from the pm3d plotting style, where an M x N set
of data will form a surface of (M-1) x (N-1) elements.
The scan directions for a binary image data grid can be
further controlled by additional keywords. See binary
keywords flipx (p. 83), keywords center (p. 83),
and keywords rotate (p. 83).

RGB image mapped onto a plane in 3D

Image data can be scaled to fill a particular rectangle
within a 2D plot coordinate system by specifying the x

Rescaled image used as plot element

and y extent of each pixel. See binary keywords dx 200 7 200
(p- 83) and dy (p. 83). To generate the figure at the 150 L by Neighborhood |
right, the same input image was placed multiple times, J ifl; :
each with a specified dx, dy, and origin. The input PNG 100 |0 . 4 100
image of a building is 50x128 pixels. The tall building 100 L (B0
was drawn by mapping this using dx=0.5 dy=1.5. The sor [ELEN |EEEN |BEG 1 s0
short building used a mapping dx=0.5 dy=0.35. | [BEE ” | 58

PR A O

S 0
The image style handles input pixels containing a Downtown S NE Suburbs

grayscale or color palette value. Thus 2D plots (plot command) require 3 columns of data (x,y,value),
while 3D plots (splot command) require 4 columns of data (x,y,z,value).

The rgbimage style handles input pixels that are described by three separate values for the red, green,
and blue components. Thus 5D data (x,y,r,g,b) is needed for plot and 6D data (x,y,z,r,g,b) for splot. The
individual red, green, and blue components are assumed to lie in the range [0:255].

The rgbalpha style handles input pixels that contain alpha channel (transparency) information in addition to
the red, green, and blue components. Thus 6D data (x,y,r,g,b,a) is needed for plot and 7D data (x,y,z,r,g,b,a)
for splot. The r, g, b, and alpha components are assumed to lie in the range [0:255].

Transparency

The rgbalpha plotting style assumes that each pixel of input data contains an alpha value in the range
[0:255]. A pixel with alpha = 0 is purely transparent and does not alter the underlying contents of the plot.
A pixel with alpha = 255 is purely opaque. All terminal types can handle these two extreme cases. A pixel
with 0 < alpha < 255 is partially transparent. Only a few terminal types can handle this correctly; other
terminals will approximate this by treating alpha as being either 0 or 255.

Image pixels

Some terminals use device- or library-specific optimizations to render image data within a rectangular 2D
area. This sometimes produces undesirable output, e.g. bad clipping or scaling, missing edges. The pixels
keyword tells gnuplot to use generic code that renders the image pixel-by-pixel instead. This rendering mode
is slower and may result in much larger output files, but should produce a consistent rendered view on all
terminals. (The pixels options was called failsafe mode in previous gnuplot versions.) Example:

plot ’data’ with image pixels

Impulses

58 gnuplot 5.0

The impulses style displays a vertical line from y=0
to the y value of each point (2D) or from z=0 to the z with impulses
value of each point (3D). Note that the y or z values may
be negative. Data from additional columns can be used
to control the color of each impulse. To use this style ‘ ‘ ‘

effectively in 3D plots, it is useful to choose thick lines
(linewidth > 1). This approximates a 3D bar chart.

1 column: y
2 columns: x y # line from [x,0] to [x,y] (2D)
3 columns: x y =z # line from [x,y,0] to [x,y,z] (3D)

Labels

The labels style reads coordinates and text from a data
file and places the text string at the corresponding 2D
or 3D position. 3 or 4 input columns of basic data are
required. Additional input columns may be used to pro-
vide information such as variable font size or text color
(see rgbcolor variable (p. 37)).

3 columns: x y string # 2D version
4 columns: x y 2z string # 3D version

The font, color, rotation angle and other properties of the printed text may Bgmspeciﬁed_véis additional
command options (see set label (p. 131)). The example below generates a 2D plot with text labels
constructed from the city whose name is taken from column 1 of the input file, and whose geographic
coordinates are in columns 4 and 5. The font size is calculated from the value in column 3, in this case the
population.

CityName (String,Size) = sprintf("{/=%d %s}", Scale(Size), String)
plot ’cities.dat’ using 5:4:(CityName(stringcolumn(1),$3)) with labels

If we did not want to adjust the font size to a different size for each city name, the command would be much
simpler:

plot ’cities.dat’ using 5:4:1 with labels font "Times,8"

If the labels are marked as hypertext then the text only appears if the mouse is hovering over the corre-
sponding anchor point. See hypertext (p. 133). In this case you must enable the label’s point attribute
so that there is a point to act as the hypertext anchor:

plot ’cities.dat’ using 5:4:1 with labels hypertext point pt 7

The labels style can also be used in place of the points
style when the set of predefined point symbols is not with labels
suitable or not sufficiently flexible. For example, here
we define a set of chosen single-character symbols and
assign one of them to each point in a plot based on the [L L
value in data column 3:

set encoding utf8 *
symbol(z) = "ed+OM&OO" [int (z) :int(z)] 10}
splot ’file’ using 1:2:(symbol($3)) with labels o +

See also datastrings (p. 23), set style data (p. 160).

Lines

gnuplot 5.0

99

The lines style connects adjacent points with straight
line segments. It may be used in either 2D or 3D plots.
The basic form requires 1, 2, or 3 columns of input data.
Additional input columns may be used to provide infor-
mation such as variable line color (see rgbcolor vari-
able (p. 37)).

2D form

1 column: y
2 columns: x y

3D form

1 column: z
3 columns: x y =z

implicit x from row numb

with lines

implicit x from row, y from index

See also linetype (p. 134), linewidth (p. 162), and linestyle (p. 162).

Linespoints

The linespoints style (short form lp) connects adjacent
points with straight line segments and then goes back
to draw a small symbol at each point. Points are drawn
with the default size determined by set pointsize unless
a specific point size is given in the plot command or a
variable point size is provided in an additional column
of input data. Additional input columns may also be
used to provide information such as variable line color.
See lines (p. 58) and points (p. 59).

The pointinterval (short form pi) property of the line-

with linespoints —95—
pointinterval -2 [}
with Ip pt "a" pi -1

04

type can be used to control whether or not every point in the plot is given a symbol. For example, 'with lp
pi 3’ will draw line segments through every data point, but will only place a symbol on every 3rd point. A
negative value for pointinterval will erase the portion of line segment that passes underneath the symbol.

The size of the erased portion is controlled by set pointintervalbox.

Parallelaxes

Parallel axis plots can highlight correlation in a multi-
dimensional data set. Each input column is associated
with a separately scaled vertical axis. The column val-
ues read from each line of input are connected by line
segments drawn from axis 1 to axis 2 to axis 3 and so
on. That is, each line of input is represented by a sep-
arate line in the parallel axes plot. It is common to
use some discrete categorization to assign line colors, al-
lowing visual exploration of the correlation between this
categorization and the axis dimensions. By default gnu-
plot will automatically determine the range and scale of

axis 1

axis 2

3 axis 4

HEFNWARUI I

the individual axes from the input data, but the usual set axis range commands can be used to customize

this. See set paxis (p. 146).

The maximum number of parallel axes is fixed at the time the program is built. The maximum for this copy

of gnuplot is reported by show version long.

Points

60 gnuplot 5.0

The points style displays a small symbol at each point.
The command set pointsize may be used to change the
default size of the points. 1 or 2 columns of basic input
data are required in 2D plots; 1 or 3 columns are required
in 3D plots. See style lines (p. 58). Additional input
columns may be used to provide information such as
variable point size or variable point color.

The first 8 point types are shared by all terminals. In-
dividual terminals may provide a much larger number
of distinct point types. Use the test command to show

(@]

O

O

with points ps variable O

O

O
o
OO

what is provided by the current terminal. Alternatively any single printable character may be given instead
of a point type, as in the example below. Longer strings may be plotted using the plot style labels rather

than points.

Polar

Polar plots are not really a separate plot style but
are listed here for completeness. The option set po-
lar tells gnuplot to interpret input 2D coordinates as
<angle>,<radius> rather than <x>,<y>. Many, but
not all, 2D plotting styles work in polar mode. The fig-
ure shows a combination of plot styles lines and filled-
curves. See set polar (p. 155), set rrange (p. 156),
set size square (p. 157).

Steps

The steps style is only relevant to 2D plotting. It con-
nects consecutive points with two line segments: the first
from (x1,y1) to (x2,y1) and the second from (x2,y1) to
(x2,y2). The input column requires are the same as for
plot styles lines and points. The difference between
fsteps and steps is that fsteps traces first the change
in y and then the change in x. steps traces first the
change in x and then the change in y. To fill the area
between the curve and the baseline at y=0, use fillsteps.
See also

steps demo.

Rgbalpha

See image (p. 56).

Rgbimage

See image (p. 56).

bounding radius 2.5
4 3.+sin(t)*cos(5*t) -

with fillsteps
with steps e

.......

http://www.gnuplot.info/demo/steps.html

gnuplot 5.0 61

Vectors

The 2D vectors style draws a vector from (x,y) to (x+xdelta,y+ydelta). The 3D vectors style is similar,
but requires six columns of basic data. A small arrowhead is drawn at the end of each vector.

4 columns: x y xdelta ydelta
6 columns: x y z xdelta ydelta zdelta

In both cases, an additional input column (5th in 2D, 7th in 3D) may be used to provide variable (per-
datapoint) color information. (see linecolor (p. 36) and rgbcolor variable (p. 37)).

splot with vectors is supported only for set mapping cartesian.

The keywords "with vectors" may be followed by an inline arrow style specifications, a reference to a
predefined arrow style, or a request to read the index of the desired arrow style for each vector from a
separate column. Note: If you choose "arrowstyle variable" it will fill in all arrow properties at the time the
corresponding vector is drawn; you cannot mix this keyword with other line or arrow style qualifiers in the
plot command.

plot ... with vectors filled heads

plot ... with vectors arrowstyle 3

plot ... using 1:2:3:4:5 with vectors arrowstyle variable
Example:

plot ’file.dat’ using 1:2:3:4 with vectors head filled 1t 2
splot ’file.dat’ using 1:2:3:(1):(1):(1) with vectors filled head lw 2

set clip one and set clip two affect vectors drawn in 2D. See set clip (p. 111) and arrowstyle (p. 158).

Xerrorbars

The xerrorbars style is only relevant to 2D data plots.
xerrorbars is like points, except that a horizontal er- with xerrorbars —+—
ror bar is also drawn. At each point (x,y), a line is
drawn from (xlow,y) to (xhigh,y) or from (x-xdelta,y) to
(x+xdelta,y), depending on how many data columns are
provided. A tic mark is placed at the ends of the error — H
bar (unless set bars is used — see set bars (p. 108) for — e
details). The basic style requires either 3 or 4 columns: — o

3 columns: x y xdelta
4 columns: x y xlow xhigh

An additional input column (4th or 5th) may be used to provide information such as variable point color.

Xyerrorbars

62 gnuplot 5.0

The xyerrorbars style is only relevant to 2D data plots.
xyerrorbars is like points, except that horizontal and with xyerrorbars —+—
vertical error bars are also drawn. At each point (x,y),
lines are drawn from (x,y-ydelta) to (x,y+ydelta) and

from (x-xdelta,y) to (x+xdelta,y) or from (x,ylow) to
RN
T

(x,yhigh) and from (xlow,y) to (xhigh,y), depending
upon the number of data columns provided. A tic mark

is placed at the ends of the error bar (unless set bars is .,_L
used — see set bars (p. 108) for details). Either 4 or
6 input columns are required.

+
+

4 columns: x y xdelta ydelta
6 columns: x y xlow xhigh ylow yhigh

If data are provided in an unsupported mixed form, the using filter on the plot command should be used

to set up the appropriate form. For example, if the data are of the form (x,y,xdelta,ylow,yhigh), then you
can use

plot ’data’ using 1:2:($1-$3):($1+$3):4:5 with xyerrorbars

An additional input column (5th or 7th) may be used to provide variable (per-datapoint) color information.

Yerrorbars

The yerrorbars (or errorbars) style is only relevant
to 2D data plots. yerrorbars is like points, except with yerrorbars —+—
that a vertical error bar is also drawn. At each point
(x,y), a line is drawn from (x,y-ydelta) to (x,y+ydelta)
or from (x,ylow) to (x,yhigh), depending on how many I l
data columns are provided. A tic mark is placed at the {’ {’ {»
ends of the error bar (unless set bars is used — see set I {»

bars (p. 108) for details). l

2 columns: [implicit x] y ydelta
3 columns: x y ydelta
4 columns: x y ylow yhigh

An additional input column (4th or 5th) may be used to provide information such as variable point color.
See also

errorbar demo.

Xerrorlines

The xerrorlines style is only relevant to 2D data plots.
xerrorlines is like linespoints, except that a horizontal with xerrorlines —+—
error line is also drawn. At each point (x,y), a line is
drawn from (xlow,y) to (xhigh,y) or from (x-xdelta,y) to
(x+xdelta,y), depending on how many data columns are
provided. A tic mark is placed at the ends of the error
bar (unless set bars is used — see set bars (p. 108) for
details). The basic style requires either 3 or 4 columns:

3 columns: x y xdelta
4 columns: x y xlow xhigh

An additional input column (4th or 5th) may be used to provide information such as variable point color.

http://www.gnuplot.info/demo/mgr.html

gnuplot 5.0 63

Xyerrorlines

The xyerrorlines style is only relevant to 2D data plots.
xyerrorlines is like linespoints, except that horizontal with xyerrorlines —+—
and vertical error bars are also drawn. At each point
(x,y), lines are drawn from (x,y-ydelta) to (x,y+ydelta)
and from (x-xdelta,y) to (x+xdelta,y) or from (x,ylow)
to (x,yhigh) and from (xlow,y) to (xhigh,y), depending
upon the number of data columns provided. A tic mark
is placed at the ends of the error bar (unless set bars is
used — see set bars (p. 108) for details). Either 4 or
6 input columns are required.

4 columns: x y xdelta ydelta
6 columns: x y xlow xhigh ylow yhigh

If data are provided in an unsupported mixed form, the using filter on the plot command should be used
to set up the appropriate form. For example, if the data are of the form (x,y,xdelta,ylow,yhigh), then you
can use

plot ’data’ using 1:2:($1-$3):($1+$3):4:5 with xyerrorlines

An additional input column (5th or 7th) may be used to provide variable (per-datapoint) color information.

Yerrorlines

The yerrorlines (or errorlines) style is only relevant to
2D data plots. yerrorlines is like linespoints, except with yerrorlines —+—
that a vertical error line is also drawn. At each point
(x,y), a line is drawn from (x,y-ydelta) to (x,y+ydelta)
or from (x,ylow) to (x,yhigh), depending on how many
data columns are provided. A tic mark is placed at the
ends of the error bar (see set bars (p. 108) for details).
Either 3 or 4 input columns are required.

3 columns: x y ydelta
4 columns: x y ylow yhigh

An additional input column (4th or 5th) may be used to provide information such as variable point color.
See also

errorbar demo.

3D (surface) plots

http://www.gnuplot.info/demo/mgr.html

64 gnuplot 5.0

Surface plots are generated using the splot command
rather than the plot command. The style with lines
draws a surface made from a grid of lines. Solid sur-
faces can be drawn using the style with pm3d. Usually
the surface is displayed at some arbitrary viewing angle,
such that it clearly represents a 3D surface. In this case
the X, Y, and Z axes are all visible in the plot. The
illusion of 3D is enhanced by choosing hidden line re-
moval or depth-sorted surface elements. See hidden3d
(p. 126) and the depthorder (p. 148) option of set
pm3d (p. 146). The splot command can also calcu-
late and draw contour lines corresponding to constant Z values. These contour lines may be drawn onto the
surface itself, or projected onto the XY plane. See set contour (p. 114).

3D surface with projected contours

2D projection (set view map)

An important special case of the splot command is to
map the Z coordinate onto a 2D surface by projecting
the plot along the Z axis. See set view map (p. 169).
This plot mode can be used to generate contour plots
and heat maps. This figure shows contours plotted once
with plot style lines, once with style labels.

Y axis

gnuplot 5.0 65

Part 111

Commands

This section lists the commands acceptable to gnuplot
in alphabetical order. Printed versions of this document
contain all commands; the text available interactively
may not be complete. Indeed, on some systems there
may be no commands at all listed under this heading.

Note that in most cases unambiguous abbreviations for command names and their options are permissible,
ie., "p f(x) w li" instead of "plot f(x) with lines".

In the syntax descriptions, braces ({}) denote optional arguments and a vertical bar (]) separates mutually
exclusive choices.

Cd

The c¢d command changes the working directory.
Syntax:

cd ’<directory-name>’

The directory name must be enclosed in quotes.
Examples:

cd ’subdir’
Cd Il..ll

It is recommended that Windows users use single-quotes, because backslash [\] has special significance inside
double-quotes and has to be escaped. For example,

cd "c:\newdata"

fails, but

cd ’c:\newdata’
cd "c:\\newdata"

work as expected.

Call

The call command is identical to the load command with one exception: the name of the file being loaded
may be followed by up to nine parameters.

call "inputfile" <param-1> <param-2> <param-3> ... <param-9>

Previous versions of gnuplot performed macro-like substitution of the special tokens $0, $1, ... $9 with the
literal contents of these parameters. This mechanism is now deprecated (see call old-style (p. 66)).

Gnuplot now provides a set of string variables ARG0, ARG1, ..., ARG9 and an integer variable ARGC.
When a call command is executed ARGO is set to the name of the input file, ARGC is set to the number
of parameters present, and ARG1 to ARG are loaded from the parameters that follow it on the command
line. Any existing contents of the ARG variables are saved and restored across a call command.

Because the parameters are stored in ordinary string variables, they may be dereferenced by macro expansion
(analogous to the old-style deprecated syntax). However in many cases it is more natural to use them as
you would any other variable.

66 gnuplot 5.0

Example
Call site
MYFILE = "scriptl.gp"
FUNC = "sin(x)"
call MYFILE FUNC 1.23 "This is a plot title"
Upon entry to the called script
ARGO holds "scriptl.gp"
ARG1 holds the string "sin(x)"
ARG2 holds the string "1.23"
ARG3 holds the string "This is a plot title"
ARGC is 3
The script itself can now execute
plot @ARG1 with lines title ARG3
print ARG2 * 4.56, QARG2 * 4.56
print "This plot produced by script ", ARGO

Notice that ARG1 must be dereferenced as a macro, but ARG2 may be dereferenced either as a macro
(vielding a numerical constant) or a variable (yielding that same numerical value after auto-promotion of
the string "1.23" to a real).

The same result could be obtained directly from a shell script by invoking gnuplot with the -c command line
option:

gnuplot -persist -c "scriptl.gp" "sin(x)" 1.23 "This is a plot title"

Old-style

This describes the call mechanism used by previous versions of gnuplot, now deprecated.

call "<input-file>" <param-0> <param-1> ... <param-9>

The name of the input file must be enclosed in quotes. As each line is read from the input file, it is scanned
for the following special character sequences: $0 $1 $2 $3 $4 $5 $6 $7 $8 $9 $#. If found, the sequence
$-+digit is replaced by the corresponding parameter from the call command line. Quote characters are not
copied and string variable substitution is not performed. The character sequence $# is replaced by the
number of passed parameters. $ followed by any other character is treated as an escape sequence; use 8 to
get a single $.

Example:

If the file ’calltest.gp’ contains the line:
print "argc=$# p0=$0 p1=%$1 p2=$2 p3=$3 p4=$4 p5=$5 p6=$6 pP7=x$7x"

entering the command:
call ’calltest.gp’ "abcd" 1.2 + "’quoted’" -- "$2"

will display:

argc=7 pO=abcd pl=1.2 p2=+ p3=’quoted’ pd=- p5=- p6=$2 p7=xx
NOTES: This use of the $ character conflicts both with gnuplot’s own syntax for datafile columns and
with the use of $ to indicate environmental variables in a unix-like shell. The special sequence $# was

mis-interpreted as a comment delimiter in gnuplot versions 4.5 through 4.6.3. Quote characters are ignored
during substitution, so string constants are easily corrupted.

Clear

The clear command erases the current screen or output device as specified by set output. This usually
generates a formfeed on hardcopy devices. Use set terminal to set the device type.

gnuplot 5.0 67

For some terminals clear erases only the portion of the plotting surface defined by set size, so for these it
can be used in conjunction with set multiplot to create an inset.

Example:

set multiplot
plot sin(x)

set origin 0.5,0.5
set size 0.4,0.4
clear

plot cos(x)

unset multiplot

Please see set multiplot (p. 139), set size (p. 157), and set origin (p. 145) for details of these
commands.

Do

Syntax:
do for <iteration-spec> {
<commands>
<commands>

}

Execute a sequence of commands multiple times. The commands must be enclosed in curly brackets, and
the opening "{" must be on the same line as the do keyword. This command cannot be used with old-style
(un-bracketed) if/else statements. See if (p. 76). For examples of iteration specifiers, see iteration (p. 35).
Example:

set multiplot layout 2,2

do for [name in "A B C D"] {
filename = name . ".dat"
set title sprintf("Condition %s",name)
plot filename title name

}

unset multiplot

Evaluate

The evaluate command executes the commands given as an argument string. Newline characters are not
allowed within the string.

Syntax:

eval <string expression>

This is especially useful for a repetition of similar commands.
Example:
set_label(x, y, text) \
= sprintf("set label ’%s’ at %f, %f point pt 5", text, x, y)
eval set_label(l., 1., ’one/one’)

eval set_label(2., 1., ’two/one’)
eval set_label(l., 2., ’one/two’)

Please see substitution macros (p. 42) for another way to execute commands from a string.

68 gnuplot 5.0

Exit

The commands exit and quit, as well as the END-OF-FILE character (usually Ctrl-D) terminate input from
the current input stream: terminal session, pipe, or file input (pipe). If input streams are nested (inherited
load scripts), then reading will continue in the parent stream. When the top level stream is closed, the
program itself will exit.

The command exit gnuplot will immediately and unconditionally cause gnuplot to exit even if the input
stream is multiply nested. In this case any open output files may not be completed cleanly. Example of use:

bind "ctrl-x" "unset output; exit gnuplot"

The command exit error "error message" simulates a program error. In interactive mode it prints the
error message and returns to the command line, breaking out of all nested loops or calls. In non-interactive
mode the program will exit.

See help for batch/interactive (p. 21) for more details.

Fit

The fit command fits a user-supplied real-valued expression to a set of data points, using the nonlinear
least-squares Marquardt-Levenberg algorithm. There can be up to 12 independent variables, there is always
1 dependent variable, and any number of parameters can be fitted. Optionally, error estimates can be input
for weighting the data points.

The basic use of fit is best explained by a simple example:

f(x) = a + bxx + c*xx*%x2
fit f(x) ’measured.dat’ using 1:2 via a,b,c
plot ’measured.dat’ u 1:2, f(x)

Syntax:
fit {<ranges>} <expression>
’<datafile>’ {datafile-modifiers}
{{unitweights} | {ylxylz}error | errors <vari>{,<var2>,...}}
via ’<parameter file>’ | <vari>{,<var2>,...}

Ranges may be specified to filter the data used in fitting. Out-of-range data points are ignored. The syntax
is

[{dummy_variable=}{<min>}{:<max>}],

analogous to plot; see plot ranges (p. 96).

<expression> can be any valid gnuplot expression, although the most common is a previously user-defined
function of the form f(x) or f(x,y). It must be real-valued. The names of the independent variables are set
by the set dummy command, or in the <ranges> part of the command (see below); by default, the first
two are called x and y. Furthermore, the expression should depend on one or more variables whose value is
to be determined by the fitting procedure.

<datafile> is treated as in the plot command. All the plot datafile modifiers (using, every,...) except
smooth are applicable to fit. See plot datafile (p. 84).

The datafile contents can be interpreted flexibly by providing a using qualifier as with plot commands. For
example to generate the independent variable x as the sum of columns 2 and 3, while taking z from column
6 and requesting equal weights:

fit ... using ($2+$3):6

In the absence of a using specification, the fit implicitly assumes there is only a single independent variable.
If the file itself, or the using specification, contains only a single column of data, the line number is taken as
the independent variable. If a using specification is given, there can be up to 12 independent variables (and
more if specially configured at compile time).

gnuplot 5.0 69

The unitweights option, which is the default, causes all data points to be weighted equally. This can be
changed by using the errors keyword to read error estimates of one or more of the variables from the data
file. These error estimates are interpreted as the standard deviation s of the corresponding variable value
and used to compute a weight for the datum as 1/s**2.

In case of error estimates of the independent variables, these weights are further multiplied by fitting function
derivatives according to the "effective variance method" (Jay Orear, Am. J. Phys., Vol. 50, 1982).

The errors keyword is to be followed by a comma-separated list of one or more variable names for which
errors are to be input; the dependent variable z must always be among them, while independent variables
are optional. For each variable in this list, an additional column will be read from the file, containing that
variable’s error estimate. Again, flexible interpretation is possible by providing the using qualifier. Note
that the number of independent variables is thus implicitly given by the total number of columns in the
using qualifier, minus 1 (for the dependent variable), minus the number of variables in the errors qualifier.

As an example, if one has 2 independent variables, and errors for the first independent variable and the
dependent variable, one uses the errors x,z qualifier, and a using qualifier with 5 columns, which are
interpreted as x:y:z:sx:sz (where x and y are the independent variables, z the dependent variable, and sx and
sz the standard deviations of x and z).

A few shorthands for the errors qualifier are available: yerrors (for fits with 1 column of independent
variable), and zerrors (for the general case) are all equivalent to errors z, indicating that there is a single
extra column with errors of the dependent variable.

xyerrors, for the case of 1 independent variable, indicates that there are two extra columns, with errors of
both the independent and the dependent variable. In this case the errors on x and y are treated by Orear’s
effective variance method.

Note that yerror and xyerror are similar in both form and interpretation to the yerrorlines and xyer-
rorlines 2D plot styles.

With the command set fit v4 the fit command syntax is compatible with gnuplot version 4 and before.
Then there must be two more using qualifiers (z and s) than there are independent variables, unless there
is only one variable. gnuplot then uses the following formats, depending on the number of columns given
in the using specification:

z # 1 independent variable (line number)

X:z # 1 independent variable (1st column)

X:z:8 # 1 independent variable (3 columns total)
X:y:z:s # 2 independent variables (4 columns total)
x1:x2:x3:2z:s # 3 independent variables (5 columns total)
x1:x2:x3:...:xN:z:s # N independent variables (N+2 columns total)

Please beware that this means that you have to supply z-errors s in a fit with two or more independent
variables. If you want unit weights you need to supply them explicitly by using e.g. then format x:y:z:(1).

The dummy variable names may be changed when specifying a range as noted above. The first range
corresponds to the first using spec, and so on. A range may also be given for z (the dependent variable),
in which case data points for which f(x,...) is out of the z range will not contribute to the residual being
minimized.

Multiple datasets may be simultaneously fit with functions of one independent variable by making y a
‘pseudo-variable’; e.g., the dataline number, and fitting as two independent variables. See fit multi-branch

(p. 74).

The via qualifier specifies which parameters are to be optimized, either directly, or by referencing a parameter
file.

Examples:
f(x) = axx**2 + b*x + C
g(x,y) = a*x*x*k2 + bkyx*k2 + ckxxy
set fit limit 1le-6
fit f(x) ’measured.dat’ via ’start.par’
fit f(x) ’measured.dat’ using 3:($7-5) via ’start.par’
fit f(x) ’./data/trash.dat’ using 1:2:3 yerror via a, b, c

70 gnuplot 5.0

fit g(x,y) ’surface.dat’ using 1:2:3 via a, b, ¢

fit a0 + al*x/(1 + a2*x/(1 + a3*x)) ’measured.dat’ via a0,al,a2,a3
fit a*x + b*y ’surface.dat’ using 1:2:3 via a,b

fit [*:x] [yaks=*:%] a*xx+b*yaks ’surface.dat’ u 1:2:3 via a,b

fit [J[][t=*:%] a*xx + b*y + c*t ’foo.dat’ using 1:2:3:4 via a,b,c

set dummy x1, x2, x3, x4, x5
h(x1,x2,x3,x4,s85) = a*xl + b*x2 + c*x3 + d*x4 + e*xb
fit h(x1,x2,x3,x4,x5) ’foo.dat’ using 1:2:3:4:5:6 via a,b,c,d,e

After each iteration step, detailed information about the current state of the fit is written to the display.
The same information about the initial and final states is written to a log file, "fit.log". This file is always
appended to, so as to not lose any previous fit history; it should be deleted or renamed as desired. By using
the command set fit logfile, the name of the log file can be changed.

If activated by using set fit errorvariables, the error for each fitted parameter will be stored in a variable
named like the parameter, but with "_err" appended. Thus the errors can be used as input for further
computations.

If set fit prescale is activated, fit parameters are prescaled by their initial values. This helps the Marquardt-
Levenberg routine converge more quickly and reliably in cases where parameters differ in size by several orders
of magnitude.

The fit may be interrupted by pressing Ctrl-C (Ctrl-Break in wgnuplot). After the current iteration com-
pletes, you have the option to (1) stop the fit and accept the current parameter values, (2) continue the fit,
(3) execute a gnuplot command as specified by set fit script or the environment variable FIT_SCRIPT.
The default is replot, so if you had previously plotted both the data and the fitting function in one graph,
you can display the current state of the fit.

Once fit has finished, the update command may be used to store final values in a file for subsequent use as
a parameter file. See update (p. 189) for details.

Adjustable parameters

There are two ways that via can specify the parameters to be adjusted, either directly on the command line
or indirectly, by referencing a parameter file. The two use different means to set initial values.

Adjustable parameters can be specified by a comma-separated list of variable names after the via keyword.
Any variable that is not already defined is created with an initial value of 1.0. However, the fit is more likely
to converge rapidly if the variables have been previously declared with more appropriate starting values.

In a parameter file, each parameter to be varied and a corresponding initial value are specified, one per line,
in the form

varname = value

Comments, marked by '#’, and blank lines are permissible. The special form
varname = value # FIXED

means that the variable is treated as a ’fixed parameter’, initialized by the parameter file, but not adjusted by
fit. For clarity, it may be useful to designate variables as fixed parameters so that their values are reported
by fit. The keyword # FIXED has to appear in exactly this form.

Short introduction

fit is used to find a set of parameters that ’best’ fits your data to your user-defined function. The fit is
judged on the basis of the sum of the squared differences or 'residuals’ (SSR) between the input data points
and the function values, evaluated at the same places. This quantity is often called ’chisquare’ (i.e., the
Greek letter chi, to the power of 2). The algorithm attempts to minimize SSR, or more precisely, WSSR, as
the residuals are 'weighted’ by the input data errors (or 1.0) before being squared; see fit error_estimates
(p. 71) for details.

gnuplot 5.0 71

That’s why it is called ’least-squares fitting’. Let’s look at an example to see what is meant by 'non-linear’,
but first we had better go over some terms. Here it is convenient to use z as the dependent variable for
user-defined functions of either one independent variable, z=f(x), or two independent variables, z=f(x,y). A
parameter is a user-defined variable that fit will adjust, i.e., an unknown quantity in the function declaration.
Linearity /non-linearity refers to the relationship of the dependent variable, z, to the parameters which fit
is adjusting, not of z to the independent variables, x and/or y. (To be technical, the second {and higher}
derivatives of the fitting function with respect to the parameters are zero for a linear least-squares problem).

For linear least-squares (LLS), the user-defined function will be a sum of simple functions, not involving
any parameters, each multiplied by one parameter. NLLS handles more complicated functions in which
parameters can be used in a large number of ways. An example that illustrates the difference between linear
and nonlinear least-squares is the Fourier series. One member may be written as

z=axsin(c*x) + b*cos(c*x).

If a and b are the unknown parameters and c is constant, then estimating values of the parameters is a linear
least-squares problem. However, if ¢ is an unknown parameter, the problem is nonlinear.

In the linear case, parameter values can be determined by comparatively simple linear algebra, in one
direct step. However LLS is a special case which is also solved along with more general NLLS problems
by the iterative procedure that gnuplot uses. fit attempts to find the minimum by doing a search. Each
step (iteration) calculates WSSR with a new set of parameter values. The Marquardt-Levenberg algorithm
selects the parameter values for the next iteration. The process continues until a preset criterion is met,
either (1) the fit has "converged" (the relative change in WSSR is less than a certain limit, see set fit
limit (p. 121)), or (2) it reaches a preset iteration count limit (see set fit maxiter (p. 121)). The fit
may also be interrupted and subsequently halted from the keyboard (see fit (p. 68)). The user variable
FIT_CONVERGED contains 1 if the previous fit command terminated due to convergence; it contains 0 if
the previous fit terminated for any other reason. FIT_NITER contains the number of iterations that were
done during the last fit.

Often the function to be fitted will be based on a model (or theory) that attempts to describe or predict
the behaviour of the data. Then fit can be used to find values for the free parameters of the model, to
determine how well the data fits the model, and to estimate an error range for each parameter. See fit
error_estimates (p. 71).

Alternatively, in curve-fitting, functions are selected independent of a model (on the basis of experience as
to which are likely to describe the trend of the data with the desired resolution and a minimum number of
parameters*functions.) The fit solution then provides an analytic representation of the curve.

However, if all you really want is a smooth curve through your data points, the smooth option to plot may
be what you’ve been looking for rather than fit.

Error estimates

In fit, the term "error" is used in two different contexts, data error estimates and parameter error estimates.

Data error estimates are used to calculate the relative weight of each data point when determining the
weighted sum of squared residuals, WSSR, or chisquare. They can affect the parameter estimates, since they
determine how much influence the deviation of each data point from the fitted function has on the final
values. Some of the fit output information, including the parameter error estimates, is more meaningful if
accurate data error estimates have been provided.

The statistical overview describes some of the fit output and gives some background for the ’practical
guidelines’.

Statistical overview

The theory of non-linear least-squares (NLLS) is generally described in terms of a normal distribution of
errors, that is, the input data is assumed to be a sample from a population having a given mean and a
Gaussian (normal) distribution about the mean with a given standard deviation. For a sample of sufficiently
large size, and knowing the population standard deviation, one can use the statistics of the chisquare dis-
tribution to describe a "goodness of fit" by looking at the variable often called "chisquare". Here, it is

72 gnuplot 5.0

sufficient to say that a reduced chisquare (chisquare/degrees of freedom, where degrees of freedom is the
number of datapoints less the number of parameters being fitted) of 1.0 is an indication that the weighted
sum of squared deviations between the fitted function and the data points is the same as that expected for
a random sample from a population characterized by the function with the current value of the parameters
and the given standard deviations.

If the standard deviation for the population is not constant, as in counting statistics where variance = counts,
then each point should be individually weighted when comparing the observed sum of deviations and the
expected sum of deviations.

At the conclusion fit reports ’stdfit’, the standard deviation of the fit, which is the rms of the residuals, and
the variance of the residuals, also called ’'reduced chisquare’ when the data points are weighted. The number
of degrees of freedom (the number of data points minus the number of fitted parameters) is used in these
estimates because the parameters used in calculating the residuals of the datapoints were obtained from the
same data. If the data points have weights, gnuplot calculates the so-called p-value, i.e. one minus the
cumulative distribution function of the chisquare-distribution for the number of degrees of freedom and the
resulting chisquare, see practical_guidelines (p. 72). These values are exported to the variables

FIT_NDF = Number of degrees of freedom
FIT_WSSR = Weighted sum-of-squares residual
FIT_STDFIT = sqrt(WSSR/NDF)

FIT_P = p-value

To estimate confidence levels for the parameters, one can use the minimum chisquare obtained from the fit
and chisquare statistics to determine the value of chisquare corresponding to the desired confidence level,
but considerably more calculation is required to determine the combinations of parameters which produce
such values.

Rather than determine confidence intervals, fit reports parameter error estimates which are readily obtained
from the variance-covariance matrix after the final iteration. By convention, these estimates are called
"standard errors" or "asymptotic standard errors", since they are calculated in the same way as the standard
errors (standard deviation of each parameter) of a linear least-squares problem, even though the statistical
conditions for designating the quantity calculated to be a standard deviation are not generally valid for the
NLLS problem. The asymptotic standard errors are generally over-optimistic and should not be used for
determining confidence levels, but are useful for qualitative purposes.

The final solution also produces a correlation matrix indicating correlation of parameters in the region of the
solution; The main diagonal elements, autocorrelation, are always 1; if all parameters were independent, the
off-diagonal elements would be nearly 0. Two variables which completely compensate each other would have
an off-diagonal element of unit magnitude, with a sign depending on whether the relation is proportional or
inversely proportional. The smaller the magnitudes of the off-diagonal elements, the closer the estimates of
the standard deviation of each parameter would be to the asymptotic standard error.

Practical guidelines

If you have a basis for assigning weights to each data point, doing so lets you make use of additional knowledge
about your measurements, e.g., take into account that some points may be more reliable than others. That
may affect the final values of the parameters.

Weighting the data provides a basis for interpreting the additional fit output after the last iteration. Even
if you weight each point equally, estimating an average standard deviation rather than using a weight of 1
makes WSSR a dimensionless variable, as chisquare is by definition.

Each fit iteration will display information which can be used to evaluate the progress of the fit. (An ™*’
indicates that it did not find a smaller WSSR and is trying again.) The ’sum of squares of residuals’, also
called ’chisquare’, is the WSSR between the data and your fitted function; fit has minimized that. At this
stage, with weighted data, chisquare is expected to approach the number of degrees of freedom (data points
minus parameters). The WSSR can be used to calculate the reduced chisquare (WSSR/ndf) or stdfit, the
standard deviation of the fit, sqrt(WSSR /ndf). Both of these are reported for the final WSSR.

If the data are unweighted, stdfit is the rms value of the deviation of the data from the fitted function, in
user units.

gnuplot 5.0 73

If you supplied valid data errors, the number of data points is large enough, and the model is correct, the
reduced chisquare should be about unity. (For details, look up the ’chi-squared distribution’ in your favorite
statistics reference.) If so, there are additional tests, beyond the scope of this overview, for determining how
well the model fits the data.

A reduced chisquare much larger than 1.0 may be due to incorrect data error estimates, data errors not
normally distributed, systematic measurement errors, 'outliers’, or an incorrect model function. A plot of
the residuals, e.g., plot ’datafile’ using 1:($2-f($1)), may help to show any systematic trends. Plotting
both the data points and the function may help to suggest another model.

Similarly, a reduced chisquare less than 1.0 indicates WSSR. is less than that expected for a random sample
from the function with normally distributed errors. The data error estimates may be too large, the statistical
assumptions may not be justified, or the model function may be too general, fitting fluctuations in a particular
sample in addition to the underlying trends. In the latter case, a simpler function may be more appropriate.

The p-value of the fit is one minus the cumulative distribution function of the chisquare-distribution for the
number of degrees of freedom and the resulting chisquare. This can serve as a measure of the goodness-of-fit.
The range of the p-value is between zero and one. A very small or large p-value indicates that the model does
not describe the data and its errors well. As described above, this might indicate a problem with the data,
its errors or the model, or a combination thereof. A small p-value might indicate that the errors have been
underestimated and the errors of the final parameters should thus be scaled. See also set fit errorscaling
(p. 121).

You’ll have to get used to both fit and the kind of problems you apply it to before you can relate the
standard errors to some more practical estimates of parameter uncertainties or evaluate the significance of
the correlation matrix.

Note that fit, in common with most NLLS implementations, minimizes the weighted sum of squared distances
(y-f(x))**2. It does not provide any means to account for "errors" in the values of x, only in y. Also, any
"outliers" (data points outside the normal distribution of the model) will have an exaggerated effect on the
solution.

Control

Settings of the fit command are controlled by set fit. The old gnuplot user variables are deprecated as of
version 5, see fit control variables (p. 73).

There are a number of environment variables that can be defined to affect fit before starting gnuplot, see
fit control environment (p. 74).

Control variables

The user defined variables described here are deprecated, see set fit (p. 121).

The default epsilon limit (1e-5) may be changed by declaring a value for
FIT_LIMIT

When the sum of squared residuals changes between two iteration steps by a factor less than this number
(epsilon), the fit is considered to have ’converged’.
The maximum number of iterations may be limited by declaring a value for

FIT_MAXITER

A value of 0 (or not defining it at all) means that there is no limit.

If you need even more control about the algorithm, and know the Marquardt-Levenberg algorithm well, there
are some more variables to influence it. The startup value of lambda is normally calculated automatically
from the ML-matrix, but if you want to, you may provide your own one with

FIT_START_LAMBDA

Specifying FIT_START_LAMBDA as zero or less will re-enable the automatic selection. The variable
FIT_LAMBDA_FACTOR

74 gnuplot 5.0

gives the factor by which lambda is increased or decreased whenever the chi-squared target function in-
creased or decreased significantly. Setting FIT_LAMBDA_FACTOR to zero re-enables the default factor of
10.0.

Other variables with the FIT_ prefix may be added to fit, so it is safer not to use that prefix for user-defined
variables.

The variables FIT_SKIP and FIT_INDEX were used by earlier releases of gnuplot with a ’fit’ patch called
gnufit and are no longer available. The datafile every modifier provides the functionality of FIT_SKIP.
FIT_INDEX was used for multi-branch fitting, but multi-branch fitting of one independent variable is now
done as a pseudo-3D fit in which the second independent variable and using are used to specify the branch.
See fit multi-branch (p. 74).

Environment variables

The environment variables must be defined before gnuplot is executed; how to do so depends on your
operating system.

FIT_LOG

changes the name (and/or path) of the file to which the fit log will be written from the default of "fit.log"
in the working directory. The default value can be overwritten using the command set fit logfile.

FIT_SCRIPT

specifies a command that may be executed after an user interrupt. The default is replot, but a plot or
load command may be useful to display a plot customized to highlight the progress of the fit. This setting
can also be changed using set fit script.

Multi-branch

In multi-branch fitting, multiple data sets can be simultaneously fit with functions of one independent
variable having common parameters by minimizing the total WSSR. The function and parameters (branch)
for each data set are selected by using a 'pseudo-variable’; e.g., either the dataline number (a ’column’ index
of -1) or the datafile index (-2), as the second independent variable.

Example: Given two exponential decays of the form, z=f(x), each describing a different data set but having
a common decay time, estimate the values of the parameters. If the datafile has the format x:z:s, then
f(x,y) = (y==0) 7 axexp(-x/tau) : bxexp(-x/tau)
fit f(x,y) ’datafile’ using 1:-2:2:3 wvia a, b, tau

For a more complicated example, see the file "hexa.fnc" used by the "fit.dem" demo.

Appropriate weighting may be required since unit weights may cause one branch to predominate if there is
a difference in the scale of the dependent variable. Fitting each branch separately, using the multi-branch
solution as initial values, may give an indication as to the relative effect of each branch on the joint solution.

Starting values

Nonlinear fitting is not guaranteed to converge to the global optimum (the solution with the smallest sum of
squared residuals, SSR), and can get stuck at a local minimum. The routine has no way to determine that;
it is up to you to judge whether this has happened.

fit may, and often will get "lost" if started far from a solution, where SSR is large and changing slowly as
the parameters are varied, or it may reach a numerically unstable region (e.g., too large a number causing
a floating point overflow) which results in an "undefined value" message or gnuplot halting.

To improve the chances of finding the global optimum, you should set the starting values at least roughly in
the vicinity of the solution, e.g., within an order of magnitude, if possible. The closer your starting values are
to the solution, the less chance of stopping at another minimum. One way to find starting values is to plot
data and the fitting function on the same graph and change parameter values and replot until reasonable

gnuplot 5.0 75

similarity is reached. The same plot is also useful to check whether the fit stopped at a minimum with a
poor fit.

Of course, a reasonably good fit is not proof there is not a "better" fit (in either a statistical sense, charac-
terized by an improved goodness-of-fit criterion, or a physical sense, with a solution more consistent with the
model.) Depending on the problem, it may be desirable to fit with various sets of starting values, covering
a reasonable range for each parameter.

Tips

Here are some tips to keep in mind to get the most out of fit. They’re not very organized, so you’ll have to
read them several times until their essence has sunk in.

The two forms of the via argument to fit serve two largely distinct purposes. The via "file" form is best
used for (possibly unattended) batch operation, where you just supply the startup values in a file and can
later use update to copy the results back into another (or the same) parameter file.

The via varl, var2, ... form is best used interactively, where the command history mechanism may be
used to edit the list of parameters to be fitted or to supply new startup values for the next try. This is
particularly useful for hard problems, where a direct fit to all parameters at once won’t work without good
starting values. To find such, you can iterate several times, fitting only some of the parameters, until the
values are close enough to the goal that the final fit to all parameters at once will work.

Make sure that there is no mutual dependency among parameters of the function you are fitting. For
example, don’t try to fit a*exp(x+b), because a*exp(x+b)=a*exp(b)*exp(x). Instead, fit either a*exp(x) or
exp(x+b).

A technical issue: The larger the ratio of the largest and the smallest absolute parameter values, the slower
the fit will converge. If the ratio is close to or above the inverse of the machine floating point precision, it
may take next to forever to converge, or refuse to converge at all. You will either have to adapt your function
to avoid this, e.g., replace 'parameter’ by 'le9*parameter’ in the function definition, and divide the starting
value by 1e9 or use set fit prescale which does this internally according to the parameter starting values.

If you can write your function as a linear combination of simple functions weighted by the parameters to be
fitted, by all means do so. That helps a lot, because the problem is no longer nonlinear and should converge
with only a small number of iterations, perhaps just one.

Some prescriptions for analysing data, given in practical experimentation courses, may have you first fit some
functions to your data, perhaps in a multi-step process of accounting for several aspects of the underlying
theory one by one, and then extract the information you really wanted from the fitting parameters of those
functions. With fit, this may often be done in one step by writing the model function directly in terms of
the desired parameters. Transforming data can also quite often be avoided, though sometimes at the cost of
a more difficult fit problem. If you think this contradicts the previous paragraph about simplifying the fit
function, you are correct.

A "singular matrix" message indicates that this implementation of the Marquardt-Levenberg algorithm
can’t calculate parameter values for the next iteration. Try different starting values, writing the function in
another form, or a simpler function.

Finally, a nice quote from the manual of another fitting package (fudgit), that kind of summarizes all these
issues: "Nonlinear fitting is an art!"

Help

The help command displays built-in help. To specify information on a particular topic use the syntax:

help {<topic>}

If <topic> is not specified, a short message is printed about gnuplot. After help for the requested topic is
given, a menu of subtopics is given; help for a subtopic may be requested by typing its name, extending the
help request. After that subtopic has been printed, the request may be extended again or you may go back
one level to the previous topic. Eventually, the gnuplot command line will return.

76 gnuplot 5.0

If a question mark (?) is given as the topic, the list of topics currently available is printed on the screen.

History

The history command print or saves previous commands in the history list, or reexecutes an previous entry
in the list. To modify the behavior of this command, see set history (p. 128).

Examples:
history # show the complete history
history 5 # show last 5 entries in the history
history quiet 5 # show last 5 entries without entry numbers
history "hist.gp" # write the complete history to file hist.gp

history "hist.gp" append # append the complete history to file hist.gp
history 10 "hist.gp" # write last 10 commands to file hist.gp
history 10 "|head -5 >>diary.gp" # write 5 history commands using pipe

history 7load # show all history entries starting with "load"
history 7"set c" # like above, several words enclosed in quotes
hi !reread # execute last entry starting with "reread"
hist !"set xr" # like above, several words enclosed in quotes
hist !55 # reexecute the command at history entry 55

If

New syntax:
if (<condition>) { <commands>;
<commands>
<commands>
} else {
<commands>

}

Old syntax:

if (<condition>) <command-line> [; else if (<condition>) ...; else ...]

This version of gnuplot supports block-structured if/else statements. If the keyword if or else is immediately
followed by an opening "{", then conditional execution applies to all statements, possibly on multiple input
lines, until a matching "}" terminates the block. If commands may be nested.

The old single-line if/else syntax is still supported, but can not be mixed with the new block-structured
syntax. See if-old (p. 76).

If-old

Through gnuplot version 4.4, the scope of the if/else commands was limited to a single input line. Now a
multi-line clause may be enclosed in curly brackets. The old syntax is still honored but cannot be used inside
a bracketed clause.

If no opening "{" follows the if keyword, the command(s) in <command-line> will be executed if
<condition> is true (non-zero) or skipped if <condition> is false (zero). Either case will consume com-
mands on the input line until the end of the line or an occurrence of else. Note that use of ; to allow
multiple commands on the same line will not end the conditionalized commands.

Examples:
pi=3
if (pi!=acos(-1)) print "?Fixing pi!"; pi=acos(-1); print pi

gnuplot 5.0 7

will display:
?Fixing pi!
3.14159265358979

but
if (1==2) print "Never see this"; print "Or this either"

will not display anything.
else:
v=0
v=v+1l; if (v%2) print "2" ; else if (v/%43) print "3"; else print "fred"

(repeat the last line repeatedly!)

For

The plot, splot, set and unset commands may optionally contain an iteration for clause. This has the
effect of executing the basic command multiple times, each time re-evaluating any expressions that make use
of the iteration control variable. Iteration of arbitrary command sequences can be requested using the do
command. Two forms of iteration clause are currently supported:

for [intvar = start:end{:increment}]
for [stringvar in "A B C D"]

Examples:

plot for [filename in "A.dat B.dat C.dat"] filename using 1:2 with lines
plot for [basename in "A B C"] basename.".dat" using 1:2 with lines

set for [i = 1:10] style line i lc rgb "blue"

unset for [tag = 100:200] label tag

Nested iteration is supported:
set for [i=1:9] for [j=1:9] label i*10+j sprintf("%d",i*10+j) at i,j

See additional documentation for iteration (p. 35), do (p. 67).

Import

The import command associates a user-defined function name with a function exported by an external
shared object. This constitutes a plugin mechanism that extends the set of functions available in gnuplot.

Syntax:
import func(x[,y,z,...]) from "sharedobj[:symbol]"

Examples:
make the function myfun, exported by "mylib.so" or "mylib.dll"
available for plotting or numerical calculation in gnuplot
import myfun(x) from "mylib"
import myfun(x) from "mylib:myfun" # same as above

make the function theirfun, defined in "theirlib.so" or "theirlib.d1l1l"
available under a different name
import myfun(x,y,z) from "theirlib:theirfun"

The program extends the name given for the shared object by either ".so" or ".dll" depending on the
operating system, and searches for it first as a full path name and then as a path relative to the cur-
rent directory. The operating system itself may also search any directories in LD_LIBRARY_PATH or
DYLD_LIBRARY_PATH.

78 gnuplot 5.0

Load

The load command executes each line of the specified input file as if it had been typed in interactively.
Files created by the save command can later be loaded. Any text file containing valid commands can
be created and then executed by the load command. Files being loaded may themselves contain load or
call commands. See comments (p. 23) for information about comments in commands. To load with
arguments, see call (p. 65).

Syntax:

load "<input-file>"

The name of the input file must be enclosed in quotes.

The special filename "-" may be used to load commands from standard input. This allows a gnuplot
command file to accept some commands from standard input. Please see help for batch/interactive
(p- 21) for more details.

On some systems which support a popen function (Unix), the load file can be read from a pipe by starting
the file name with a ’<’.

Examples:

load ’work.gnu’
load "func.dat"
load "< loadfile_generator.sh"

The load command is performed implicitly on any file names given as arguments to gnuplot. These are
loaded in the order specified, and then gnuplot exits.

Lower

Syntax:
lower {plot_window_nb}

The lower command lowers (opposite to raise) plot window(s) associated with the interactive terminal of
your gnuplot session, i.e. pm, win, wxt or x11. It puts the plot window to bottom in the z-order windows
stack of the window manager of your desktop.

As x11 and wxt support multiple plot windows, then by default they lower these windows in descending
order of most recently created on top to the least recently created on bottom. If a plot number is supplied
as an optional parameter, only the associated plot window will be lowered if it exists.

The optional parameter is ignored for single plot-window terminals, i.e. pm and win.

Pause

The pause command displays any text associated with the command and then waits a specified amount of
time or until the carriage return is pressed. pause is especially useful in conjunction with load files.

Syntax:

pause <time> {"<string>"}
pause mouse {<endcondition>}{, <endcondition>} {"<string>"}

<time> may be any constant or expression. Choosing -1 will wait until a carriage return is hit, zero (0)
won’t pause at all, and a positive number will wait the specified number of seconds. The time is rounded to
an integer number of seconds if subsecond time resolution is not supported by the given platform. pause 0
is synonymous with print.

If the current terminal supports mousing, then pause mouse will terminate on either a mouse click or on
ctrl-C. For all other terminals, or if mousing is not active, pause mouse is equivalent to pause -1.

gnuplot 5.0 79

If one or more end conditions are given after pause mouse, then any one of the conditions will terminate
the pause. The possible end conditions are keypress, buttonl, button2, button3, close, and any. If
the pause terminates on a keypress, then the ascii value of the key pressed is returned in MOUSE_KEY.
The character itself is returned as a one character string in MOUSE_CHAR. Hotkeys (bind command) are
disabled if keypress is one of the end conditions. Zooming is disabled if button3 is one of the end conditions.

In all cases the coordinates of the mouse are returned in variables MOUSE_X, MOUSE_Y, MOUSE_X2,
MOUSE_Y2. See mouse variables (p. 40).

Note: Since pause communicates with the operating system rather than the graphics, it may behave differ-
ently with different device drivers (depending upon how text and graphics are mixed).

Examples:
pause -1 # Wait until a carriage return is hit
pause 3 # Wait three seconds

pause -1 "Hit return to continue"

pause 10 "Isn’t this pretty? It’s a cubic spline."

pause mouse "Click any mouse button on selected data point"

pause mouse keypress "Type a letter from A-F in the active window"
pause mouse buttonl,keypress

pause mouse any "Any key or button will terminate"

The variant "pause mouse key" will resume after any keypress in the active plot window. If you want to
wait for a particular key to be pressed, you can use a reread loop such as:

print "I will resume after you hit the Tab key in the plot window"
load "wait_for_tab"

File "wait_for_tab" contains the lines

pause mouse key
if (MOUSE_KEY != 9) reread

Plot

plot is the primary command for drawing plots with gnuplot. It offers many different graphical represen-
tations for functions and data. plot is used to draw 2D functions and data. splot draws 2D projections of
3D surfaces and data.

Syntax:
plot {<ranges>} <plot-element> {, <plot-element>, <plot-element>}

Each plot element consists of a definition, a function, or a data source together with optional properties or
modifiers:

plot-element:
{<iteration>}
<definition> | {sampling-range} <function> | <data source>
{axes <axes>} {<title-spec>}
{with <style>}

The graphical representation of each plot element is determined by the keyword with, e.g. with lines or
with boxplot. See plotting styles (p. 46).

The data to be plotted is either generated by a function (two functions if in parametric mode), read from
a data file, or read from a named data block that was defined previously. Multiple datafiles, data blocks,
and/or functions may be plotted in a single plot command separated by commas. See data (p. 84), inline
data (p. 87), functions (p. 95).

A plot-element that contains the definition of a function or variable does not create any visible output, see
third example below.

Examples:

80 gnuplot 5.0

plot sin(x)
plot sin(x), cos(x)
plot £f(x) = sin(x*a), a = .2, f(x), a = .4, f(x)
plot "datafile.1l" with lines, "datafile.2" with points
plot [t=1:10] [-pi:pi*2] tan(t), \
"data.1l" using (tan($2)):($3/$4) smooth csplines \
axes x1y2 notitle with lines 5
plot for [datafile in "spinach.dat broccoli.dat"] datafile

See also show plot (p. 146).

Axes

There are four possible sets of axes available; the keyword <axes> is used to select the axes for which a
particular line should be scaled. x1y1 refers to the axes on the bottom and left; x2y2 to those on the top
and right; x1y2 to those on the bottom and right; and x2y1 to those on the top and left. Ranges specified
on the plot command apply only to the first set of axes (bottom left).

Binary

BINARY DATA FILES:

It is necessary to provide the keyword binary after the filename. Adequate details of the file format must
be given on the command line or extracted from the file itself for a supported binary filetype. In particular,
there are two structures for binary files, binary matrix format and binary general format.

The binary matrix format contains a two dimensional array of 32 bit IEEE float values plus an additional
column and row of coordinate values. In the using specifier of a plot command, column 1 refers to the
matrix row coordinate, column 2 refers to the matrix column coordinate, and column 3 refers to the value
stored in the array at those coordinates.

The binary general format contains an arbitrary number of columns for which information must be specified
at the command line. For example, array, record, format and using can indicate the size, format and
dimension of data. There are a variety of useful commands for skipping file headers and changing endianess.
There are a set of commands for positioning and translating data since often coordinates are not part of the
file when uniform sampling is inherent in the data. Unlike reading from a text or matrix binary file, general
binary does not treat the generated columns as 1, 2 or 3 in the using list. Instead column 1 refers to column
1 of the file, or as specified in the format list.

There are global default settings for the various binary options which may be set using the same syntax as the
options when used as part of the (s)plot <filename> binary ... command. This syntax is set datafile
binary The general rule is that common command-line specified parameters override file-extracted
parameters which override default parameters.

Binary matrix is the default binary format when no keywords specific to binary general are given, i.e.,
array, record, format, filetype.

MR

General binary data can be entered at the command line via the special file name ’-’. However, this is
intended for use through a pipe where programs can exchange binary data, not for keyboards. There is
no "end of record" character for binary data. Gnuplot continues reading from a pipe until it has read the
number of points declared in the array qualifier. See binary matrix (p. 183) or binary general (p. 81)
for more details.

The index keyword is not supported, since the file format allows only one surface per file. The every and
using filters are supported. using operates as if the data were read in the above triplet form.

Binary File Splot Demo.

http://www.gnuplot.info/demo/binary.html

gnuplot 5.0 81

General

The binary keyword appearing alone indicates a binary data file that contains both coordinate information
describing a non-uniform grid and the value of each grid point (see binary matrix (p. 183)). Binary data
in any other format requires additional keywords to describe the layout of the data. Unfortunately the syntax
of these required additional keywords is convoluted. Nevertheless the general binary mode is particularly
useful for application programs sending large amounts of data to gnuplot.

Syntax:

plot ’<file_name>’ {binary <binary list>} ...
splot ’<file_name>’ {binary <binary list>} ...

General binary format is activated by keywords in <binary list> pertaining to information about file struc-
ture, i.e., array, record, format or filetype. Otherwise, non-uniform matrix binary format is assumed.
(See binary matrix (p. 183) for more details.)

NB: In previous versions of gnuplot there have been some differences between the interpretation of binary
data keywords by plot and splot. Where the meanings differ, one or both may change in a future gnuplot
version.

Gnuplot knows how to read a few standard binary file types that are fully self-describing, e.g. PNG images.
Type show datafile binary at the command line for a list. Apart from these, you can think of binary data
files as conceptually the same as text data. Each point has columns of information which are selected via the
using specification. If no format string is specified, gnuplot will read in a number of binary values equal
to the largest column given in the <using list>. For example, using 1:3 will result in three columns being
read, of which the second will be ignored. Certain plot types have an associated default using specification.
For example, with image has a default of using 1, while with rgbimage has a default of using 1:2:3.

Array

Describes the sampling array dimensions associated with the binary file. The coordinates will be generated
by gnuplot. A number must be specified for each dimension of the array. For example, array=(10,20)
means the underlying sampling structure is two-dimensional with 10 points along the first (x) dimension and
20 points along the second (y) dimension. A negative number indicates that data should be read until the
end of file. If there is only one dimension, the parentheses may be omitted. A colon can be used to separate
the dimensions for multiple records. For example, array=25:35 indicates there are two one-dimensional
records in the file.

Note: Gnuplot version 4.2 used the syntax array=128x128 rather than
array=(128,128). The older syntax is now deprecated.

Record

This keyword serves the same function as array and has the same syntax. However, record causes gnuplot
to not generate coordinate information. This is for the case where such information may be included in one
of the columns of the binary data file.

Skip
This keyword allows you to skip sections of a binary file. For instance, if the file contains a 1024 byte header

before the start of the data region you would probably want to use

plot ’<file_name>’ binary skip=1024 ...

If there are multiple records in the file, you may specify a leading offset for each. For example, to skip 512
bytes before the 1st record and 256 bytes before the second and third records

plot ’<file_name> binary record=356:356:356 skip=512:256:256 ...

82 gnuplot 5.0

Format

The default binary format is a float. For more flexibility, the format can include details about variable sizes.
For example, format="%uchar%int%float" associates an unsigned character with the first using column,
an int with the second column and a float with the third column. If the number of size specifications is less
than the greatest column number, the size is implicitly taken to be similar to the last given variable size.

Furthermore, similar to the using specification, the format can include discarded columns via the * character
and have implicit repetition via a numerical repeat-field. For example, format="%*2int%3float" causes
gnuplot to discard two ints before reading three floats. To list variable sizes, type show datafile binary
datasizes. There are a group of names that are machine dependent along with their sizes in bytes for the
particular compilation. There is also a group of names which attempt to be machine independent.

Endian

Often the endianess of binary data in the file does not agree with the endianess used by the platform on which
gnuplot is running. Several words can direct gnuplot how to arrange bytes. For example endian=little
means treat the binary file as having byte significance from least to greatest. The options are

little: 1least significant to greatest significance
big: greatest significance to least significance
default: assume file endianess is the same as compiler
swap (swab): Interchange the significance. (If things
don’t look right, try this.)

Gnuplot can support "middle" ("pdp") endian if it is compiled with that option.

Filetype

For some standard binary file formats gnuplot can extract all the necessary information from the file in
question. As an example, "format=edf" will read ESRF Header File format files. For a list of the currently
supported file formats, type show datafile binary filetypes.

There is a special file type called auto for which gnuplot will check if the binary file’s extension is a quasi-
standard extension for a supported format.

Command line keywords may be used to override settings extracted from the file. The settings from the file
override any defaults. See set datafile binary (p. 117).

Avs avs is one of the automatically recognized binary file types for images. AVS is an extremely simple
format, suitable mostly for streaming between applications. It consists of 2 longs (xwidth, ywidth) followed
by a stream of pixels, each with four bytes of information alpha/red/green/blue.

Edf edf is one of the automatically recognized binary file types for images. EDF stands for ESRF Data
Format, and it supports both edf and ehf formats (the latter means ESRF Header Format). More information
on specifications can be found at

http://www.edfplus.info/specs

Png If gnuplot was configured to use the libgd library for png/gif/jpeg output, then it can also be used to
read these same image types as binary files. You can use an explicit command

plot ’file.png’ binary filetype=png

Or the file type will be recognized automatically from the extension if you have previously requested

set datafile binary filetype=auto

gnuplot 5.0 83

Keywords

The following keywords apply only when generating coordinates from binary data files. That is, the control
mapping the individual elements of a binary array, matrix, or image to specific x/y/z positions.

Scan A great deal of confusion can arise concerning the relationship between how gnuplot scans a binary file
and the dimensions seen on the plot. To lessen the confusion, conceptually think of gnuplot always scanning
the binary file point/line/plane or fast/medium/slow. Then this keyword is used to tell gnuplot how to map
this scanning convention to the Cartesian convention shown in plots, i.e., x/y/z. The qualifier for scan is a
two or three letter code representing where point is assigned (first letter), line is assigned (second letter), and
plane is assigned (third letter). For example, scan=yx means the fastest, point-by-point, increment should
be mapped along the Cartesian y dimension and the middle, line-by-line, increment should be mapped along
the x dimension.

When the plotting mode is plot, the qualifier code can include the two letters x and y. For splot, it can
include the three letters x, y and z.

There is nothing restricting the inherent mapping from point/line/plane to apply only to Cartesian coordi-
nates. For this reason there are cylindrical coordinate synonyms for the qualifier codes where t (theta), r
and z are analogous to the x, y and z of Cartesian coordinates.

Transpose Shorthand notation for scan=yx or scan=yxz.

Dx, dy, dz When gnuplot generates coordinates, it uses the spacing described by these keywords. For
example dx=10 dy=20 would mean space samples along the x dimension by 10 and space samples along
the y dimension by 20. dy cannot appear if dx does not appear. Similarly, dz cannot appear if dy does
not appear. If the underlying dimensions are greater than the keywords specified, the spacing of the highest
dimension given is extended to the other dimensions. For example, if an image is being read from a file and
only dx=3.5 is given gnuplot uses a delta x and delta y of 3.5.

The following keywords also apply only when generating coordinates. However they may also be used with
matrix binary files.

Flipx, flipy, flipz Sometimes the scanning directions in a binary datafile are not consistent with that
assumed by gnuplot. These keywords can flip the scanning direction along dimensions x, y, z.

Origin When gnuplot generates coordinates based upon transposition and flip, it attempts to always
position the lower left point in the array at the origin, i.e., the data lies in the first quadrant of a Cartesian
system after transpose and flip.

To position the array somewhere else on the graph, the origin keyword directs gnuplot to position the lower
left point of the array at a point specified by a tuple. The tuple should be a double for plot and a triple for
splot. For example, origin=(100,100):(100,200) is for two records in the file and intended for plotting
in two dimensions. A second example, origin=(0,0,3.5), is for plotting in three dimensions.

Center Similar to origin, this keyword will position the array such that its center lies at the point given
by the tuple. For example, center=(0,0). Center does not apply when the size of the array is Inf.

Rotate The transpose and flip commands provide some flexibility in generating and orienting coordinates.
However, for full degrees of freedom, it is possible to apply a rotational vector described by a rotational
angle in two dimensions.

The rotate keyword applies to the two-dimensional plane, whether it be plot or splot. The rotation is done
with respect to the positive angle of the Cartesian plane.

The angle can be expressed in radians, radians as a multiple of pi, or degrees. For example, rotate=1.5708,
rotate=0.5pi and rotate=90deg are equivalent.

84 gnuplot 5.0

If origin is specified, the rotation is done about the lower left sample point before translation. Otherwise,
the rotation is done about the array center.

Perpendicular For splot, the concept of a rotational vector is implemented by a triple representing the
vector to be oriented normal to the two-dimensional x-y plane. Naturally, the default is (0,0,1). Thus
specifying both rotate and perpendicular together can orient data myriad ways in three-space.

The two-dimensional rotation is done first, followed by the three-dimensional rotation. That is, if R’ is the
rotational 2 x 2 matrix described by an angle, and P is the 3 x 3 matrix projecting (0,0,1) to (xp,yp,zp),
let R be constructed from R’ at the upper left sub-matrix, 1 at element 3,3 and zeros elsewhere. Then the
matrix formula for translating data is v’ = P R v, where v is the 3 x 1 vector of data extracted from the
data file. In cases where the data of the file is inherently not three-dimensional, logical rules are used to
place the data in three-space. (E.g., usually setting the z-dimension value to zero and placing 2D data in
the x-y plane.)

Data

Discrete data contained in a file can be displayed by specifying the name of the data file (enclosed in single
or double quotes) on the plot command line.

Syntax:

plot ’<file_name>’ {binary <binary list>}
{{nonuniform} matrix}
{index <index list> | index "<name>"}
{every <every list>}
{skip <number-of-lines>}
{using <using list>}
{smooth <option>}
{volatile} {noautoscale}

The modifiers binary, index, every, skip, using, and smooth are discussed separately. In brief, binary
allows data entry from a binary file, index selects which data sets in a multi-data-set file are to be plotted,
every specifies which points within a single data set are to be plotted, using determines how the columns
within a single record are to be interpreted, and smooth allows for simple interpolation and approximation.
splot has a similar syntax, but does not support the smooth option.

The noautoscale keyword means that the points making up this plot will be ignored when automatically
determining axis range limits.

TEXT DATA FILES:

Data files should contain at least one data point per record (using can select one data point from the record).
Records beginning with # (and also with ! on VMS) will be treated as comments and ignored. Each data
point represents an (x,y) pair. For plots with error bars or error bars with lines (see errorbars (p. 94)
or errorlines (p. 95)), each data point is (x,y,ydelta), (x,y,ylow,yhigh), (x,y,xdelta), (x,y,xlow,xhigh), or
(x,y,xlow,xhigh,ylow,yhigh).

In all cases, the numbers of each record of a data file must be separated by white space (one or more blanks
or tabs) unless a format specifier is provided by the using option. This white space divides each record
into columns. However, whitespace inside a pair of double quotes is ignored when counting columns, so the
following datafile line has three columns:

1.0 "second column" 3.0

Data may be written in exponential format with the exponent preceded by the letter e or E. The fortran
exponential specifiers d, D, q, and Q may also be used if the command set datafile fortran is in effect.

Only one column (the y value) need be provided. If x is omitted, gnuplot provides integer values starting
at 0.

In datafiles, blank records (records with no characters other than blanks and a newline and/or carriage
return) are significant.

gnuplot 5.0 85

Single blank records designate discontinuities in a plot; no line will join points separated by a blank records
(if they are plotted with a line style).

Two blank records in a row indicate a break between separate data sets. See index (p. 86).

If autoscaling has been enabled (set autoscale), the axes are automatically extended to include all data-
points, with a whole number of tic marks if tics are being drawn. This has two consequences: i) For splot,
the corner of the surface may not coincide with the corner of the base. In this case, no vertical line is drawn.
ii) When plotting data with the same x range on a dual-axis graph, the x coordinates may not coincide if
the x2tics are not being drawn. This is because the x axis has been autoextended to a whole number of tics,
but the x2 axis has not. The following example illustrates the problem:

reset; plot ’-’, ’-’ axes x2yl
11

19 19

e

11

19 19

e

To avoid this, you can use the fixmin/fixmax feature of the set autoscale command, which turns off the
automatic extension of the axis range up to the next tic mark.

Label coordinates and text can also be read from a data file (see labels (p. 58)).

Every

The every keyword allows a periodic sampling of a data set to be plotted.

In the discussion a "point" is a datum defined by a single record in the file; "block" here will mean the same
thing as "datablock" (see glossary (p. 34)).

Syntax:
plot ’file’ every {<point_incr>}
{:{<block_incr>}
{:{<start_point>}
{:{<start_block>}
{:{<end_point>}
{:<end_block>}}}}}

The data points to be plotted are selected according to a loop from <start_point> to <end_point> with
increment <point_incr> and the blocks according to a loop from <start_block> to <end_block> with
increment <block_incr>.

The first datum in each block is numbered ’0’, as is the first block in the file.
Note that records containing unplottable information are counted.

Any of the numbers can be omitted; the increments default to unity, the start values to the first point or
block, and the end values to the last point or block. ’:” at the end of the every option is not permitted. If
every is not specified, all points in all lines are plotted.

Examples:
every :::3::3 # selects just the fourth block (’0’ is first)
every :::::9 # selects the first 10 blocks
every 2:2 # selects every other point in every other block
every ::5::15 # selects points 5 through 15 in each block

See

simple plot demos (simple.dem)

Non-parametric splot demos

http://www.gnuplot.info/demo/simple.html
http://www.gnuplot.info/demo/surface1.html

86 gnuplot 5.0

and

3

Parametric splot demos

Example datafile

This example plots the data in the file "population.dat" and a theoretical curve:
pop(x) = 103*exp((1965-x)/10)
set xrange [1960:1990]
plot ’population.dat’, pop(x)

The file "population.dat" might contain:

Gnu population in Antarctica since 1965

1965 103
1970 55
19756 34
1980 24
1985 10

Binary examples:

Selects two float values (second one implicit) with a float value
discarded between them for an indefinite length of 1D data.
plot ’<file_name>’ binary format="Yfloat)*float" using 1:2 with lines

The data file header contains all details necessary for creating
coordinates from an EDF file.

plot ’<file_name>’ binary filetype=edf with image

plot ’<file_name>.edf’ binary filetype=auto with image

Selects three unsigned characters for components of a raw RGB image
and flips the y-dimension so that typical image orientation (start

at top left corner) translates to the Cartesian plane. Pixel

spacing is given and there are two images in the file. One of them
is translated via origin.

plot ’<file_name>’ binary array=(512,1024):(1024,512) format=’%uchar’ \
dx=2:1 dy=1:2 origin=(0,0):(1024,1024) flipy u 1:2:3 w rgbimage

H B H H H

Four separate records in which the coordinates are part of the
data file. The file was created with a endianess different from
the system on which gnuplot is running.

splot ’<file_name>’ binary record=30:30:29:26 endian=swap u 1:2:3

Same input file, but this time we skip the 1st and 3rd records
splot ’<file_name>’ binary record=30:26 skip=360:348 endian=swap u 1:2:3

See also binary matrix (p. 183).

Index

The index keyword allows you to select specific data sets in a multi-data-set file for plotting.
Syntax:
plot ’file’ index { <m>{:<n>{:<p>}} | "<name>" }

http://www.gnuplot.info/demo/surface2.html

gnuplot 5.0 87

Data sets are separated by pairs of blank records. index <m> selects only set <m>; index <m>:<n>
selects sets in the range <m> to <n>; and index <m>:<n>:<p> selects indices <m>, <m>+<p>,
<m>+2<p>, etc., but stopping at <n>. Following C indexing, the index 0 is assigned to the first data set
in the file. Specifying too large an index results in an error message. If <p> is specified but <n> is left
blank then every <p>-th dataset is read until the end of the file. If index is not specified, the entire file is
plotted as a single data set.

Example:
plot ’file’ index 4:5

For each point in the file, the index value of the data set it appears in is available via the pseudo-column
column(-2). This leads to an alternative way of distinguishing individual data sets within a file as shown
below. This is more awkward than the index command if all you are doing is selecting one data set for
plotting, but is very useful if you want to assign different properties to each data set. See pseudocolumns
(p- 93), Ic variable (p. 37).

Example:
plot ’file’ using 1:(column(-2)==4 7 $2 : NaN) # very awkward
plot ’file’ using 1:2:(column(-2)) linecolor variable # very useful!

index ’<name>’ selects the data set with name '<name>’. Names are assigned to data sets in comment
lines. The comment character and leading white space are removed from the comment line. If the resulting
line starts with <name>, the following data set is now named <name> and can be selected.

Example:
plot ’file’ index ’Population’

Please note that every comment that starts with <name> will name the following data set. To avoid
problems it may be useful to choose a naming scheme like '== Population ==’ or ’[Population]’.

Inline data

There are two mechanisms for embedding data into a stream of gnuplot commands. If the special filename
-7 appears in a plot command, then the lines immediately following the plot command are interpreted as
inline data. See special-filenames (p. 89). Data provided in this way can only be used once, by the plot
command it follows.

The second mechanism defines a named data block as a here-document. The named data is persistent and
may be referred to by more than one plot command. Example:

$Mydata << EOD

11 22 33 first line of data

44 55 66 second line of data

comments work just as in a data file

77 88 99

EOD

stats $Mydata using 1:3

plot $Mydata using 1:3 with points, $Mydata using 1:2 with impulses

Data block names must begin with a $ character, which distinguishes them from other types of persistent
variables. The end-of-data delimiter (EOD in the example) may be any sequence of alphanumeric characters.

The storage associated with named data blocks can be released using undefine command. undefine $*
frees all named data blocks at once.

Skip

The skip keyword tells the program to skip lines at the start of a text (i.e. not binary) data file. The lines
that are skipped do not count toward the line count used in processing the every keyword. Note that skip
N skips lines only at the start of the file, whereas every ::IN skips lines at the start of every data block in
the file. See also binary skip (p. 81) for a similar option that applies to binary data files.

http://www.gnuplot.info/demo/multimsh.html

88 gnuplot 5.0

Smooth

gnuplot includes a few general-purpose routines for interpolation and approximation of data; these are
grouped under the smooth option. More sophisticated data processing may be performed by preprocessing
the data externally or by using fit with an appropriate model.

Syntax:

smooth {unique | frequency | cumulative | cnormal | kdensity {bandwidth}
| csplines | acsplines | mcsplines | bezier | sbezier
| unwrap}

unique, frequency, cumulative and cnormal plot the data after making them monotonic. unwrap
manipulates the data to avoid jumps of more than pi by adding or subtracting multiples of 2*pi. Each of
the other routines uses the data to determine the coefficients of a continuous curve between the endpoints
of the data. This curve is then plotted in the same manner as a function, that is, by finding its value at
uniform intervals along the abscissa (see set samples (p. 157)) and connecting these points with straight
line segments (if a line style is chosen).

If autoscale is in effect, the ranges will be computed such that the plotted curve lies within the borders of
the graph.

If autoscale is not in effect, and the smooth option is either acspline or cspline, the sampling of the
generated curve is done across the intersection of the x range covered by the input data and the fixed
abscissa range as defined by set xrange.

If too few points are available to allow the selected option to be applied, an error message is produced. The
minimum number is one for unique and frequency, four for acsplines, and three for the others.

The smooth options have no effect on function plots.

Acsplines The acsplines option approximates the data with a "natural smoothing spline". After the data
are made monotonic in x (see smooth unique (p. 89)), a curve is piecewise constructed from segments
of cubic polynomials whose coefficients are found by fitting to the individual data points weighted by the
value, if any, given in the third column of the using spec. The default is equivalent to

plot ’data-file’ using 1:2:(1.0) smooth acsplines

Qualitatively, the absolute magnitude of the weights determines the number of segments used to construct
the curve. If the weights are large, the effect of each datum is large and the curve approaches that produced
by connecting consecutive points with natural cubic splines. If the weights are small, the curve is composed
of fewer segments and thus is smoother; the limiting case is the single segment produced by a weighted linear
least squares fit to all the data. The smoothing weight can be expressed in terms of errors as a statistical
weight for a point divided by a "smoothing factor" for the curve so that (standard) errors in the file can be
used as smoothing weights.

Example:

sw(x,8)=1/(x*x*S)
plot ’data_file’ using 1:2:(sw($3,100)) smooth acsplines

Bezier The bezier option approximates the data with a Bezier curve of degree n (the number of data
points) that connects the endpoints.

Csplines The csplines option connects consecutive points by natural cubic splines after rendering the
data monotonic (see smooth unique (p. 89)).

Mecsplines The mecsplines option connects consecutive points by cubic splines constrained such that the
smoothed function preserves the monotonicity and convexity of the original data points. FN Fritsch &
RE Carlson (1980) "Monotone Piecewise Cubic Interpolation", STAM Journal on Numerical Analysis 17:
238-246.

gnuplot 5.0 89

Sbezier The sbezier option first renders the data monotonic (unique) and then applies the bezier
algorithm.

Unique The unique option makes the data monotonic in x; points with the same x-value are replaced by
a single point having the average y-value. The resulting points are then connected by straight line segments.

Unwrap The unwrap option modifies the input data so that any two successive points will not differ by
more than pi; a point whose y value is outside this range will be incremented or decremented by multiples
of 2pi until it falls within pi of the previous point. This operation is useful for making wrapped phase
measurements continuous over time.

Frequency The frequency option makes the data monotonic in x; points with the same x-value are
replaced by a single point having the summed y-values. To plot a histogram of the number of data values in
equal size bins, set the y-value to 1.0 so that the sum is a count of occurances in that bin: Example:

binwidth = <something> # set width of x values in each bin
bin(val) = binwidth * floor(val/binwidth)
plot "datafile" using (bin(column(1))):(1.0) smooth frequency

See also

smooth.dem

Cumulative The cumulative option makes the data monotonic in x; points with the same x-value are
replaced by a single point containing the cumulative sum of y-values of all data points with lower x-values
(i.e. to the left of the current data point). This can be used to obtain a cumulative distribution function
from data. See also

smooth.dem

Cnormal The cnormal option makes the data monotonic in x and normalises the y-values onto the range
[0:1]. Points with the same x-value are replaced by a single point containing the cumulative sum of y-values
of all data points with lower x-values (i.e. to the left of the current data point) divided by the total sum
of all y-values. This can be used to obtain a normalised cumulative distribution function from data (useful
when comparing sets of samples with differing numbers of members). See also

smooth.dem

Kdensity The kdensity option is a way to plot a kernel density estimate (which is a smooth histogram)
for a random collection of points, using Gaussian kernels. A Gaussian is placed at the location of each point
in the first column and the sum of all these Gaussians is plotted as a function. The value in the second column
is taken as weight of the Gaussian. To obtain a normalized histogram, this should be 1/number-of-points.
By default gnuplot calculates and uses the bandwidth which would be optimal for normally distributed data.

default_bandwidth = sigma * (4/3N) *x (0.2)

This will usually be a very conservative, i.e. broad bandwidth. Alternatively, you can provide an explicit
bandwidth.

plot $DATA smooth kdensity bandwidth <value> with boxes

The bandwidth used in the previous plot is stored in variable GPVAL_KDENSITY_BANDWIDTH.

Special-filenames

There are a few filenames that have a special meaning: ’’, -, '+’ and '++’.

The empty filename ’’ tells gnuplot to re-use the previous input file in the same plot command. So to plot
two columns from the same input file:

http://www.gnuplot.info/demo/smooth.html
http://www.gnuplot.info/demo/smooth.html
http://www.gnuplot.info/demo/smooth.html

90 gnuplot 5.0

plot ’filename’ using 1:2, ’’ using 1:3

The filename can also be reused over subsequent plot commands, however save then only records the name
in a comment.

The special filenames '+’ and '++’ are a mechanism to allow the full range of using specifiers and plot styles
with inline functions. Normally a function plot can only have a single y (or z) value associated with each
sampled point. The pseudo-file '+’ treats the sampled points as column 1, and allows additional column
values to be specified via a using specification, just as for a true input file. By default samples are generated
over the full range as set by set xrange, with the sampling controlled via set samples.

plot ’+’ using ($1):(sin($1)):(sin($1)**2) with filledcurves

An independent sampling range can be provided immediately before the '+’. Like in normal function plots,
a name can be assigned to the independent variable. If given for the first plot element, the sampling range
specifier has to be preceeded by the sample keyword (see also plot sampling (p. 97)).

plot sample [beta=0:2*pi] ’+’ using (sin(beta)):(cos(beta)) with lines

Similarly the pseudo-file ++’ returns 2 columns of data forming a regular grid of [x,y] coordinates with the
number of points along x controlled by set samples and the number of points along y controlled by set
isosamples. In parametric mode the samples are along u and v rather than along x and y. You must set
xrange and yrange (or urange and vrange) before plotting '++’. Examples:

splot ’++’ using 1:2:(sin($1)*sin($2)) with pm3d
plot ’++’ using 1:2:(sin($1)*sin($2)) with image

The special filename ’-’ specifies that the data are inline; i.e., they follow the command. Only the data
follow the command; plot options like filters, titles, and line styles remain on the plot command line. This
is similar to << in unix shell script, and $DECK in VMS DCL. The data are entered as though they are
being read from a file, one data point per record. The letter "e" at the start of the first column terminates
data entry. The using option can be applied to these data — using it to filter them through a function
might make sense, but selecting columns probably doesn’t!

’-? is intended for situations where it is useful to have data and commands together, e.g., when gnuplot is
run as a sub-process of some front-end application. Some of the demos, for example, might use this feature.
While plot options such as index and every are recognized, their use forces you to enter data that won’t
be used. For example, while

plot ’-’ index 0, ’-’ index 1
2
4
6

does indeed work,

plot)_)’)
2
4

gnuplot 5.0 91

10
12
14

is a lot easier to type.

If you use ’-> with replot, you may need to enter the data more than once. See replot (p. 102), refresh
(p- 102).

A blank filename (’’) specifies that the previous filename should be reused. This can be useful with things
like

plot ’a/very/long/filename’ using 1:2, ’’ using 1:3, ’’ using 1:4

(If you use both ’-* and *’ on the same plot command, you’ll need to have two sets of inline data, as in the
example above.)

On systems with a popen function, the datafile can be piped through a shell command by starting the file
name with a '<’. For example,

pop(x) = 103xexp(-x/10)
plot "< awk ’{print $1-1965, $2}’ population.dat", pop(x)

would plot the same information as the first population example but with years since 1965 as the x axis. If
you want to execute this example, you have to delete all comments from the data file above or substitute
the following command for the first part of the command above (the part up to the comma):

plot "< awk ’$0 !~ /"#/ {print $1-1965, $2}’ population.dat"

While this approach is most flexible, it is possible to achieve simple filtering with the using keyword.

On systems with an fdopen() function, data can be read from an arbitrary file descriptor attached to either
a file or pipe. To read from file descriptor n use *<&n’. This allows you to easily pipe in several data files
in a single call from a POSIX shell:

$ gnuplot -p -e "plot ’<&3’, ’<&4’" 3<data-3 4<data-4
$./gnuplot 5< <(myprogram -with -options)
gnuplot> plot ’<&5’

Thru

The thru keyword is deprecated.
Old syntax:
plot ’file’ thru f(x)

Current syntax:

plot ’file’ using 1:(£($2))

Using
The most common datafile modifier is using. It tells the program which columns of data in the input file
are to be plotted.
Syntax:
plot ’file’ using <entry> {:<entry> {:<entry> ...}} {’format’}

92 gnuplot 5.0

If a format is specified, it is used to read in each datafile record using the C library ’scanf’ function. Otherwise
the record is interpreted as consisting of columns (fields) of data separated by whitespace (spaces and/or
tabs), but see datafile separator (p. 116).

Each <entry> may be a simple column number that selects the value from one field of the input file, a string
that matches a column label in the first line of a data set, an expression enclosed in parentheses, or a special
function not enclosed in parentheses such as xticlabels(2).

If the entry is an expression in parentheses, then the function column(N) may be used to indicate the value
in column N. That is, column(1) refers to the first item read, column(2) to the second, and so on. The
special symbols $1, $2, ... are shorthand for column(1), column(2) ... The function valid(N) tests whether
the value in the Nth column is a valid number. If each column of data in the input file contains a label in
the first row rather than a data value, this label can be used to identify the column on input and/or in the
plot legend. The column() function can be used to select an input column by label rather than by column
number. For example, if the data file contains

Height Weight Age

vall vall vall

then the following plot commands are all equivalent
plot ’datafile’ using 3:1, ’’ using 3:2
plot ’datafile’ using (column("Age")):(column(1)), \
> using (column("Age")):(column(2))
plot ’datafile’ using "Age":"Height", ’’ using "Age":"Weight"

The full string must match. Comparison is case-sensitive. To use the column labels in the plot legend, use
set key autotitle columnhead.

In addition to the actual columns 1...N in the input data file, gnuplot presents data from several "pseudo-
columns" that hold bookkeeping information. E.g. $0 or column(0) returns the sequence number of this
data record within a dataset. Please see pseudocolumns (p. 93).

An empty <entry> will default to its order in the list of entries. For example, using ::4 is interpreted as
using 1:2:4.

If the using list has only a single entry, that <entry> will be used for y and the data point number (pseudo-
column $0) is used for x; for example, "plot ’file’ using 1" is identical to "plot ’file’ using 0:1". If the

using list has two entries, these will be used for x and y. See set style (p. 158) and fit (p. 68) for details
about plotting styles that make use of data from additional columns of input.

‘scanf’ accepts several numerical specifications but gnuplot requires all inputs to be double-precision floating-
point variables, so "%If" is essentially the only permissible specifier. A format string given by the user must
contain at least one such input specifier, and no more than seven of them. ’scanf’ expects to see white space
— a blank, tab ("\t"), newline ("\n"), or formfeed ("\f") — between numbers; anything else in the input
stream must be explicitly skipped.

Note that the use of "\t", "\n", or "\f" requires use of double-quotes rather than single-quotes.

Using_examples This creates a plot of the sum of the 2nd and 3rd data against the first: The format string
specifies comma- rather than space-separated columns. The same result could be achieved by specifying set
datafile separator comma.

plot ’file’ using 1:($2+$3) ’>%1f,%1f,%1f’

In this example the data are read from the file "MyData" using a more complicated format:
plot ’MyData’ using "¥%*1£%1£%*20["\n]%1lf"

The meaning of this format is:

#*1f ignore a number

%1f read a double-precision number (x by default)
%*20["\n] ignore 20 non-newline characters

%1f read a double-precision number (y by default)

gnuplot 5.0 93

One trick is to use the ternary ?7: operator to filter data:

plot ’file’ using 1:($3>10 7 $2 : 1/0)

which plots the datum in column two against that in column one provided the datum in column three exceeds
ten. 1/0 is undefined; gnuplot quietly ignores undefined points, so unsuitable points are suppressed. Or
you can use the pre-defined variable NaN to achieve the same result.

In fact, you can use a constant expression for the column number, provided it doesn’t start with an opening
parenthesis; constructs like using 0+ (complicated expression) can be used. The crucial point is that
the expression is evaluated once if it doesn’t start with a left parenthesis, or once for each data point read
if it does.

If timeseries data are being used, the time can span multiple columns. The starting column should be
specified. Note that the spaces within the time must be included when calculating starting columns for
other data. E.g., if the first element on a line is a time with an embedded space, the y value should be
specified as column three.

It should be noted that plot ’file’, plot ’file’ using 1:2, and plot ’file’ using ($1):($2) can be subtly
different: 1) if file has some lines with one column and some with two, the first will invent x values when they
are missing, the second will quietly ignore the lines with one column, and the third will store an undefined
value for lines with one point (so that in a plot with lines, no line joins points across the bad point); 2) if
a line contains text at the first column, the first will abort the plot on an error, but the second and third
should quietly skip the garbage.

In fact, it is often possible to plot a file with lots of lines of garbage at the top simply by specifying
plot ’file’ using 1:2

However, if you want to leave text in your data files, it is safer to put the comment character (#) in the first
column of the text lines.

Pseudocolumns Expressions in the using clause of a plot statement can refer to additional bookkeeping
values in addition to the actual data values contained in the input file. These are contained in "pseudo-
columns".

column (0) The sequential order of each point within a data set.
The counter starts at O and is reset by two sequential blank
records. The shorthand form $0 is available.

column(-1) This counter starts at O and is reset by a single blank line.
This corresponds to the data line in array or grid data.

column(-2) The index number of the current data set within a file that
contains multiple data sets. See ‘index‘.

Xticlabels Axis tick labels can be generated via a string function, usually taking a data column as an
argument. The simplest form uses the data column itself as a string. That is, xticlabels(N) is shorthand for
xticlabels(stringcolumn(N)). This example uses the contents of column 3 as x-axis tick labels.

plot ’datafile’ using <xcol>:<ycol>:xticlabels(3) with <plotstyle>

Axis tick labels may be generated for any of the plot axes: x x2y y2 z. The ticlabels(<labelcol>) specifiers
must come after all of the data coordinate specifiers in the using portion of the command. For each data
point which has a valid set of X,Y[,Z] coordinates, the string value given to xticlabels() is added to the list
of xtic labels at the same X coordinate as the point it belongs to. xticlabels() may be shortened to xtic()
and so on.

Example:

splot "data" using 2:4:6:xtic(1):ytic(3):ztic(6)

In this example the x and y axis tic labels are taken from different columns than the x and y coordinate
values. The z axis tics, however, are generated from the z coordinate of the corresponding point.

Example:

94 gnuplot 5.0

plot "data" using 1:2:xtic($3 > 10. 7 "A" : "B")

This example shows the use of a string-valued function to generate x-axis tick labels. Each point in the data
file generates a tick mark on x labeled either "A" or "B" depending on the value in column 3.

X2ticlabels See plot using xticlabels (p. 93).
Yticlabels See plot using xticlabels (p. 93).
Y2ticlabels See plot using xticlabels (p. 93).
Zticlabels See plot using xticlabels (p. 93).

Volatile

The volatile keyword in a plot command indicates that the data previously read from the input stream or
file may not be available for re-reading. This tells the program to use refresh rather than replot commands
whenever possible. See refresh (p. 102).

Errorbars

Error bars are supported for 2D data file plots by reading one to four additional columns (or using entries);
these additional values are used in different ways by the various errorbar styles.

In the default situation, gnuplot expects to see three, four, or six numbers on each line of the data file —
either

(x, y, ydelta),

(%, y, ylow, yhigh),

(x, y, xdelta),

(x, y, xlow, xhigh),

(x, y, xdelta, ydelta), or

(x, y, xlow, xhigh, ylow, yhigh).

The x coordinate must be specified. The order of the numbers must be exactly as given above, though the
using qualifier can manipulate the order and provide values for missing columns. For example,

plot ’file’ with errorbars
plot ’file’ using 1:2:(sqrt($1)) with xerrorbars
plot ’file’ using 1:2:($1-$3):($1+$3):4:5 with xyerrorbars

The last example is for a file containing an unsupported combination of relative x and absolute y errors.
The using entry generates absolute x min and max from the relative error.

The y error bar is a vertical line plotted from (x, ylow) to (x, yhigh). If ydelta is specified instead of ylow
and yhigh, ylow = y - ydelta and yhigh = y + ydelta are derived. If there are only two numbers on the
record, yhigh and ylow are both set to y. The x error bar is a horizontal line computed in the same fashion.
To get lines plotted between the data points, plot the data file twice, once with errorbars and once with
lines (but remember to use the notitle option on one to avoid two entries in the key). Alternately, use the
errorlines command (see errorlines (p. 95)).

The error bars have crossbars at each end unless set bars is used (see set bars (p. 108) for details).
If autoscaling is on, the ranges will be adjusted to include the error bars.
See also

errorbar demos.

See plot using (p. 91), plot with (p. 99), and set style (p. 158) for more information.

http://www.gnuplot.info/demo/mgr.html

gnuplot 5.0 95

Errorlines

Lines with error bars are supported for 2D data file plots by reading one to four additional columns (or
using entries); these additional values are used in different ways by the various errorlines styles.

In the default situation, gnuplot expects to see three, four, or six numbers on each line of the data file —
either

(x, y, ydelta),

(x, y, ylow, yhigh),

(x, y, xdelta),

(x, y, xlow, xhigh),

(x, y, xdelta, ydelta), or

(x, y, xlow, xhigh, ylow, yhigh).

The x coordinate must be specified. The order of the numbers must be exactly as given above, though the
using qualifier can manipulate the order and provide values for missing columns. For example,

plot ’file’ with errorlines

plot ’file’ using 1:2:(sqrt($1)) with xerrorlines

plot ’file’ using 1:2:($1-$3):($1+$3):4:5 with xyerrorlines

The last example is for a file containing an unsupported combination of relative x and absolute y errors.
The using entry generates absolute x min and max from the relative error.

The y error bar is a vertical line plotted from (x, ylow) to (x, yhigh). If ydelta is specified instead of ylow
and yhigh, ylow = y - ydelta and yhigh = y + ydelta are derived. If there are only two numbers on the
record, yhigh and ylow are both set to y. The x error bar is a horizontal line computed in the same fashion.

The error bars have crossbars at each end unless set bars is used (see set bars (p. 108) for details).
If autoscaling is on, the ranges will be adjusted to include the error bars.

See plot using (p. 91), plot with (p. 99), and set style (p. 158) for more information.

Functions

Built-in or user-defined functions can be displayed by the plot and splot commands in addition to, or instead
of, data read from a file. The requested function is evaluated by sampling at regular intervals spanning the
independent axis range[s]. See set samples (p. 157) and set isosamples (p. 128). Example:
approx(ang) = ang - ang**3 / (3%2)
plot sin(x) title "sin(x)", approx(x) title "approximation"

To set a default plot style for functions, see set style function (p. 161). For information on built-in
functions, see expressions functions (p. 26). For information on defining your own functions, see user-
defined (p. 32).

Parametric

When in parametric mode (set parametric) mathematical expressions must be given in pairs for plot and
in triplets for splot.

Examples:
plot sin(t),t**2
splot cos(u)*cos(v),cos(u)*sin(v),sin(u)

Data files are plotted as before, except any preceding parametric function must be fully specified before a
data file is given as a plot. In other words, the x parametric function (sin(t) above) and the y parametric
function (t**2 above) must not be interrupted with any modifiers or data functions; doing so will generate
a syntax error stating that the parametric function is not fully specified.

Other modifiers, such as with and title, may be specified only after the parametric function has been
completed:

96 gnuplot 5.0

plot sin(t),t**2 title ’Parametric example’ with linespoints

See also

Parametric Mode Demos.

Ranges

This section describes only the optional axis ranges that may appear as the very first items in a plot
command. If present, these ranges override any range limits established by a previous set range statement.
For optional ranges elsewhere in a plot command that limit sampling of an individual plot component see
sampling (p. 97).
Syntax:

[{<dummy-var>=}{{<min>}:{<max>}1}]

[{{<min>}:{<max>}}]

The first form applies to the independent variable (xrange or trange, if in parametric mode). The second
form applies to dependent variables. <dummy-var> optionally establishes a new name for the independent
variable. (The default name may be changed with set dummy.)

In non-parametric mode, ranges must be given in the order
plot [<xrange>] [<yrange>] [<x