
Skill Pill: Shell scripting
How to bash the most out of your shell

Guido Klingbeil

Okinawa Institute of Science and Technology
guido.klingbeil@oist.jp

March 23, 2016

Guido Klingbeil (OIST) Skill Pill March 23, 2016 1 / 24

Overview

1 Introduction

2 Streams and pipes

3 Piping and redirecting

4 Basics of Shell scripts

5 Variables

6 Conditional statements

7 Loops

Guido Klingbeil (OIST) Skill Pill March 23, 2016 2 / 24

Get the material

All the material, slides, handout, examples, are on GitHub.
Clone the repository:

git clone git@github.com:risingape/bash_scripting.git

to the machine you are working on.

Guido Klingbeil (OIST) Skill Pill March 23, 2016 3 / 24

Motivation

Why shell scripting when we got GUIs for everything?
Is there? Compute π with your file manager.

seq -f ’4/%g’ 1 2 99999 | paste -sd -+ | bc -l

Gives 3.14157265358979523735.
Taken from: http://stackoverflow.com/questions/23524661/

how-can-i-calculate-pi-using-bash-command

Guido Klingbeil (OIST) Skill Pill March 23, 2016 4 / 24

http://stackoverflow.com/questions/23524661/how-can-i-calculate-pi-using-bash-command
http://stackoverflow.com/questions/23524661/how-can-i-calculate-pi-using-bash-command

Motivation

Why would we like to use a shell script?

to automate tasks such as:

software build process (make files),
submit jobs to a cluster,

to scale a task (apply the same command to 1000 files),

makes it easy to pass arguments to commands.

Guido Klingbeil (OIST) Skill Pill March 23, 2016 5 / 24

The shell and the UNIX philosophie

”This is the Unix philosophy: Write programs that do one thing and do it
well. Write programs to work together. Write programs to handle text
streams, because that is a universal interface.” [Doug McIlroy]

Mike Gancarz’s 9 rules:

Small is beautiful.

Make each program do one thing well.

Build a prototype as soon as possible.

Choose portability over efficiency.

Store data in flat text files.

Use software leverage to your advantage.

Use shell scripts to increase leverage and portability.

Avoid captive user interfaces.

Make every program a filter.

Guido Klingbeil (OIST) Skill Pill March 23, 2016 6 / 24

Standard streams: stdin, stdout, stderr

There are three standard streams or pre-connected communication
channels between a computer program and its environment:

standard input (stdin),

standard output (stdout),

standard error (stderr).

Shorter notation:

1 ’represents’ stdout and 2 stderr.

Guido Klingbeil (OIST) Skill Pill March 23, 2016 7 / 24

Redirections

> redirection of output

< redirect a file into a stream,

>> appending rdirection of output,

& denotes a file descriptor (streams are handled like files).

Examples:

stdout to a file: ls -l > ls-l.txt,

stderr to a file: grep da * 2> errors.txt,

stdout to stderr: grep da * 1>&2,

stderr to stdout: grep * 2>&1,

stdout and stderr to a file:
rm -f $(find / -name core) &> /dev/null,

a file to stdin and stdout to a file::
grep da < input.txt > output.txt.

Guido Klingbeil (OIST) Skill Pill March 23, 2016 8 / 24

File descriptors

Each open file gets assigned a file descriptor. You already know three of
them: stdin, stdout, and sdterr. For opening additional files, there
remain descriptors 3 to 9.
You can open a file for reading from it <, for writing to it >, or both <>.
To open and close a file we need the help of the exec command:

exec 3< test.txt to open the file test.txt and attach it to the
file descriptor 3,

exec 3>&- to close the file attached to file descriptor 3 again.

You are know able to move araound in your file:

read -n 4 < &3 reads 4 characters from file descriptor 3. The next
command using &3 starts at the 5-th character.

Guido Klingbeil (OIST) Skill Pill March 23, 2016 9 / 24

Redirections exercise

Commands we will use:

exec invokes a subprocess and replaces the current program in the
current process. We will only use it to open and close files,

read reads from a file. The option -n N reads N characters and
places the file descriptor behind the N-th character,

echo write to a file at the current position of the file descriptor
(Hint: echo always print a new line. The option -n suppresses this).

Try to:

Write the digits 1 to 0 to a file and replace the fifth digit with the decimal
point (find the solution in redirection.sh):
1234567890 -> 1234.67890

Guido Klingbeil (OIST) Skill Pill March 23, 2016 10 / 24

Pipes

Pipes | let you use the output of a program as the input of another one.
Pipes are a general purpose tool to chain commands, scripts, files, and
programs together by making the output of one program the input of the
next:

ls -l | grep .txt lists only all your text files.

Guido Klingbeil (OIST) Skill Pill March 23, 2016 11 / 24

What is a shell script?

A shell is a user interface to access services of an operating system’s. In
general, shells use either a command-line interface (CLI) or graphical user
interface (GUI).

For today, a shell is a command line interpreter.

Typical tasks done by shell scripts:

file manipulation, e.g. cat /dev/urandom > /dev/sda

program execution, e.g. rm -rf /

Don’t try these at home!

With the proper permissions cat /dev/urandom > /dev/sda writes
(pseudo) random data to your hard drive and rm -rf / deletes all your
files.

Guido Klingbeil (OIST) Skill Pill March 23, 2016 12 / 24

”Hello world”

this is a comment

The shebang , or hash bang , or ...

set the shell to BASH - Bourne Again Shell

#!/bin/bash

the command echo displays a line of text

echo "Hello world!"

Running the script

vi hello_world.sh type in the above lines and save it,

chmod +x hello_world.sh make the script executable (otherwise
you will get bash: ./hello_world.sh: Permission denied),

./hello_world.sh run the script.

Exercise: try it yourself!

Guido Klingbeil (OIST) Skill Pill March 23, 2016 13 / 24

Variables

There are no data types: A variable in bash can contain a number, a
character, or a string of characters.
There is no need to declare a variable, just assigning a value to its
reference will create it. The basic syntax is:

variable_name=value # no spaces around the

assignment operator

To access the value and not the name of a variable prefix it with $. To
execute a command and assign the output to a variable use
my_files=$(ls). To list all the files in the current directory:

my_files=$(ls)

echo $my_files

The syntax $((EXPRESSION)) evaluates the arithmetic expression
EXPRESSION. The output of the arithmetic expansion is guaranteed to be
one word or a digit.

Guido Klingbeil (OIST) Skill Pill March 23, 2016 14 / 24

Special variables

$0 the name of the Bash script,

$1 - $9 the first 9 arguments to the Bash script,

$# how many arguments were passed to the Bash script,

$@ all the arguments supplied to the Bash script,

$? the exit status of the most recently run process,

$$ the process ID of the current script,

$USER the username of the user running the script,

$HOSTNAME the hostname of the machine the script is running on,

$SECONDS the number of seconds since the script was started,

$RANDOM returns a random number each time is it referred to,

$LINENO returns the current line number in the Bash script.

Guido Klingbeil (OIST) Skill Pill March 23, 2016 15 / 24

Environment variables

There are already lots of global (available in all shells) variables defining
many aspects of the computing environment. For example:

CPU=x86_64

QT_IM_MODULE=ibus

JAVA_BINDIR =/usr/lib64/jvm/java/bin

XDG_SESSION_TYPE=x11

INPUTRC =/home/guido/. inputrc

PWD=/home/guido

XMODIFIERS=@im=ibus

JAVA_HOME =/usr/lib64/jvm/java

LANG=en_US.utf8

GDM_LANG=en_US.utf8

PYTHONSTARTUP =/etc/pythonstart

Guido Klingbeil (OIST) Skill Pill March 23, 2016 16 / 24

Variable declaration

Variable declaration allows to limit the what kind of values can be
assigned:

declare option variablename [=value]

declare -r readonly_variable =1

The option could be:

-r read only variable,

-i integer variable,

-a array variable,

-f for funtions,

-x declares and export to subsequent commands via the environment.

Try to:

Run the script ./variables.sh and modify it such that it is either giving
no or more error messages.

Guido Klingbeil (OIST) Skill Pill March 23, 2016 17 / 24

Floating point arithmetics

Bash is only able to deal with integers. However, we got everything in
place to teach it how to deal with floats.

To do this we have to enlist the help of the command line calculator bc.

We use echo to print a string with our arithmetic operation to stdout

and pipe it into bc. We take the value of the result and assign it to our
variable X:

X=$(echo "scale =10; $RANDOM / 32767.0" | bc)

Note: we need to give bc the desired precision by setting the scale

property.

Guido Klingbeil (OIST) Skill Pill March 23, 2016 18 / 24

Control structures - conditionals

The basic syntax for a conditional statement is:

if ["$1" = "cool"] # the condition to

be tested

then

echo "Cool Beans" # branch taken if the

condition is true

else

echo "Not Cool Beans" # branch taken if the

condition is false

fi

Further branches can be inserted by using the elif keyword.

Guido Klingbeil (OIST) Skill Pill March 23, 2016 19 / 24

Bash uses its own way for the conditional statements. Today, we will only
use numerical comparisons:

expr1 -eq expr2 returns true if the expressions are equal,

expr1 -ne expr2 returns true if the expressions are not equal,

expr1 -gt expr2 returns true if expr1 is greater than expr2,

expr1 -ge expr2 returns true if expr1 is greater than or equal to
expr2,

expr1 -lt expr2 returns true if expr1 is less than expr2,

expr1 -le expr2 returns true if expr1 is less than or equal to expr2.

A summary is given here
http://codewiki.wikidot.com/shell-script:if-else.

Guido Klingbeil (OIST) Skill Pill March 23, 2016 20 / 24

http://codewiki.wikidot.com/shell-script:if-else

Control structures - loops

There are for, while, and until loops.

The for loop is a little bit different from other programming languages
such as C. Like in Python, it let’s you iterate over a series of ’words’ within
a string:

for i in $(ls); do # declare a variable i to

take the different values

contained in $(ls)

echo item: $i # do something for each

value $i of i

done # we are done with the loop

and the variable i may be

re -used.

Guido Klingbeil (OIST) Skill Pill March 23, 2016 21 / 24

Control structures - loops

Of course, you can also iterate C-style:

for i in ‘seq 1 10‘; do

echo $i

done

There are two ”conditional” loops: the while loop and the until loop:

COUNTER =0

while [$COUNTER -lt 10]; do

echo The counter is $COUNTER

let COUNTER=COUNTER +1

done

COUNTER =20

until [$COUNTER -lt 10]; do

echo COUNTER $COUNTER

let COUNTER -=1

done

Guido Klingbeil (OIST) Skill Pill March 23, 2016 22 / 24

Putting it all together

Try to:

Write a simple script computing an estimation of π using a Monte Carlo
method. You can find a simple and conscise description of the method
here: http://www.eveandersson.com/pi/monte-carlo-circle.
The script should do:

loop for a given number of iterations,

in each iteration pick 2 random numbers X and verb—Y— between 0
and 1,

check if these coordinates are within the unity circle,

if so, accept it and increment a success counter,

compute your estimation of pi.

You will find a solution in compute_pi.sh.

Guido Klingbeil (OIST) Skill Pill March 23, 2016 23 / 24

http://www.eveandersson.com/pi/monte-carlo-circle

DONE

Guido Klingbeil (OIST) Skill Pill March 23, 2016 24 / 24

	Introduction
	Streams and pipes
	Piping and redirecting
	Basics of Shell scripts
	Variables
	Conditional statements
	Loops

