
SKILLPILLS

Skill Pill: Intro to
Programming

Spyder, variables and lists
Jeremie Gillet

Outline

• Python’s strengths and weaknesses

• Spyder IDE, scripts and console

• Variables

• Lists

2

Python’s pros and cons

• Easy to read, write and learn

• Very flexible

• Many libraries (scipy, numpy, matplotlib, data
science, machine learning, games, web…)

• Well documented, all mistakes have been
made

• Slow

3

Note on Python 2 vs 3

• There are small visible differences between
Python 2 and 3

• Currently, both versions co-exist

• Python 2 has been deprecated since
January 2020, please don’t use it

• From now on, Python = Python 3

4

Anaconda and Spyder

• Anaconda is an open source distribution of
Python and R for data science

• Anaconda manages thousands of packages

• Spyder is an open-source Integrated
Development Environment (IDE) for
scientific programming in Python

• Spyder helps you write Python code

5

Spyder

6

Scripts

Console

Variable explorer,
file explorer, help

Run scripts

Let’s try a script

• File > New File…

• Write print(“Hello World”)

• Click Run File (F5)

• Ok to the dialog box

• Look at the console

7

Let’s try the console

• Click on the console

• Write print(“Hello World”)

• Press enter

• Try up arrow, ctrl+a, ctrl+e, escape

8

Just so you know…

• We could do the same with less fancy tools

• Ex: TextEdit + terminal

• But: no user interface, syntax highlighting,
autocomplete, saving variables…

• This is most likely how you would use
Python scripts on Deigo

9

Spyder Shortcuts

• Shortcuts will save you seconds!

• Google “Spyder shortcuts” for more

• Mac people: Substitute Ctrl for Command

10

Ctrl + 1 Toggle comments

Ctrl + 4 (5) Add (remove) block comment

Ctrl + space / TAB Code completion

F5 Run file

F9 Run selection

Comments

• Single line comments:

• #this is a comment

• Multi-line comments:

•“””  
these  
are  
comments  
“””

• Comment EVERYTHING!!!!!

11

Variables

• Variables let you store values by giving
them a name

•x = 2

•my_string = “Hello”

•a, b = 0, 1

•y = x

• There are rules for naming variables ([a-zA-
z0-9_] only, cannot begin by a number,
should be easy to understand…)

12

Types of Variables

13

Type Python name Possible values

Boolean bool True, False

Integer int …,-2, -1, 0, 1, 2, …

Floating Point float …, 1E-8, 0.0, -0.001, …

Text (String) str “”, “Hi”, ‘Mom’, …

Complex complex 3.1 + 7j, …

…

Check types by using type()

Casting Variables

• Some variables can change types

•x = 2 # will be an int

•x = float(2) # will be a float

•x = 1.0 * 2 # will be a float

•x = int(2.99) # will be 2

•x = str(2) # will be a string

•x = int(“Hi”) # will be an error

•x = bool(“Hi”) # what will it be?

14

Booleans

• There are two booleans (bool): True and
False

• You can use them to make decisions

• You can manipulate them with boolean logic
operators: not, and, or

• You can create them in various ways, including
comparisons operators: <, >, <=, ==, !=,…

15

More operators

• Basic math: +, -, *, /, //, **, %

• Built-in functions: abs(), min(),
max(), round(), bin(), sum(),
…

• String operations: +, *

16

Augmented assignments

• The pattern count = count + 1 is
extremely common and is used to increase
the value of a variable by 1

• It is equivalent to count += 1

• You can use that on many operators: +=
-=, *=, /=,…

17

User input

•x = input(“Type something: ”)

• Whichever you type until you press enter
will be saved in x

• You can cast x into something else

18

Exercise

variables.py
Test your answers in the console
There are three exercise levels:

⭐, ⭐ ⭐, ⭐ ⭐ ⭐
Time: 20 minutes

Lists

• Lists are a type of data structure, in the
family of iterators

• Lists can contain any type of values,
numerical, strings, other lists…

•my_list1 = [1, 2, 3]

•my_list2 = [“Hi”, 3, [3.0,
False], my_list1]

20

Group Discussion

What should you be able to
do with a list?

3 minutes

Retrieving list elements

•element = my_list[index]

• The index must be integer, can be negative

• Indexing starts at 0

• For lists in lists: my_list[i1][i2]

22

 index 0 1 2
my_list = [10, 20, 30]
 index’ -3 -2 -1

Slicing lists

• Most general: my_list[from : to : by]

• my_list[1:6:2] # will be [2, 4, 6]

• to is NOT inclusive

• If you omit values, then default to [0: length of list: 1]

• my_list[3:] # will be [4, 5, 6, 7]

• my_list[:3] # will be [1, 2, 3]

• my_list[::4] # will be [1, 5]

• my_list[:] # will be the same as my_list

23

 index 0 1 2 3 4 5 6
my_list = [1, 2, 3, 4, 5, 6, 7]

Other list methods

• val in x # checks if x contains val

• del x[i] # deletes the i-th element of x

• x.append(val) # adds val to the end of x

• x.insert(i, x) # inserts an element at index i

• x.remove(val) # removes the first occurrence
of val

• x.count(val) # counts the number of time val
is in x

24

More list methods

• x + y # concatenates x and y

• len(x) # Length of x

• max(x) # maximum value in x (min works too)

• sum(x) # sum of values in x

• x.sort() # sorts x in ascending order

• sorted(x) # returns a sorted version of x

• x.index(val) # returns index of first
occurrence of val in x

25

Tuples

• A tuple is simpler list (really, an iterator)

•t = (1, 2, 3)

•t[1:3] # returns [2, 3]

•len(t) # returns 3

•…

• Tuples are immutable: cannot use append,
del, insert, …

26

Ranges

27

• A range is an iterator, often used for loops

•range(from, to, by) # creates a
range

•list(range(1,5)) # returns [1, 2,
3, 4]

Exercise

lists.py

Solve the problem within the script
and test your solution by running it

Time = Time[now:]

