
Mini Course: terminal

Part I: Introduction

Juan Polo

1. Terminal

➢ Introduction

➢ Basic commands

➢ Advance commands

2. Vim

➢ Jeremie Gillet

3. HPC (high-performance computing)

➢ Charles Plessy

2

Outlook

ssh –X your-user@deigo.oist.jp

ssh –X your-user@deigo.oist.jp

For this lecture
Yellow means you should try to run the commands
Gray is an example that you do not need to type in

● A terminal is a text-only window in a graphical user interface
(GUI) that emulates a console, which in turn is a display mode that
contains only text and no images and that occupies the entire screen of
the display device.

● Whenever you open a terminal it automatically uses a specific “shell”.
This shell is the actual program that interprets the commands you
input. In Linux-based systems the shell is usually bash, but others
exist cshell (csh), zshell (zsh), korn shell (ksh).

Why is the terminal important?

3

Gnome-terminal in Ubuntu 18

Why is it important and what can you do?

● What will we do?

– Move, copy, delete, modify your files and folders

– Read/Create files

– Change permission of a file

– Look for things inside a file

4

● Why is it important?

– It allows you to access the true power of your computer

– It can be much faster to complete some tasks using a Terminal than
with graphical applications and menus.

● What can you do?

– Create videos from images using ffmpg

– Change names of (many) multiple files fast

– Etc.

How do we do those things?

● Commands

– A command is an instruction given by a user telling a
computer to do something, such a run a single program
or a group of linked program.

5

COMMAND space OPTIONS space ARGUMENTS

COMMAND: are a type of instructions

OPTIONS: modifications or extras applied to the basic
command

ARGUMENTS: are the “objects” of the command, typically
folders and files

● Commands

– A command is an instruction given by a user telling a
computer to do something, such a run a single program
or a group of linked programs.

Secure Shell connection

● SSH

– A command that creates a secure connection with a
remote computer.

6

https://www.hostinger.com/tutorials/ssh-tutorial-how-does-ssh-work

ssh –X user@server

SSH command will open a remote terminal allowing you to run commands in a another computer.

The commands you will write after the ssh connection is established are actually running in
another computer!!!

Let’s enter the terminal

We all have to enter in the terminal now

7

ssh –X your-user@deigo.oist.jp

Linux

Mac

Windows (MobaXterm)

ssh –X your-user@deigo.oist.jp

ssh –X your-user@deigo.oist.jp

COMMAND: connection to
remote server

OPTIONS: allows opening
images

ARGUMENTS: the specific
server you want to connect

ssh –X your-user@deigo.oist.jp

Symbol Name

~ HOME (personal folder)

/ ROOT (first location of the computer)

. Current directory

.. Parent directory (previous folder)

Moving around

8

Important shortcuts

● Cancel/Stop
● Auto-completion
● See previous command

Ctrl + c
Tab
Up/down arrow

Where am I?
pwd● When connecting to the cluster you will

be redirected to your “home” folder

Present Working Directory

Tab

Ctrl + c

Auto-complete

Cancel/Stop

/home/j/juan-polo

Directories in linux

/apps/unit/GradschoolD/terminal
└── material
 ├── cat_test
 ├── color_test
 ├── grep_test
 ├── perm_test
 └── remove_test

/
├── apps
├── bin -> usr/bin
├── boot
├── bucket
├── dev
├── etc
├── flash
├── home
├── hpacquire
├── hpcshare
├── lib -> usr/lib
├── lib64 -> usr/lib64
├── lost+found
├── media
├── mnt
├── opt
├── proc
├── root
├── run
├── saion_work
├── sango_apps -> /sango_work/.apps
├── sango_work
├── sbin -> usr/sbin
├── scratch
├── srv
├── sys
├── tmp
├── usr
└── var

/apps/unit/GradschoolD/terminal
└── material
 ├── cat_test
 │ ├── CATchMEifYOUcan.txt
 │ ├── my_cat_mess.txt
 │ └── very_long_table.tsv
 ├── color_test
 ├── grep_test
 ├── perm_test
 └── remove_test
 ├── empty_file1
 ├── empty_file2
 ├── empty_file3
 ├── hello.txt
 ├── hi.txt
 ├── non_empty_file
 ├── non_empty_file2
 ├── non_empty_file3
 ├── non_empty_file4
 └── removeME.txt

Typical directory tree Deigo root directory

9

Symbol Name

~ HOME

/ ROOT

. Current directory

.. Parent directory

Moving around

10

Change directory

Types of path

cd /home/j/juan-polo

● Absolute
- Starts from ROOT
- Example:

Tab

Ctrl + c

Auto-complete

Cancel/Stop

Tab
cd

● It requires an argument
- Where do you want to go?

● Relative
- Starts from Current directory
- Example: cd my_folder/my_second_folder

(./) might be used to state that we want
to start from current directory

Symbol Name

~ HOME

/ ROOT

. Current directory

.. Parent directory

Moving around

11

Change directory

pwd

cd /

pwd

Tab

Ctrl + c

Auto-complete

Cancel/Stop

Tab

cd

● It requires an argument
- Where do you want to go?

pwd

cd ~

pwd

pwd

cd ..

pwd

cd

Moving around

12

Go to skill pill directory

● Hints
- Start from ROOT
- Use “Tab” for auto-completion
- Check your current path “pwd”

Tab

Ctrl + c

Auto-complete

Cancel/Stop

Tab
● It can be found in /apps/unit/GradschoolD/terminal

Moving around

13

Go to skill pill directory

● Hints
- Start from ROOT
- Use “Tab” for auto-completion
- Check your current path “pwd” at every step

Tab

Ctrl + c

Auto-complete

Cancel/Stop

Tab
● It can be found in /apps/unit/GradschoolD/terminal

cd /apps/unit/GradschoolD/terminal

cd material

cd ..

cd /home/j/juan-polo/

Go back to your home directory

cdor just

Listing files

14

Listing files

ls basic options
-l

use a long listing format
-h

human-readable
-a

all (including hidden files)
-t

sort by modification time
-S

sort by size

ls

● Shows the contents of the current
directory
- It does not require arguments
- It can show a lot of information

ls basic arguments
(typically used with options)

file_name
information about that file/folder

file_nam*
information about files/folders
starting by XXX*

* is somewhat general and can be used
to find patterns

Listing files

15

Listing files

ls

● Shows the contents of the current
directory
- It does not require arguments
- It can show a lot of information

Listing files in minicourse folder

cd /apps/unit/GradschoolD/terminal/material/cat_test

ls

ls -lah

folders

files

size

Permissions
ownership

Permissions and Ownership

Permissions Ownership Group

Permission
● Reading (r) [4]
● Writing (w) [2]
● Executing (x) [1]

Ownership
● Current user
● User’s group
● Others

User Group Other

16

Permissions and Ownership

Permission
● Reading (r) [4]
● Writing (w) [2]
● Executing (x) [1]

Ownership
● Current user
● User’s group
● Others

https://opensource.com/article/19/6/understanding-linux-permissions
Bryant Jimin Son

17

Permissions and Ownership

Permission
● Reading (r) [4]
● Writing (w) [2]
● Executing (x) [1]

Ownership
● Current user
● User’s group
● Others

https://opensource.com/article/19/6/understanding-linux-permissions
Bryant Jimin Son

18

Permissions and Ownership

chmod
● change file mode bits
- Change permissions of

folders and files

chown
● change file owner and group

chmod 600 test.txt

chmod u=rw,g=-,o=- test.txt

19

Creating a folder

20

Make a directory

Relative path

mkdir ARG1
● Creates a directory (folder)
- It requires an argument
- No spaces is a good practice

Absolute path
mkdir newfolder mkdir /home/j/juan-polo/newfolder2

cd

Go back to your home

Copying things

21

Copy

Copy exercises to your home

● Copies files and directories from
source to destination
- It requires two arguments

cp important options
-r

recursive copy (inclduing folders)

cp ARG1 ARG2

/apps/unit/GradschoolD/terminal

cp SOURCE DESTINATION

Copying things

22

Copy

Copy exercises to your home

● Copies files and directories from
source to destination
- It requires two arguments

cp -r /apps/unit/GradschoolD/terminal/ /home/j/juan-polo/newfolder2/

cp important options
-r

recursive copy (including folders)

cp ARG1 ARG2

cp SOURCE DESTINATION

cp will OVERWRITE

Permanently, there is NO UNDO

Moving things

23

Move
● Moves files and directories from

source to destination
- It requires two arguments

mv ARG1 ARG2

mv SOURCE DESTINATION

Moving things

24

Move

Move exercises to newfolder

● Moves files and directories from
source to destination
- It requires two arguments

mv -r /home/j/juan-polo/newfolder2/terminal/ /home/j/juan-polo/newfolder/

mv ARG1 ARG2

mv SOURCE DESTINATION

mv will OVERWRITE

Permanently, there is NO UNDO

Removing things

25

rm
● Remove files and directories
- It requires one argument, but it can

take multiple
rm ARG1

rm will REMOVE

Permanently, there is NO UNDO

It is probably the most dangerous command in terminal.
Careful when using the recursive option “-r” or/and “*” to

remove multiple files

Removing things

26

rm
● Remove files and directories
- It requires one argument, but it can

take multiple
rm ARG1

Remove a file from exercise folder

cd /home/j/juan-polo/newfolder/terminal/material/remove_test

rm empty_file1

rm important options
-r

recursive copy (including folders)

1) We first change directory to the folder remove_test
2) Check the files inside using ls
3) remove the file

BREAK

27

Cat

28

cat
● See file content
- It requires one argument, but it can

take multiple

cat ARG1

See the contents of a file from the exercise folder

cat CATchMEifYOUcan.txt

1) We first change directory to the main exercise folder
2) Check the files inside using ls
3) Use “cat” to see the file content (remember tab to autocomplete)

cat catmultiple1.txt

cat catmultiple2.txt

cat catmultiple*

Sorting ordering

29

sort
● Sorts the content of a file
- It requires an argument

sort ARG1

Sorting lines of a file

sort -g -k1 unsorted.txt

 sort -g -k1,1 unsorted2.txt

 sort -g -k1,1 -k2,2 unsorted2.txt

1) Go the the main folder of the exercises
2) Check the files inside using ls
3) Use cat to see the file content (use tab to autocomplete)
4) sort the file following column 1 and then 2

sort important options
-k

sort via a key; typically a column number #
-g

general-numeric-sort. Compare according to general numerical value

-k2,2 means use
the fields from
#2 to #2

Pipe

30

Pipe
● Sends the output of one command

to another
- It requires two commands on each

side of the symbol “|”

|

Count lines of a file

cat catmultiple1.txt | wc -l

1) Go the the main folder of the exercises
2) Check the files inside using ls
3) Use cat to see the file content (remember tab to autocomplete)
4) Pipe the output to count the line for you
5) We will use the command word count (wc) and its option lines (-l)

cat catmultiple* | wc -l

Redirection

31

Redirection

>>

>● Redirection of the output given by a
command
- “>” Writes output
- “>>” Appends output
- It requires a command before and

an argument after “>” that says
where we want to store the output

sort -g -k1 unsortedcat.txt > sortedcat.txt

Save results in a file and sort
1) Go the the main folder of the exercises
2) Sort the file following column one
3) Redirect the output to “sorted.txt”

> will OVERWRITE

Permanently, there is NO UNDO

 cat catmultiple* > unsortedcat.txt

cat sortedcat.txt

Grep

32

grep
● Search within a file
- It requires an argument

grep ARG1

grep -n '9' unsorted.txt

grep -n -2 '9' unsorted.txt

grep basic options
-#

print # line before and after the match
-n

line number

Search for a pattern in a file
1) Go the the main folder of the exercises
2) Search for ‘0.0’ in the file

Other useful commands

33

head
● See the beginning of a file
- It requires an argument
- “-n 10” shows the first 10 lines

head ARG1

● See the end of a file
- It requires an argument
- “-n 10” shows the last 10 lines

tail ARG1
tail

● Find files
- It requires an argument

find ./ -name 'cat*'find

find ./ -type f

● Create empty file
touch

touch AGRG1

head unsorted2.txt

tail unsorted2.txt

Other tools to use in combination

34

awk
● Tool for processing text file rows

and columns
awk '{print}' ARG1

● Size of current folder and subfolders
du -sh

du -sh *

du -shc * | sort -h

du -sh

● Command that will make another
command ignore a hangups or
disconnecting.
- Output will go to “nohup.out”
- & means in general: running in the

background

nohup COMMAND &

nohup

df -h

How to know all the options of a command?

35

man
man ls

● You can exit by pressing “q”

● You can move with the “arrows” or “Page up/down”

● You can search by “/search_pattern” and find next/previous match
with “n” / “N”

Other tools, commands, etc.

36

Ctrl+r
● Shortcut to search withing your

hystory, it searches the pattern you
input. To leave press Ctrl+c

● echo is your print
● for loops
● Variables
● Scripts starting with a file with

#!/bin/bash
Then running bash file_name.sh

Bash is a programming language!!!
echo “hello”
for i in {1..5}
 do
echo "$i"
 done

Sudo
● super user do: run programs with the

security privileges
● Sometimes sudo su

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

