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» STA techniques use semi-analytical shortcuts to speed up quantum

» Quantum superposition states are difficult to generate experimentally. One

example is the NOON state. adiabatic processes.

> The |[N,0)+|0,N) or “NOON" state is a superposition state where all » Our technique initially raises a potential adiabatically and then rotates the
particles can be found in either one state or another. system into the desired state.

> This state requires strong correlations between particles. » In contrast to optimal control, STA techniques have a lower numerical

» This project studies the following: complexity, but have initially adiabatic steps.

> The generation of NOON states in a ring of strongly correlated,
ultracold atoms through an adiabatic technique. /\

> The application of the Chopped RAndom Basis (CRAB) Optimal - —__ 7% ° _———___ /\
Control [1] along with Shortcuts to Adiabaticity (STA) techniques to ¢ " ¢ * Step 2

generate NOON states non-adiabatically.

Step 1
Adiabatic raising

Rotating Ring Trap

» Our system is a ring of strongly correlated ultracold atoms in the
Tonks-Girardeau regime with the following properties:
> The bosons are fermionized.
> It is 1-dimensional with periodic boundaries.
> There is potential barrier that “stirs’ the trap.

STA accelerating

. Step 5 Step 4
Adiabatic lowering  STA lowering

» With the CRAB algorithm, we found optimal rotational pulses at much
shorter timescales than with STA techniques.

» |t is also possible to manipulate the barrier height with the CRAB

algorithm.
» We can model a system of N atoms with a mass M in a loop with a
circumference of L with the 1-dimensional Hamiltonian [2] 100 - lblrfaé =
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2 * ' > With STA tecniques, we found high fidelities until N = 15 bosons for a
harmonic trap Vg and N = 21 for a sinusoidal trap V.
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CRAB Algorithm particle number, N
» The Chopped RAndom Basis (CRAB) Optimal Control technique changes

a guess pulse [1]

QB (1) = (1) gi(1) We have shown:

» |t is possible to manipulate either the rotation or barrier heght within a
specified time regime to create NOON states on a rotating ring of strongly

N A, sin(@ut) + Bycos(@pr) correlated ultracold atoms by using the CRAB optimal control technique.

g(t) =1 e » We may generate NOON states with STA in this system with up to
(1) N = 15 bosons for a harmonic trap and N = 21 for a sinusoidal trap.

Q]Q is an initial guess we provide that is modified by gi(¢), the function to
be optimized

Where A(7) is a function, chosen such that A(¢) — oo for t — 0 and

. . These results have been published in [3].
t — T. In our implementation,

A1) = I [1] T. Caneva, T. Calarco and S. Montangero, Phys. Rev. A, 84:022326
4t(t —T) (2011)
» This technique is performed continually with the Nelder—Mead, or 2| D. Hallwood, T. Ernst and J. Brand, Phys. Rev. A, 82:063623 (2010)
“downhill simplex,” method to maximize the fidelity (or closeness) to the 3] J. Schloss, A. Benseny, J. Gillet, J. Swain and Th. Busch,
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