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Abstract
The Lattice Boltzmann Method provides an accessible avenue to analyze and model
complex fluid dynamics. We analyze the flow through a constricted channel in two
dimensions using the LBGK collision model. There are currently no analytic solutions
known for the flow through such a geometry. We investigated the transition period
of Reynolds numbers where the flow is neither laminar nor turbulent as well as the
boundary conditions necessary to produce a stable simulation. Initial results show that
this transition period occurs for Reynolds numbers of approximately 1000 to 1500 and
that velocity boundaries produce less numerical aberrations. Simulations were also
conducted with the open source library OpenLB. Two dimensional as well as three
dimensional results using the turbulent Smagorinski Turbulent Model were analyzed.
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the collision operator. We also know that collisions of particles tend to relax the particle
distribution function. Thus we have that
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where τ is the relaxation time and f eq is the equilibrium distribution function. The
equilibrium distribution is derived from the solution of the Maxwell Equations and the
conservation of energy and momentum laws. From this we see that our continuous
time equation is
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Following a simple space and time discretization the explicit Lattice Boltzmann Equa-
tion is found:
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The Particle Distribution Function

Fig. 1: Particle distributions of the Lattice Boltzmann Method. Source: Michael C. Sukop

Generalized Geometry
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Fig. 2: General Geometries of Simulation (Left: America Heart Association, Second from Left: Aortic Segmentation from Fraunhofer MEVIS)

Implementation

/ / Def ine S imula t ion Parameters

Conversion o f Phys ica l Un i ts to L a t t i c e Un i ts

I n i t i a l i z e a l l a c t i v e nodes to Equ i l i b r i um

Set f i x e d boundary cond i t i ons

for ( t i = 0 ; t i < tMax ; t i ++ )
{

Set t ime dependent boundary cond i t i ons :
I n l e t− V e l o c i t y Boundary
Out le t− Pressure Boundary

BounceBack Condi t ions on given nodes

C o l l i s i o n Step (RHS of Equation 2)
Steaming Step (LHS of Equation 2)

}

Results in Two Dimensions

Fig. 3: Flow patterns with Pressure(Left), Velocity with equivalent inflow and outflow(Middle), and Velocity with outflow = 1.2·inflow (Right) boundary conditions

Fig. 4: Simulation of Reynolds Number 1000 geometry with Pressure Boundary and Smagorinsky constants 0.2(Left) and 0.1(Right)

Fig. 5: Flow with a 0 velocity outflow profile and Smagorinski constant of 0.2, demonstrating stabilization of flow modeled with turbulent aspects in mind

Flow Through Idealized Stenosis using OpenLBMacroscopic Quantities
From the distribution function f , we can
easily extract the typical macroscopic
quantities which are used to analyze
flow dynamics. Namely Density/Pres-
sure and Velocity.
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Future Research
Currently, the stability of the Zou-He[4] Pressure boundary conditions for a stenotic ge-
ometry, as well as the transition period of Reynolds Numbers where periodic flow is
seen, are incomplete. As such more work needs to be done in the direction of classifi-
cation of flow patterns with regards to Reynolds numbers as well as a thorough analysis
to the boundary conditions needed in a geometry with increased outward velocity. Also
as seen in the generalization of geometries above there exists a geometry, the arched
stenosis, which has not yet been studied and may provide interesting results.
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