NOTES FOR THE INTRODUCTION TQ MACHINE LEARNING 25

18. ARTIFICIAL NEURAL NETWORKS

18.1. Artificial Neuron. An artificial neuron has one or more binary inputs and one bi-
nary output. Here is an example of an Artificial Neural Network, which performs logical

computations

e o

o

i
I
C:=RA CzAAD o \l
o I, If the neuron A is activated, then the neuron C is activated
¢ IL.The neuron C is activated only if the neuron 4 and the neuron B are activated
¢ III. The neuron C is activated only if the neuron A or the neuron B are activated
e IV. The neuron C is activated only if the neuron A is activated and the neuron B is

not activated
18.2. Perceptron. For a perceptfon inputs and outputs are numbers,

18.2.1. Threshold Logic Unit (TLU). Let the inputs be 1, g, ..., Zn.

¢ The TLU computes a weighted sum
2 =unzy +wir + ot WnTn

the parameters wy, wa, ..., wy, are called weights.
o Applies the step function to z and outputs the result

Examples of a step function

e Heaviside function
0 if 2<0
H(z) =
) { 1 if z>0
e Sign function
-1 if z2<0
sgn(z) = 0 if z=0

1 if z>0

26 NOTES FOR THE INTRODUCTION TO MACHINE LEARNING

A perceptron is composed of a single layer of TLU-s, with each TLU connected with all

the inputs. _ovigvi Y . -
TLY - / ovifw LAyEg

_ NN LAYE R

"
Phias vhtonmw Y\ :
18.3. Perceptron Learning Rule. Perceptron is fed with one training instéﬂ"ce at a time.

Then it makes a prediction. If the prediction is wrong, it reinforces the connection weights
from the inputs, which would have contributed to the correct prediction. It updates the
weights according to the rule

et

i — Wij + ??(?Jj - 'g_‘i)mi
Here

® w;; is a connection weight between i-th input neuron and j-th output neuron
g; is the output of j-th neuron at the current training instance

y; is the target output of j-th neuron at the current training instance
n is a learning rate

18.4. The Deep Network. Deep network consists of several layers. The first layer of the
network is called the input layer, the last one is called the output layer. They layers which
are between them are called hidden layers. The number of neurons in the input layer is equal
to the number of features. When all neurons in a layer are connected to every neuron in the
previous layer, then the layer is called a fully connected layer (dense layer).

18.4:1. Cost functions. Given a data point (;,%;), where z; € R%t?, a Neural Network makes
a prediction §;{w), where w are the parameters (weights). It order to train the network we
need cost functions. They are basically the same that’ we used previously. For continuous
data we can use the means squared error
1 w2
E(w) = - > - fiw))
i=1

For cathegorical data we can use the c¢ross entropy between predicted labels and true labels.
For example for a binary outcome y; € {0,1} we have

Tt

E(w) = > (y:log(#i(w))(1 — y:) log(L — gi{w)))

i=1

NOTES FOR THE INTRODUCTION TO MACHINE LEARNING 27

18.4.2. Backpropagation algorithm. Let [label a layer of the network, and let 7 label a neuron
in this layer. Let us define a weighted sum which generalizes the one that was introduced
above for a single neuron '

(3) z; —Zw kak —l—bl

(4) ag,- = a(z}) =0 (Z wf,-kaﬁc"l + bj)
: k

The expression bg- is a bias, which is specific to each neuron. Here o is an activation function.
It can be either a step function, or
o Sigmoid
1

o(z) = 1+e2 -

Hyperbolic Tangent
e*® — 1

o(z) = tanh(z) = por)

Rectified Linear Unit (ReLU)

a(z):{ 0 if £<0

z if 220
s Leaky ReLU
o(z)={ 01% if 20
- z if 220
+ ELU

[0 i e1<0
o(z) = .
z if z>0

The error of neuron j at the layer I is defined as
B
(5) | Al — 0F 3

3
sz

’()

The backpropagation algorithm goes as follows

¢ Caleulate the activation functions a} for all neurons in the first layer.
e Feedforward: Compute z} and ag in each subsequent layer using (3) and (4).
¢ Calculate the error at the output level L using

Al = 0E oz)

3
sz

28 NOTES FOR THE INTRODUCTION TO MACHINE LEARNING

o Backpropagate the error, which means to compute Ag- for all layers using

OE OE 8zt Bzt
Af}' -l Z PWES) z+1 = EAHI ic+1 = ZAleﬁv_l cr’(z;-)
823' 32 82 & k

 (o'(x)isa deriva.twe of o{z} with respect to the input evaluated at z)
¢ Calculate the gradient using .

6FE &8
Al =27 = 2=
E; P Bbf’-
and
OF
l 1 1-1
= = Al
Ay ‘91”;1; 7%k

18.4.3. To summarize. The algorithm works as follows: we feed the data to the input layer,
and using the network architecture propagate it to the outcome layer and see what is the error,
comparing the output with the training data. Then we can determine the errors produced
by each neuron, backpropagating the error. We update the wights using the gradient descent
method and propagate the data forward again. And so on. A cycle over all datapoints is
called an epoch. A number of hidden layers, a number of the neurons in hidden layers and
the number of epochs is a priori arbitrary, and is determined by the problem at hand.

18.5. Glorot initialization of the weights. Let fan;, denote the number of inputs in the
layer and fan,,, denote the number of neurons in the layer. Finally,
f an, + f Aoyt
2
One uses the random initialization for the weights, with

f ANgyg. =

¢ Normal distribution with mean 0 and the variance equal to

1
g’ =
f ana’vg.
e Or uniform distribution between —r and r, with
_ 3
f a'na.vg.

The activation functions are logistic, hyperbolic tangent, softmax or None. This is called
Glorot initialization,

NOTES FOR THE INTRODUCTION TC MACHINE LEARNING 29

19. RECURRENT NEURAL NETWORKS (RNN)

RNN works like a feedforward Neural Network considered above, but it has connections
pointing backwards ¥ '

z
0

A neuron is getting an input, producing an output and feeding it back to itself. One can
“unroll the time” and the picture for one neuron looks like:

Y

At each time step ¢, (also called a frame} a neuron receives an input 21y and its own output
Y(z—1) at the previous time step ¢ — 1.
A neuron has two sets of weights:

» For inputs z(;), which is a vector w,
e For inputs y(;_1), which is a vector wy

19.1. A layer. A layer in RNN looks.as..—

Unrolling the time, we have

e

:) 9 me
For a layer the corresponding weights W, and W, are matrices. An output for a recutrent
layer for a single instance is

Y =0 wrl T + W;T Y1y + b)

30) NOTES FOR THE INTRODUCTION TO MACHINE LEARNING

where "T” means transpose matrix.)
If we have several instances ("2 minibatch”) then ;) becomes an input matrix. For all
outputs in a minibatch we have

Y = oWy Xy + Wy Yoy +1)

In this equation

o Y{4) I8 an M X Npeurons Matrix, where m is a number of the instances in the minibatch.

o Xy Is an m X nynputs matrix, where ninpuss is a number of inputs i.e., a number of
features. B '

o Wy is an Ninputs X Mpeurons Matrix. It is a matrix of connection weights for inputs at
the current time step.

o Wy is an Nncurons X Nneurons Matrix. It is a matrix of connection weights for outputs
at the previous time step.

o b is a vector of size Npeyrons and represents a bias.

19.2. Memory cells. An output at time ¢ is a function of all previous time steps. A part
of a neural network some state across time steps is called a memory cell. A state at time ¢,
denoted as h(y is a function of the state at the previous time step h(s_1y and of the current
input z,

hey = flhg-1), 7))

- For basic cells the output y) simply equals to h(y. But in general they can be different, as

shown below
AJo i} £ e 4
o |
v -"
fr , — "w ——
y) .
o) 1 Mg Y A "o

19.3. Training of RNN. To train the RNN one can untoll the time and then use the back-
propagation algorithm (Ypr Y
Y e fQ' (9, Tl}'))
L) A Y by ¢

’\y?J 4 R A

W 1 Ay
[Wb 3 Wb ; W,y i W, b T W

. . :) 4 ¥
In this example the cost function’is computed using the last two outputs. g)

NOTES FOR THE INTRODUCTION TO MACHINE LEARNING 31

19.4. Long-Sort Term Memory (LSTM) cell. LSTM cell operates with the long term
state c(;y and a short term state hy). It decides what part of the long-term state to keep,
what to throw away, and how. It works as [ollows

/H j(-t)
" Forged GpTe
C“ﬂ) - é
> @) W
/]
(MPYT G i(-’_—
. . ovige) ")3
fm ‘ Iy e o G pig. (v)
! 0-13)

h(¢-)
| Lit)

32.

NOTES FOR THE INTRODUCTION TO MACHINE LEARNING

In order to clarify the picture, we write the relevant equations and explain both equations
and the picture

(6)
(7)
(8)
(9)
(10)

(11)

i) = C’(W:Z:i Ty + Wg‘z Rip—1y + b}
foy = oW oy + Wi g By -+ b)

o) = O‘(Wga.m(t) + W}:Eo h’(t—l) + b,)

9ty = tanh(Wgy 2y + Wiy by + bg)
ey = (fiy ®ce-1)) ® (i) ® ggay)

Yy = h(t) =0 ® tanh(c(t))

There are three gates, denoted by ® (the same ® is in the equations (10)-(11), they
correspond to the element-wise multiplication). The gates are the Forget gate, the
Input gate and the Cutput Gate

The long term memory ¢(;_;) runs through the network form left to right. It drops
some memories at the Input gate, adds some memories at the addition operation @,
thus getting modified and then gets out. The modification happens as follows

The main layer is the one that outputs g¢;)- It is the layer that we described earlier,
when we introduced RNN. It analyses the input z(, and the previous short term
memory state h_1y. The activation function is the hyperbolic tangent.

The other three layers control the gates. Their activation functions are logistic ones.
If their output is 0, they close the gate, if their output is 1, they open the gate.

The Forget gate controls (eq. (7)) which part of the long term state should be erased
(the first term in the eq. (10)). The Input gate controls (eq. (6)) which part of 9(t)
should be added to the long term state (the second term in the eq. (10)).

After the addition operation (eq. (10)) the long term memory is copied, then passed
through the tanh function (eq. (10)) and the controlled by the Output Gate (eq. (8)).
The result is going out as an output v, and as a short-term state h(). Here they are
equal to each other.

20. BOLTZMANN MACHINE

Boltzmann Machines are based on stochastic neurons. Their output is 1 with some proba-
bility and 0 otherwise. They use Boltzmann distribution as a probability function.
The probability that the neuron ¢ will output 1 is

N
P(S?extstep — 1) =g (ijl(w;f's,' + bl))

. In this equation

NOTES FOR THE INTRODUCTION TC MACHINE LEARNING 33

55 is a state of j-th neuron, which is either 0 or 1 _
e w;; are connection weights between the neuron 7 and the neuron J Therefore, w;; =0
b; is a bias of the neuron ¢

o N is number of the neurons in the network
¢ T is a number, called temperature
¢ o is a logistic function

The neurons in the network are divided between hidden and visible units. All inputs and
outputs are through the visible units only.

The idea behind having hidden units is that, introducing of the “hidden” particles can
often simplify the interaction between “visible” particles. In some sense, the hidden particles
encode the interaction between the visible ones, and this kind of description of interactions
between visible particles turns out to simplify the problem in physics.

20.1. Restricted Boltzmann Machines. In the restricted Boltzmann Machines the neu-
rons in the hidden units are connected with visible units. But there are no connections
(“interactions”) between visible units or between hidden units.

7N
Q } o RiDOEN ipve,
‘ -
Y (L nsuse Lpye,
S“’R ' Jrg REFERENCES

[1] Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani
“An Introduction to Statistical Learning With Applications in R”
Springer Science & Business Media, 2013/06/24 - 426.
[2] Aurélien Géron
“Hands-on Machine Learning with Scikit-Learn, Keras & TensorFlow ”
O'Reilly, 2019.
[3] Pankaj Mehta, Ching-Hao Wang, Alexandre G.R. Day, Clint Richardson, Marin Bukov, Charles K.Fisher,
David J. Schwab
“A high-bias, low-variance introduction to Machine-Learning for physicists,”
arXiv:1803.08823 [physics.comp-ph].

-~

