NOTES FOR THE INTRODUCTION TO MACHINE LEARNING

1. SOME DEFINITIONS

1.1. Variables. Consider an example. Let X be a list of various branches of a company. We
know how many employees are working at the particular branch, for how many years is the
branch operating and the town/city where is the branch based. We would like to predict what
is the annual prefit of the branches.

In this example the number of employees, the number of the vears and the location are
input variables. The 1-)roﬁt is an output variable. The input variables are usually denoted as
X, output variables are usually denoted as Y. Input variables are also called predictors, inde-
pendent variables or features. Qutput variables are sometimes called response or dependent
variables.

The number of measurements (a size of the data) is usually denoted as n. In our example n
will be the number of the branches of the company. The number of features is usually denoted

as p. In our example p = 3 (the number of employees, the years of operation and the location
of the particular branch).

Therefore, in general x is an n X p matrix znp
1.2. Expected value. Variance., Let X be a random variable.

1.2.1. Egpected value for a finite case. If we have outcomes z;,z,..7, with probabilities
1,02, .., Pp, then the expected value will be

E[X] = z1p1 + z2p2 + ... + TnPn
If the outcomes are equally likely, then py = ps = .. = p, = % and we get a simple average.

1.2.2. Continuous Case. Let X be a random variable with probability distribution f(z). The
probability distribution can be interpreted as a probability that the random variable has a
particular value z. Or rather, if we have two values z; and z; the probability function tells
us how much more(less) probable is the value z1 comparing with x5

The expected value for z is

E[X] =[$f(m)d:r:

1.2.3. Variance. For a given variable the variance is an expectation of the squared deviation
of a random variable from its mean.
Therefore, if the mean of X is u, then the variance is

Var[X) = E[(X — 1)?]
1
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1.2.4. Discrete random varieble. If we have outcomes x1, 22..2; with probabilities p1, pe, .., »;
then the expected value will be

1 n
Var[X] = — Z(%' — )
=1
where the mean is ;
p= W(w1+mz+..+m1\r)

1.2.5. Continuous Case. If X is a random variable with probability distribution f{z), and
the mean value y, then the expected value will be

Varl] = 2 = [(o - wPf(@)ds

1.3. Standard Deviation. Standard Deviation is a measure of amount of deviation of the
values. The smaller is the Standard Deviation, the closer the values are to the mean.

1.3.1. Discrete random variable. The Standard Deviation is

J=JZ;@?1£

1.3.2. Continuous Cuase. If X is a random variable with probability distribution f(z}, and
the mean value u, then the Standard Deviation is

a=¢f@—@%@ﬁm

2. BUILDING THE MODEL

2.1. Train-Test Split. We wsually randomly split available data into a train set and a test
set. The train set is bigger, usually 80% of the available data. We train our model on the
train set i.e., we try to find a model which fits the train data.

After that we use the obtained model and do predictions using X;..; and compare the
corresponding values available from the test set ¥ies. Predicted values for the response are
usually denoted as ¥. We try to get as smaller difference between Yieq and V.

If the difference is too big, that means that we have not built a good enough model. However
we do not want to overfit the data: it can happen that the model fits.the data too well, does
not take into account the statistical noise etc. In this case it will not perform well when we
change the data-points. '

Therefore, we have to take into account the Bias-Variance Trade off

3. BIAS-VARIANCE TRADE-OFF

3.1. A Short Definition.



NOTES FOR THE INTRODUCTION TO MACHINE LEARNING 3

3.1.1. Bias. In order to fit the data we build some model (a function } f(z). The simple
model has higher bias, it is less flexible. For example, the straight line has high bias. More
flexible models approach train data point more closely and they have lower bias. Therefore
bias refers to the error that we are introducing by approximating a complex data by a simpler
model.

3.1.2. Varignce. This is the measure of how much the function f(:c) will change if we use
another sample (training set) to estimate it
The bigger is the variance the smaller is the bias and vice versa.

- 3.2. In more detail.
s E; - in sample error (training error)
¢ L, - out of sample error
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s E;, increases, because the model is not complex enough to find a true function.
e E,. will decrease
If we had an infinite data, we could beat the noise. The bias is the best our model can do
to beat the noise. More complex model has less bias.
It is better to minimise E,,;, rather than to minimise the bias, because we do not have an
infinite data.
Variance measures how the outcome of the model will change if we change the sample. More
it changes, bigger is the variance. In other words, variance measures errors we introduce by
finite sampling.
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Difference between E;, and E,,; measures the difference between fitting and predicting.
If the difference is big, we call the model “overfit”. In general, one does not aim to simply
reduce a training error, so that the out of sample error can be large.
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¢ Consider a data set D = (X, y) consisting of N independent pairs of independent X
and dependent y variables. Assume that the data is generated by a model

y=flx)+e

here ¢ is a noise. .

s Let & be a set of the parameters, which are present in the model.

e Assume that we have a statistical procedure to determine the function f. It can be
done by minimising the cost function (the error). for example minimising

Ol FX,0) = (s — F o5 0

s From this procedure we determine the parameters ép, they are naturally functions
of the dataset D. This is becanse we would have obtained a different error for the
different data set. In this way we form a predictor f(z; 9) which gives a prediction for
a new data point.

e Let us denote an expectation value of all datasets as E . The expectation value over
the noise is denoted as E,.

We have
e The Bias

(Bias)? = Z(f(:vz)— Ep(f(z,6p)))?

measures the deviation of the expectation value of the estimator Ep{f(z,8p)) from
its true value f(z;)
o The variance:

Var = 3 Ep [(#(,6) - Enlf(z,60)))]

tells us how much the estimator f(z,fp) fAluctuates due to the final size effects.
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e Out of sample error is a sum of three terms
Euu = (Bias)? + (Var) + Noise

¢ The noise is
Y o2 =Ef(yi — £(=:))"]

More complex is the model, it has a lower bias but higher variance. When increasing the -
bias the variance decreases and vice versa.

4. GRADIENT DESCENT

4.1. Newton method. We would like to minimize the cost function E(8), where 8 are the
parameters.

In the gradient descent (GD) method we initialise the parameters at some value 5 and
then iteratively update the parameters according to

(1 : v = M VeE(0;)

(2) ‘ 6k+1 = 9}3 — U

Here n; is a learning rate. It indicates how big a step we should take in the direction of the
gradient. If we take the learning rate to be too small, the algorithm will take too long to
converge. On the other hand, too big learning rate can lead to the situation when we skip
over the local minimum.

A possible approach to this problem is a Newton method. We shall consider one dimensional
case for simplicity.

Consider the Taylor expansion

E(6r +vi) = E(6) + E' (0) vs + %E”(ek)(ka +.

The next iterate Oy is defined by minimizing the quadratic approximation in v. To this
end we take the derivative with respect to v, and since at the minimum the derivative is zero
we get

E'(6x)

_ # —_ -
0= E'(0)+ E"(Ox)vx, therefore v = B (6r)

Then we update the parameter ; as (2).

In the multidimensional case (that means when we have many parameters, and this is
what happens in general) v becomes a vector v* and we get a matrix of second derivatives
VgngjE(Hc), called Hessian. Therefore, we update the values of v; according to

v = —(Ve; Vg, E(8;)) " Vo, E(8)

However the Newton method is difficult to implement in practice. Indeed when we have many
parameters, the Hessian is difficult to compute, and to invert.
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Let us define the optimal choice of the learning rate.. For the given value of § the optimal
choice of the learning rate 7oy, is the value of n which allows to reach the minimum of E(6)
in a single step. To find it we expand E(§) around the current value up to the second order
in v, as we have done above

Then we differentiate with respect to v and put fy,;, = @ + v. This way we get

t
gmin =6— %('(%—))
and

1
G0
There are four possibilities

® ) < Nopt.. The GD algorithm takes multiple steps to reach the minimum.

A

9“1 1Y)
® 1) = Nops. The GD algorithm reaches the minimum in a single step.
R(®)
| o G

® 7 < 29pt.- The GD algorlthm oscillates and eventually converges to the minimum.
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® 77 > 2755 The GD algorithm diverges.
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4.2. Stochastic Gradient Descent. In this approach the data set is divided into subsets
called mini batches. If the data set consists of » points and a mini batch consists of M points,




NOTES FOR THE INTRODUCTION TO MACHINE LEARNING 7

then we have & = F- mini batches By. At each gradient descent step we approximate gradient
using a single mini batch B. We then cycle over & mini batches, one at the time and update
the parameters § at every step k. The full iteration over all & mini batches is called an epoch.

5. BAYES RULE

The conditional probability is denoted as P(A|B). It is a probability of happeniﬁg of the
event A, under the condition that the event B happened.The probability that the event A
will happen is denoted as P(4).

The Bayes rule reads

P(A|B)P(B) = P(B|A)P(A)
¢ The likehood function
P(X|6)

is a probability of observing the data set Xgiven the parameters 4. &
¢ Prior distribution is a knowledge we have about parameters before collecting the data
- P(6) . '
» Posterior distribution P(8|X} is a knowledge of parameters after measuring the data

Using the Bayes rule

PO X} P(0)
Po1X) = Tde'P(X)0)P(0)
we compute the postelrior distribution in terms of the likehood function and the prior distri-
bution.,

The denominator [ d6'P(X|¢')P(8') = P(X). _

The likehood function P(X|6) is determined by the model and by the noise.

We would like to maximise P(X|#). It is called MLE (Maximum Likehood Estimation). In
MLE we choose the parameters in such a way that they maximize the likehood of the observed
data.

If no information about & before we look at the data is available, we select P(6) so that it
reflects our ignorance about the data. This kind of P(#) is called an informative prior.

6. LINEAR REGRESSION

6.1. Definition. A simple linear regression assumes a linear dependence between independent
and dependent variables '

Y = o+ X
where fp and 37 are coeflicients.
Assume we have data points (z1,%1), {2 ¥2),...(Tn, ). This is a sample we obtained from

our measurement. We would like to find the coefficients 8 and 1, which will help us to make
predictions by using the Linear Regression.
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Let us define the Residual Sum of Squares {RSS) as

RSS = (y1 = fo = Brz1)? + (y2 — fo — Br22)? + ., +(yn — fo — Brz)?

The coefficients 8y and B; are determined by minimizing RSS, i. e., solving the equations

d 8
=+ RSS = ——RS§S =10
3o e

The solution. is

Tl =9 =)
A= L@ -

where
n n
3 = i1 T g = Lei=l i
n n

are average values for 2; and y; i.e., the sample means.

6.2. Assessment of the accuracy. Usually a sample mean is a good estimate of a measure-
ment outcome. Let us have a single outcome ji. We would like to know how good it is as en
estimate of our variable. the answer is provided by a Standard Error (SE)

2

SB(R) = v/Var(@) = =

where o is a standard deviation for y;. Apparently, more measurements we have, the bigger
is n and the smaller is the Standard Error.

In the same way, if we would like to know how' close are the coefficients By and 3; to the
actual values Sy and £, we compute the Standard Error for them

=2
SE(By) = o* (% Y ST (‘; — 5)2)

0.2

Y (i — 2)?

these equations are correct if errors associated with each measurement are uncorrelated with:
the common variance. But often they provide a good estimate anyway. The common variance
02 ~ Var e can be determined from data, using the Residual Standard Error

N ESE n (i — )2

It shows how average response will deviate form the true regression line. It is a measure of a
lack of fit. ‘

SE(f) =




NOTES FOR THE INTRODUCTION TO MACHINE LEARNING 9

6.3. Hypothesis test. Standard error can be used also to provide hypotheisis tests.

o Null hypothesis Hy : there is no relationship between X and ¥
» Alternative hypothesis H, : there is a relationship between X and ¥

In the case of a simple Linear Regression

s Hy means that 5, = 0
¢ H, means that 5y # 0

To test the Null Hypothesis we need to determine, if 51 is sufficiently far from zero. In
other words if SE(ﬁl) then (31 must be large to reject the null hypothesis.
In practice we compute ¢ statistic, given by

_él—O_ﬁl—On a2
= SEG) T oF P

This is a probability of observing any value equal to |t| or larger assuming that 8y = 0 and is
called p value. Large p value means that any correlation between independent and dependent
variables is due to the chance. )
In general a small p value means that there is a strong evidence in favour of an alternative
hypothesis. In our case an alternative hypothesis is that ¥ depends on X.

6.3.1. R? statistics. if we would like to asses the accuracy of the model the RSS can be less
informative. It gives us a number but sometimes it is difficult to say a particular number is
big or not. (Big/small comparing to what?) _

A Dbetter assessment can be performed using R%. Let us define R? as

_TSS - RSS _ _RSS

2
R T35 T35

where Total Sum of Squares (TSS) is
1
TSS =Y (v~ #)*
i=1
is an amount of variability before the regression is performed. RSS is an amount of variability
left unexplained. Therefore, (T'55 — RSS) is an amount of variability that is explained by

the regression. And R? is a portion of variablity that is explained by the model. Closer it is
to 1, the better is the model.

7. MULTIPLE LINEAR REGRESSION

In the Multiple Linear Regression we have several estimators

Y=58+5haX1+.. +5Xp+e¢
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similarly to how it happened in the simple linear regression, in the muitiple linear regression
the parameters £y, 81, ..0, are estimated by minimizing of the RSS

n k(3
RSS = Z(yi —9)? = Z(ye‘ ~ Bo - frzin — .. — ﬁpmip)z

i=1 i=1
7.1. Improved R?. In the Multiple Linear Regression each time we add a new variable R?
either increases or stays the same. If the new variable is completely irrelevant for the response
then R? stays the same. But if the new variable is not relevant for the response and yet the
algorithm will find some some accidental correlation between this variable and the response,
then R? will increase.

In order to prevent R? increasing by simply adding of a new variable, us introduce
FPo1-g-p)_"—1

n—p—1

Here again, n is a sample size, and p is a number of regressors.

On the other hand F? has a penalising factor n — p — 1. Therefore as p increases, F?
decreases. And there is a competition between increasing of F? because of adding an a new
variable on one side, and the penalising factor on the other side.

7.2. Categorical Variables. Categorical variables are the ones which do not have a numer-
ical value. For example a geographical or a proper name, a job title etc. They can be included
into regression models by using of so called dummy variables. )

For example let ¥ be an amount of profit that a particular brunch of a company makes per
year. Let us suppose the company has offices in Tokyo and Osaka. We introduce two dummy
variables )1 and D3, one for Tokyo and one for Osaka. If the branch is based in Tokyo, then
Dy =1 and Ds = 0. If a company is based in Osaka, then D7 = 0 and D = 1. Then one can
write a multiple linear regression model as

y = Bo+ f1x1+ ... + Bpzp + 1101+ 12D2
where 1, .., %, are the other (non-categorical) predictors. However, since
Di+Dy=1

one has to exclude one categorical variable from the regression, since the knowledge of D,
determines Dy and therefore both of them can not be considered as independent variables,
This is called the dummy variable trap. The a general rule is: if one has m categories, one
has to include m — 1 dummy variables.

7.3. Feature Scaling. Sometimes different features have different numerical scales. For ex-
ample, X has two features: the number of employees in the particular branch of the company,
and number of the years the branch operates. The first number can be thousand(s), the
second one can be from 1 to 10.



NOTES FOR THE INTRODUCTION TO MACHINE LEARNING 11

In order the algorithm to perform better we need to bring them to a similar scale. There
are two ways to do so

* Min - max scaling: We subtract minimal value of the feature and divide by (min —
maz). In this way the features will get values for 0 to 1.

» Standardization: First we subtract the mean value, and then divide by standard
deviation.

7.4. Ridge Regression. Ridge regression minimises

P
RSS+ 1> 82
i=1

Here A > 0 is a tuning parametfer. It tries to make the coefficients 8; as small as possible
and apparently controls the relative impact of the two terms in the expression above. When
A increases the flexibility of the mqdel decreases.

7.5. Lasso Regression. LASSO regression is similar to the Ridge Regression. In this ap-
proach one tries to find the parameters 3; that minimize the expression

r
RSS+)\Z|ﬁ’j|

=1

8. LOGISTIC REGRESSION

Let us consider an example. A bank would like to predict a probability of a customer
will default on their credit, depending on the customer’s annual income. In this example an
independent variable X is the annual income. The dependent variable is a binary outcome -
Yes (the customer defaults) or No (the customer will not default.} One encode Y encoded as
1/0 (1 for “No” and 0 for “Yes”). One can model this problem as a Linear Regression

Y=o+ X

and say that if ¥ is higher then a chosen threshold then the answer will be “Yes”, otherwise
it will be “No”.

An application of Linear Regression for this problem has apparent drawbacks. For some
values of X the Linear Regression Model can predict:

e Negative probability
e Probability which is more than 1
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In order to avoid these problems, let us consider a probability p(X) which depends on X as

gbot+Br X 1
p('X) = 1 + eﬁO'l‘,BlX = 1 + e—ﬁo—-ﬂlx
Apparently 0 < p(X) < 1. A
i
.7 6(y)= 1
. e e a - - - - - x
=z . E S-S {+e’
One has 0 X
pX) _ pormx
1 -p(X)
or )
_PA) Y

The left hand side of the equation is called odds. It can take values from zero to infinity.
Increase of X by one unit multiplies odds by 1. Unlike the Linear regression, the bigger
is X the faster is the increment of the odds (a derivative of the odds at each point X depends
on the value of X).
For binary classification models we have two classes: ¥ = 0 and y = 1. We can assign the
outcome as
_J 0 if p<05
- { 1 if p>05
Obviously, the choice of the threshold depends on the nature of the problem at hand. For
medical problems is usually much higher then 0.5.

8.1. Cost Function. Cost function for a single training instance

@ ={ 0 h v
—log(1—p) if y=0
The model estimates high probabilities for positive instances (y = 1)} and low probabilities for
negative instances (y = 0).

Indeed, let us take y = 1. Then for p = 1 we have ¢ = 0 and the cost function is small. On
the other hand for p = 0 we have ¢ = oo and the cost function is very high.

If we take y = 0. Then for p = 0 we have ¢ = oo and the cost function is high. On the
other hand for p = 0 we have ¢ = 0 and the cost function is small. Therefore it is a good cost
function.

" The cost function for whole training set is an average over all training instances
n
B) == 3" (yP10859 + (1 - )1 - log 59))

n
i=1
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This expression is called cross- entropy.

8.2. Multiple Logistic Regression. If we have several predictors and a binary outcome,
then the simple logistic regression géneralises to

P d 1
p(m) - + e—ﬁﬂ—ﬁlxl+---—ﬁpxp

and

log (i%) =B+ 56X+ .. + BpXp

9. SOFTMAX REGRESSION
Softmax Regression is a generalization of the Linear regression. It is applied when the

outcome contains multiple classes, i.e., it is not just a binary outcome
Omne computes a Softmax score for class &

k k T
silz) = ﬁ((, )+ $1ﬁ§ I xpﬁg“)
Notice that the coefficients ﬁék), ﬁgk)..., ,E,’“) are in general different for different classes.
Then one finds the relevant probability
esk{x}
Zji 1 e’ (=)
Here K is a number of classes The outcome for the given instance will be the class with
maximal p.

fr =

10. Bayes CLASSIFICATION

Let us consider a classification problem. Suppose we have training observations

(Elr y]): ($2:y2)5 seny (:En; yn)
To quantify the accuracy of our estimate we introduce the Error rate

1< .
” > Iy = i)
i=1
This is a trainiilg error rate and is a proportion of mistakes The function I is defined as
o Iy # i) =1
o I{yi=9:}=0
The test error rate for test observations (g, yo) is given by Ave(I(yg # §o)) where §q is the
predicted class label which we obtain when we apply our classifier to the test instance o,
One tries to make Ave(I(y; # %)) as small as possible. It is minimized by if the outcome
for z¢ is assigned the class ¥ = j for which the conditional probability
Pr(Y = j|X = zo)
is the largest. This is called the Bayes classifier.
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Consider the Bayes Classifier when the outcome consists of only two classes. If Pr(Y =
1{X = mzp) > 0.5, then the outcome is assigned to the class one, otherwise assigned to the
class two.

Here is an example of two predictors X1 and X». The observations belong to two classes
and are denoted as by x and 0. In the area I the probability for an observation being x is
more than 0.5. In the area I7 the probability for an observation being x is less than 0.5. The
two areas are divided by the Bayes decision boundary.

o 2.0
. b -og L]

1 Y
L oy X3
The Bayes decision boundary is defined by Pr(Y = j|X = 2zy) = 0.5 The Bayes classifier
has the smallest possible test error rate. At X = g the Error rate is
' 1 —maz; Pr(Y = j|X = xp)
In general, the overall error rate for the Bayes Classifier is
1-E (maz;Pr(Y = j|X = zo))

where the average is over all possible values of X.

11. K NEAREST NEIGHBOURS

Given a possible integer K a test observation zg the K Nearest Neighbours (KNN) classifier
identifies K points in the training data around zy. Let us denote them as Ny. Then it estimates
the conditional probability

. 1 ,
Pri¥ =jlX ==0) =+ Zf(yi =)
1€Np
as a fraction of points in Ny whose response values are equal to §

11.1. Example, K = 3. Let us consider an example.

X 0
D el ©

SN %
o)
o "y ¥

Apparently among three neighbours of the test observation U, there are two that belong
to the class x and one that belongs to the class o. Therefore, O is assigned to x class,
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12. DEcisioN TREES

12.1. Regression. Let us consider an example: We would like to estimate a salary of a
salesperson according to the years of their experience, and sales they made. Their salaries
are determined as follows: If they have less than five years of experience, they bélong to the
category A and their salary will be 100.000, 00 dollars per year. If they have more then five
years of experience, they belong to the category B. This category is further divided as follows:
If they made more than 200 sales per year, their salary is 200.000, 00 per year. If they made
less than 200 sales per year, their salary is 150.000, 00 per year. This model can be described
by a decision tree. Yepes$

< §lpa 5 7

i}

<200 3MES 2004 Sougg

FHEY] ﬁl “'I“
“1" ’ Uiy 1)
100,09 j E“’f
1§9.00 200.00
One can see, that the predictor space is divided as

sates 5

% b2
200 R i E

22
!

] - 5 YEaRS

¢ Here “T” denotes Terminal Nodes
e Here “I” denotes Internal Nodes
¢ Segments, that connect nodes-are called branches

Apparently, some features are more important than others. In our example the years of
experience are more important, than the sales made- if the experience is less then 5 years, the
salary is determined, no matter-how many sales are made.

A general approach:

¢ One divides a predictor space into non overlapping regions Ry, B3, .., R;.
o To every observation that falls into a region R; one assigns the same prediction, which
is a mean response for the training observation in R;.
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We divide the feature space into baxes Ry, Ry, .., R;, so that RSS is minimal

J
Z Z (yz - QRJ')2

j=l4i€Ry

Each split produces two new branches (a binary split).

We perform the best split at each particular step {X|X; < s} and {X|X; > s}, so that we
get the best reduction in RSS. We consider all possible predictors X, and all possible s and
choose the relevant feature X; and the value of s so that RSS is minimal.

Yor any j and s we define a pair of half planes '

Rl(j:'s) = {XIXJ < 3}? RZ(jrs) = {X|XJ < S}
and seek for the values of § and s so that minimize the expression

> wW-im+ >, (W iR

iz €R1(4,8) i€ Ra(j,s)

9, is & mean response for the training observations in £;(j, s) and §g, is a mean response
for the training observations in Ro(f,s). Therefore, instead of splitting the entire predictor
space, we split one of the two previously identified regions.

Another example : Y, « A
I~
L)

;’_‘l‘f h | Mgk

ﬂl T 3‘;

Corresponding predictor space is divided as

A

A K

x
-1 5
&

en | | st

W
W

! JF'IS ?
In order te avoid over fitting, one can proceed as follows. Start with building a large tree
Ty and then consider a sequence of trees (sub trees), indexed by a parameter . For each



NOTES FOR THE INTRODUCTION TO MACHINE LEARNING : 17

value of & we have a sub- tree T' C Tp, such that

||
> Z (% — 9»,;)" + [T
m=L,1 {€R;

is as small as possible. Here |7} is a number of terminal nodes in the tree T. As o grows we
have less terminal nodes.

12.2. Classification. The classification trees are very similar to regression trees. As usual
in classification problems we predict a qualitative response. Therefore, an observation which
belongs to a particular box is assigned to the most commeon class for the training response in
this box. ,
To measure a classification error one usually uses either the Gini index or cross entropy.
Suppose we have K classes (outcomes). We divided our predictor space into the regions
e The Gini index

K
G= Zﬁmk(l _iamk)

k=1
where P, is a proportion of training observations in the m region that are from %
class.
¢ Cross entropy
K
D == Pk fms
k=1

Since 0 < Pmi < 1, one has 0 £ D. Apparently D is close to zero if P,y is close to zero or
close to one. This means that the mth region (node) is “pure”. -

13. RANDOM FORESTS

At Random Forrest algorithm one considers as subset of m elements and not all predictors,
before performing a split. each time the split is performing by using only one out of these m
predictors.

The reason behind this as follows: Suppose among the predictors, there is one strong
predictor and a few moderately strong ones. Then each time the split will be performed by
using the one strong predictor as a top split. Then all possible trees will lock the same.

14. SUPPORT VECTOR MACHINES

14.1. A hyperplane. On a two dimensional plane with coordinates X1 and X, one can define
a line using the following equation

Bo+ X1+ BaX2=10
Let us generalise this to p dimensions. In a p- dimensional setting a similar equation

Bo+BrXi+ ...+ BpXp=0
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defines a p — 1 dimensional hyperplane.
If a point with coordinates (X1, Xs,..X,) satisfies

Bo + X1+ .5 Xp >0,

then the point lies on one side of the hyperplane.
If a point with coordinates (X1, X3,..X},) satisfies

Bo + 1 X1 + ...ﬁpo < 0,

then the point lies on thie other side of the hyperplane.

14.2. Classification. The data Xj; are represented is n x p data matrix, with n training
observations and p features

T11 Tnl

T1p Lnp

Suppose that the observations fall into two classes, i.e., y1,¥2,.., ¥ € {-1,1}
The test observation is

z* = (a1, .., Tp)

Suppose we can construct a hyperplane, that separates the. classes perfectly

Bo+ Bz + ...+ Bpzip >0, if yi=11

Bo+ Bz + ..+ Bpxip >0, if y=-1
This means that the separation has a property
vi{Bo + Przi1 + .. + BpTip) > 0

foralli=1,..,n.

14.3. A classifier. A test observation is assigned a class, according on which side of the
hyperplane it is located, The magnitude of

f(@*) = Bo+ PraT + .. + Bpzy,

defines how far form the hyperplane the observation is located. The bigger is the magnitude,
mere confident we are, that its class is correctly identified.
If data points are perfectly separated there are infinitely many such dividing hyperplanes.
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14.4. Maximal Margin Hyperplane. Let us compute a perpendicular distance of each
training instance to the hyperplane. The smallest such distance is called margin. Maximal

Margin Hyperplane is a hyperplane for which the margin is maximal.
We can classify a test observation according to on which side of the Maximal Margin

Iyperplane it is. This is called Maximal Margin Classifier.
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The vectors 1,2,3,4, 5 are called support vectors.

14.5. How to construct. We consider an optimization problem:

* We have z1,...,z, € RP training observations and the class labels are y1,...,y, €

A{=L1}
¢ We maximize the margin M by choosing the parameters &g, f1,...0p
o Subject to constraints

P
> 5=
i=1

e and
yi(Bo + Prmir + .. + Bpzip) = M
foralli=1,..,n
It can be shown, that the perpendicular distance form 7 th observation to the hyperplane 1s

given by
yi{Bo + Brzin + ... + Boip)

14.6. Support Vector Classifier. Support Vector Classifier is a generalization of the Maxi-
mal Margin Classifier to the Case of non-separable data. We consider an optimization problem:

o We have x1,...,2n, € RP training observations and the class labels are y1,...,yn €

{-1;1}
» We maximize the margin M by choosing the parameters 8y, 81, ...0, and €1, ...,

* Subject to constraints

P
> =1
j=1
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o and
Yi(Bo + Brzin + .. + Bpzip) = M(1 —¢)
foralli=1,..,n
Here

e C > 0 is a training parameter
e M is a width of the margin
e The variables'ey, ..., & are subject to

n
Zei <C, and >0
i=1

that allow an individual observation to be on a wrong side of the dividing hyperplane

We classify the test variable according to the sign of

(&) = o+ Pral + ... + Bpm;

The parameter C' determines a number and severity of viclation of the margin
If C =0, there is no budget for violation.
¢ There are no more than C violations allowed

e Small C means low bias and high variance

14.7. Non-linear decision boundaries. For non-linear decision boundaries the situation is
very similar to the linear ones, but now we have

s Foralli=1,...,n

P P
vi | Po+ Z Bz + Zﬂjzx% > M(l-¢)

j=1 j=1
e Subject to

j=1 k=1 =1

14.8. Kernel. The solution of support vector classifier depends only on inner products. Inner

product is defined as
P

(@i, ) = Y migwwr;
j=1
Linear support vector classifier is represented as

f(z) = Bo+ Z iz, T3)

i=1

We have (;) inner products.
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Each time when the inner product appears we replace it with
K (i, 2y)

which is a function of the inner product. This function is called a Kernel

¢ For support vector classifier
P
Kz, @) =Y _ @ijw;
J=i

o One of the most popular Kernels is the radial Kernel

P
K(zi,xy) =exp | — Z(wz‘j — zy5)?
j=l

where v is a parameter.

The kernel has a local behaviour: only the nearby points contribute to the decision on to
which class the observation belongs.

15. K-MEANS CLUSTERING

15.1. Supervised vs. Unsupervised Learning. Suppose we have a data from supermar-
ket: customers who bye a tea of a bran A usually bye a cake of a brand A and a mineral
water of brand A. Customers who bye a tea of a brand B usually bye a cake of a brand B
and mineral water of brand B. This is an example of unsupervised learning. Unsupervised
learning is often a part of exploratory data analysis.

s Supervised learning: For each predictor z; we have a response y;
¢ For unsupervised learning there is no.response y;

15.2. Clustering. The main purpose of clustering is to figure out on the basis of z1,..., Zn
whether the observations fall into relatively distinet groups.

In K means clustering we partition the observations into pre - specified number of clusters
Let Cy, ..., Ck be sets containing indices of each cluster. We have

e C1UCY,..,UCK = 1,...,n i.e., each observation belongs to one of the clusters
o Cx N Cx = 0 ie., the clusters are not overlapping.

We would like to partition the data in such a way that Within Cluster Variation W{(Cy)

P
W(Ck) = Icl—Kl Z Z(fﬂij - $i'j)2

Hwi'eey 7=1

is minimal. Here € is a number of observations in the cluster.
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15.3. Elbow method. We would like to determine the best number of clusters. One pos-
sibility is to plot within the cluster variation or within the cluster sum of squares (WCSS-
the same as the within the cluster variation, without dividing by C) versus the number of
clusters. More clusters we have the less WCSS is. Apparently, the minimal value is zero,
when each data point becomes its own cluster and that is not what we need. We use the
elbow method. For example, suppose the plot looks like:

wess /

”

T 1 % 4§ 6 3 K

In this example the best number of clusters is K = 5, because at this value of K the plots
looks like an elbow.

-16. AGGLOMERATIVE HIERARCHICAL CLUSTERING

16.1. The algorithm. In hierarchical clustering we determine the clusters using so called
dendograms.

The algorithm goes as follows

¢ Make each point as an individual cluster

e Take two closest data points and make them one cluster

o Take two closest clusters and make them one cluster

* Repeat the third step, until entire data will form one cluster

The question “How we define the distance between clusters” can be answered in different
ways.

-

16.2. Linkage. The distance between the clusters can be defined in a different way. First,
we understand a “distance” as and Eucledean distance. For example, the distance between
two points with coordinates (z1,11) and (z2,y2) is

d = /(21 — x2)? + (g1 — y2)?

The distance between clusters can be a distance between:

e Centroid: A distance between centroids (which is analogous to the center of mass of
the system in physics)

e Average: One computes all pairwise distances in the cluster A and cluster B and then
takes average

e Average: One computes all pairwise distances in the cluster A and cluster B and then
takes the smallest one
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o Average: One computes all pairwise distances in the cluster 4 and cluster B and then
takes the bigest one '

An Example: = . .
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Corresponding dendogram is -
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Vertical lines represent distance between clusters.

16.3. Number of clusters. One way to obtain the best number of clusters is as follows:

¢ We extend all horizontal lines
o Choose the tallest vertical line. The number how many times it is crossed by any
horizontal line is the best number of clusters

The number of clusters is two in the example above.

16.4. Issues with clustering. .
With K-means:

¢ How many clusters to choose
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With the Hierarchical Clustering:

¢ What is the dissimilarity measure?
s What is the linkage?
¢ Where to cut dendograms?

With both

¢ Should we standardize observables or features in some way?

17. PRINCIPAL COMPONENT ANALYSIS

Usually the data contains many features. One can say, that the variables live in a p-
dimensional space. But not all of these features are equally interesting: the output does not
vary equally along all features. Therefore, we choose the components {called principal com-
ponents) along which the variance is the biggest, i.e., we perform the dimensional reduction.

The first principal component is defined as a normalized linear combination:

P
Zy = ¢uz + $ra2a + . + G1pTy, with > ¢ =
i=1

In order to find a principal component, we solve the optimization problem. Let us assume
that each component of X has a mean zero We write all possible linear combinations

P
Zil = ¢ui + dntiz + oo + ¢ XKip,  with Z¢§1 =
=t

and then find such ¢;1, so that the variance

2

1l [ &
=2 | 2 dnzy
n
i=1 \j=1
is maximal. The coefficients ¢;1 tells us what “portion” of the feature z;; contributes to the

principal component, to the highest variance.
The second principal component

Ziz = ¢12za + ¢2%iz + ... + $p2Xip,

is a linear combination of the z;p, that has the highest variance out of the ones that is left.
Also this linear combination is not correlated with the first principal component.

Therefore, we have two vectors: The first principal component Z; = (¢11, @21, .., $p1) and
Zy = ($12, $22, .., Pp2). These two vectors turn out to be orthogonal to each other.



