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How do you characterize graphs? What to measure?

https://en.wikipedia.org/wiki/Connectivity_(graph_theory)

https://physics-complex-systems.fr/complex-networks.html

https://radiocrafts.com/why-is-multicasting-becoming-essential-for-mesh-networks/



module belong. We find that most modules contain metabolites
mostly from one major pathway. For example, in 17 of the 19
modules identified for E. coli, more than one-third of the metabo-
lites belong to a single pathway. Interestingly, some other mod-
ules—two in the case of E. coli—cannot be trivially associated with a
single traditional pathway. Thesemodules are typically central in the
metabolism and contain, mostly, metabolites that are classified in
KEGG as belonging to carbohydrate and amino-acid metabolism.
Next we identify the role of each metabolite. In Fig. 2b we show

the roles identified in the metabolic network of E. coli. Other
organisms show a similar distribution of the nodes in the different
roles, even though they correspond to organisms that are very
distant from an evolutionary standpoint (see Supplementary Infor-
mation). Role R1, which contains ultra-peripheral metabolites with
small degree and no between-module links, comprises 76–86%of all
the metabolites in the networks. This considerably simplifies the
coarse-grained representation of the network as these nodes do not
need to be identified separately. Note that this finding alone
represents an important step towards the goal of extracting scale-
specific information from complex networks.
The information about modules and roles enables us to build

a cartographic representation of the metabolic network of, for
example, E. coli (Fig. 3). This representation enables us to recover
relevant biological information. For instance, we find that the
metabolism is mostly organized around the module containing
pyruvate, which in turn is strongly connected to the module whose
hub is acetyl-coenzyme A (CoA). These two molecules are key to
connecting themetabolism of carbohydrates, amino acids and lipids
to the tricarboxylic acid (TCA) cycle from which ATP is obtained.

These two modules are connected to more peripheral ones by key
metabolites such as D-glyceraldehyde 3-phosphate and D-fructose
6-phosphate (which connect to the glucose and galactose metabo-
lisms), D-ribose 5-phosphate (which connects to the metabolism of
certain nucleotides), and glycerone phosphate (which connects to
the metabolism of certain lipids).

Our analysis also uncovers nodes with key connector roles that
take part in only a small but fundamental set of reactions. For
example,N-carbamoyl-L-aspartate takes part in only three reactions
but is vital because it connects the pyrimidine metabolism, whose
hub is uracil, to the core of the metabolism through the alanine and
aspartate metabolism. The potential importance of such non-hub
connectors points to another consideration. It is a plausible
hypothesis that nodes with different roles are under different
evolutionary constraints and pressures. In particular, we expect
that nodes with structurally relevant roles are more necessary and
therefore more conserved across species.

To quantify the relation between roles and conservation, we
define the loss rate p lost(R) (see Methods). Structurally relevant
roles are expected to have low values of p lost(R) and vice versa. We
find that the different roles have different loss rates (Fig. 4). As
expected, ultra-peripheral nodes (role R1) have the highest loss rate
whereas connector hubs (role R6) are the most conserved across all
species considered.

The results for the comparison of p lost(R) for ultra-peripheral
nodes and connector hubs is illustrative, but hardly surprising. The
comparison of p lost(R) for non-hub connectors (role R3) and
provincial hubs (role R5), however, yields a surprising finding. The
metabolites in the provincial hubs class have many within-module

Figure 3 Cartographic representation of the metabolic network of E. coli. Each circle
represents a module and is coloured according to the KEGG pathway classification of the

metabolites it contains. Certain important nodes are depicted as triangles (non-hub

connectors), hexagons (connector hubs) and squares (provincial hubs). Interactions

between modules and nodes are depicted using lines, with thickness proportional to the

number of actual links. Inset: metabolic network of E. coli, which contains 473metabolites

and 574 links. This representation was obtained using the program Pajek. Each node is

coloured according to the ‘main’ colour of its module, as obtained from the cartographic

representation.
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Metabolic network of E. coli (Guimera and Amaral 2005)
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FIG. 10: Illustration of the use of the community structure algorithm to make sense of a complex network. (a) The initial
network is a network of coauthorships between physicists who have published on topics related to networks. The figure shows
only the largest component of the network, which contains 145 scientists. There are 90 more scientists in smaller components,
which are not shown. (b) Application of the shortest-path betweenness version of the community structure algorithm produces
the communities shown by the colors. (c) A coarse-graining of the network in which each community is represented by a single
node, with edges representing collaborations between communities. The thickness of the edges is proportional to the number
of pairs of collaborators between communities. Clearly panel (c) reveals much that is not easily seen in the original network of
panel (a).

Co-authorship (Newman et al 2003 )

Protein structure (Suzuki and Yura 2016)

How do you characterize graphs? What to measure?
(Q. does network topology represent/affect dynamics?)

US electricity grid (Global Energy Network Institute)



Concepts and terminology

• Vertex (node), edge (link), loop
• Subgraph
• Degree
• Path
• Directed vs undirected graph
• Weighted graph
• Classical graph examples



What is a graph

• G = (V, E) where V: a set of vertices, E: a set of edges

• Vertex (node), edge (link), loop
• Subgraph



Degree (of a vertex)

• The number of edges linked to a vertex
• Degree distribution
• (Degree centrality)



Paths

A (finite or infinite) sequence of edges which joins a sequence of 
vertices which are (by most definitions) all distinct.

- Average shortest path length
- Diameter



Directed vs undirected graph



Weighted graph



Classical graph examples

Examples
• Complete networks
• Random networks (Erdős–Rényi model); G(n,M) and G(n,p) versions
• Small-world networks (Watts-Strogatz model)

e.g. social networks, neural system in C. elegance, electricity network in the US, 
collaboration network of Hollywood actors

• Scale-free network (Barabási–Albert model) 
e.g. WWW



A little more advanced concepts

• Trees and forests
Tree: an undirected graph in which any two vertices are connected by 
exactly one path.
Forest: an undirected graph in which any two vertices are connected 
by at most one path, or equivalently an acyclic undirected path.
• Minimum spanning tree

These edges, a subset of the edges of the connected graph, connect all the vertices.

https://en.wikipedia.org/wiki/Minimum_spanning_tree



A little more

• Components 
(strongly, weakly connected components)

https://en.wikipedia.org/wiki/Component_(graph_theory)

• Connectivity: an interest we may have in graph theory is whether 
nodes are connected or disconnected.

https://en.wikipedia.org/wiki/Connectivity_(graph_theory)
https://en.wikipedia.org/wiki/Strongly_connected_component



Link between dynamics and network topology

• In social networks (small-world-like networks), friends of friends are 
likely to be friends: High Transitivity à information diffusion is fast
• Metrics introduced: 

Transitivity = 3 # of closed triplets
# of all triplets (open and closed)

= Your friends are friends
# of a group of three people connected directly or indirectly

• Features in small-world networks
- Average shortest path length
- Transitivity (*clustering coefficient)

Nature © Macmillan Publishers Ltd 1998
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removed from a clustered neighbourhood to make a short cut has, at
most, a linear effect on C; hence C(p) remains practically unchanged
for small p even though L(p) drops rapidly. The important implica-
tion here is that at the local level (as reflected by C(p)), the transition
to a small world is almost undetectable. To check the robustness of
these results, we have tested many different types of initial regular
graphs, as well as different algorithms for random rewiring, and all
give qualitatively similar results. The only requirement is that the
rewired edges must typically connect vertices that would otherwise
be much farther apart than Lrandom.

The idealized construction above reveals the key role of short
cuts. It suggests that the small-world phenomenon might be
common in sparse networks with many vertices, as even a tiny
fraction of short cuts would suffice. To test this idea, we have
computed L and C for the collaboration graph of actors in feature
films (generated from data available at http://us.imdb.com), the
electrical power grid of the western United States, and the neural
network of the nematode worm C. elegans17. All three graphs are of
scientific interest. The graph of film actors is a surrogate for a social
network18, with the advantage of being much more easily specified.
It is also akin to the graph of mathematical collaborations centred,
traditionally, on P. Erdös (partial data available at http://
www.acs.oakland.edu/,grossman/erdoshp.html). The graph of
the power grid is relevant to the efficiency and robustness of
power networks19. And C. elegans is the sole example of a completely
mapped neural network.

Table 1 shows that all three graphs are small-world networks.
These examples were not hand-picked; they were chosen because of
their inherent interest and because complete wiring diagrams were
available. Thus the small-world phenomenon is not merely a
curiosity of social networks13,14 nor an artefact of an idealized

model—it is probably generic for many large, sparse networks
found in nature.

We now investigate the functional significance of small-world
connectivity for dynamical systems. Our test case is a deliberately
simplified model for the spread of an infectious disease. The
population structure is modelled by the family of graphs described
in Fig. 1. At time t ¼ 0, a single infective individual is introduced
into an otherwise healthy population. Infective individuals are
removed permanently (by immunity or death) after a period of
sickness that lasts one unit of dimensionless time. During this time,
each infective individual can infect each of its healthy neighbours
with probability r. On subsequent time steps, the disease spreads
along the edges of the graph until it either infects the entire
population, or it dies out, having infected some fraction of the
population in the process.

p = 0 p = 1 
Increasing randomness

Regular Small-world Random

Figure 1 Random rewiring procedure for interpolating between a regular ring

lattice and a random network, without altering the number of vertices or edges in

the graph. We start with a ring of n vertices, each connected to its k nearest

neighbours by undirected edges. (For clarity, n ¼ 20 and k ¼ 4 in the schematic

examples shown here, but much larger n and k are used in the rest of this Letter.)

We choose a vertex and the edge that connects it to its nearest neighbour in a

clockwise sense. With probability p, we reconnect this edge to a vertex chosen

uniformly at random over the entire ring, with duplicate edges forbidden; other-

wise we leave the edge in place. We repeat this process by moving clockwise

around the ring, considering each vertex in turn until one lap is completed. Next,

we consider the edges that connect vertices to their second-nearest neighbours

clockwise. As before, we randomly rewire each of these edges with probability p,

and continue this process, circulating around the ring and proceeding outward to

more distant neighbours after each lap, until each edge in the original lattice has

been considered once. (As there are nk/2 edges in the entire graph, the rewiring

process stops after k/2 laps.) Three realizations of this process are shown, for

different values of p. For p ¼ 0, the original ring is unchanged; as p increases, the

graph becomes increasingly disordered until for p ¼ 1, all edges are rewired

randomly. One of our main results is that for intermediate values of p, the graph is

a small-world network: highly clustered like a regular graph, yet with small

characteristic path length, like a random graph. (See Fig. 2.)

Table 1 Empirical examples of small-world networks

Lactual Lrandom Cactual Crandom
.............................................................................................................................................................................
Film actors 3.65 2.99 0.79 0.00027
Power grid 18.7 12.4 0.080 0.005
C. elegans 2.65 2.25 0.28 0.05
.............................................................................................................................................................................
Characteristic path length L and clustering coefficient C for three real networks, compared
to random graphs with the same number of vertices (n) and average number of edges per
vertex (k). (Actors: n ¼ 225;226, k ¼ 61. Power grid: n ¼ 4;941, k ¼ 2:67. C. elegans: n ¼ 282,
k ¼ 14.) The graphs are defined as follows. Two actors are joined by an edge if they have
acted in a film together. We restrict attention to the giant connected component16 of this
graph, which includes ,90% of all actors listed in the Internet Movie Database (available at
http://us.imdb.com), as of April 1997. For the power grid, vertices represent generators,
transformers and substations, and edges represent high-voltage transmission lines
between them. For C. elegans, an edge joins two neurons if they are connected by either
a synapse or a gap junction. We treat all edges as undirected and unweighted, and all
vertices as identical, recognizing that these are crude approximations. All three networks
show the small-world phenomenon: L ) Lrandom but C q Crandom.
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Figure 2 Characteristic path length L(p) and clustering coefficient C(p) for the

family of randomly rewired graphs described in Fig. 1. Here L is defined as the

number of edges in the shortest path between two vertices, averaged over all

pairs of vertices. The clustering coefficient C(p) is defined as follows. Suppose

that a vertex v has kv neighbours; then at most kvðkv 2 1Þ=2 edges can exist

between them (this occurs when every neighbour of v is connected to everyother

neighbour of v). Let Cv denote the fraction of these allowable edges that actually

exist. Define C as the average of Cv over all v. For friendship networks, these

statistics have intuitive meanings: L is the average number of friendships in the

shortest chain connecting two people; Cv reflects the extent to which friends of v

are also friends of each other; and thus C measures the cliquishness of a typical

friendship circle. The data shown in the figure are averages over 20 random

realizations of the rewiring process described in Fig.1, and have been normalized

by the values L(0), C(0) for a regular lattice. All the graphs have n ¼ 1;000 vertices

and an average degree of k ¼ 10 edges per vertex. We note that a logarithmic

horizontal scale has been used to resolve the rapid drop in L(p), corresponding to

the onset of the small-world phenomenon. During this drop, C(p) remains almost

constant at its value for the regular lattice, indicating that the transition to a small

world is almost undetectable at the local level.

(Watts and Strogatz 1998 Nature)



Exercise (coding! Coding!!)
• https://colab.research.google.com/drive/1l0FZdYtdxJO4N6X-

pJBH1cCRG9WGlwjL?usp=sharing

• Networkx (version 2.5) documentation 
https://networkx.org/documentation/stable/reference/index.html#

• Julia package LightGraphs https://juliagraphs.org/LightGraphs.jl/latest/

• R package igraph https://igraph.org/r/

https://colab.research.google.com/drive/1l0FZdYtdxJO4N6X-pJBH1cCRG9WGlwjL?usp=sharing
https://networkx.org/documentation/stable/reference/index.html
https://juliagraphs.org/LightGraphs.jl/latest/
https://igraph.org/r/

