
Jeremie Gillet

Mini Course: Functional 
Programming
Session 1: Haskell syntax, functions



• Session 1:


• Haskell syntax


• Pure functions


• Function composition


• Currying 


• Session 2:


• Pattern Matching


• Recursion


• Folds


• Maybe


• Session 3:


• Immutability


• Laziness


• Parallelization


• Exercises


• Session 4:


• Algebraic Data Types


• Mapping over ADTs


• Reader, Writer, State...

Outline



Pattern Matching



• Pattern matching is the act of finding a specific pattern in an 
input


• In Haskell, it is fully integrated


• Exercise: ExercisesDay2, 15 minutes

Using the structure of the input
Pattern matching



Recursion



• No for or while control structures in FP


• Instead, use recursion


• Functions that call themselves, breaking into smaller pieces until base 
case


• Exercise: ExercisesDay2, 15 minutes 


• Tail recursion


• Tail recursive if final call of the function returns the value itself


• Can avoid using adding a frame to the stack => equivalent to a loop


• Haskell optimizes tail calls automatically 

No loop in FP
Recursion



Folds



• A fold is a higher order function that processes a data structure 
and returns a value


• In Haskell: foldl, foldr, foldl1, foldr1, scanl, scanr, scanl1, scanr1


• Note the difference in types: (b -> a -> b) for left and (a -> b -> b) 
for right, b is the “accumulator”


• Example: sum = foldr (+) 0


• foldl f a [b, c, d] = f (f (f a b) c) d) 
foldr f e [b, c, d] = f b (f c (f d e))


• Exercise: ExercisesDay2, 20 minutes

Aggregating your data
Folds



Maybe



• Computations may fail, let them do so gracefully 


• Two possible values for Maybe a: Nothing and Just a


• You can compose with “regular” functions using fmap


• You can compose with “failable” functions using <=<


• You can compose several “failable” functions with liftM


• Exercise: ExercisesDay2, until the end

Basic FP Error handling
Maybe


