
Functional Programming

Vsevolod Nikulin

Okinawa Institute of Science and Technology

vsevolod.nikulin@oist.jp

November 26, 2020

Vsevolod Nikulin (OIST) Functional Programming November 26, 2020 1 / 19

Overview

1 Algebraic Data Types

2 Monads

Vsevolod Nikulin (OIST) Functional Programming November 26, 2020 2 / 19

Algebraic Data Types

Vsevolod Nikulin (OIST) Functional Programming November 26, 2020 3 / 19

Type Definitions

New types are defined with keyword data.

Example: The simplest type

data Singleton = Unit

Here Singleton is a type constructor and
Unit is a data constructor. It is a legal term.

GHCi session

let x = Unit
: t x

Vsevolod Nikulin (OIST) Functional Programming November 26, 2020 4 / 19

Sum Type

We can define more then one data constructor for a new type.

Example: Simple sum type

data Bool = True | False
data Four = Zero | One | Two | Three

Built-in type Bool is defined exactly in this way.

Vsevolod Nikulin (OIST) Functional Programming November 26, 2020 5 / 19

Product Type

Type for Cartesian product of types. Can be thought as a tuple of
elements of given types.

Example: Product Types

data SingleInt = SingleInt Int
data PairInt = PairInt Int Int
data TripleInt = TripleInt Int Int Int

Now data constructor is a curried function from appropriate number of
elements of appropriate type we want to define:

GHCi session

: t TripleInt

Vsevolod Nikulin (OIST) Functional Programming November 26, 2020 6 / 19

Exponential Types

Remember, functions are first-class citizens. Therefore, they have types.

Example: Exponential Types

data AlgebraInt = AlgebraInt (PairInt −> Int)

In general, data constructors are functions from any given type to the type
you define.

Vsevolod Nikulin (OIST) Functional Programming November 26, 2020 7 / 19

Defining functions on custom types

There is only one way to define functions on custom types:
pattern-matching

Example: Pattern-matching on custom types

not True = False
not False = True

True && True = True
&& = False

add :: PairInt −> Int
add (PairInt x y) = x + y

curry algebra :: AlgebraInt −> Int −> Int −> Int
curry algebra (AlgebraInt f) x y = f (PairInt x y)

Vsevolod Nikulin (OIST) Functional Programming November 26, 2020 8 / 19

Polymorphic types

We also can define families of types.

Example: Maybe

data Maybe a = Nothing | Just a
data Either a b = Left a | Right b

a and b are parameters.
Maybe and Either act similar to functions, but on types.
”Types of types” are called kinds

GHCi session

:k Int
:k Maybe
:k Either
:k Either String Int

Vsevolod Nikulin (OIST) Functional Programming November 26, 2020 9 / 19

Recursive types

We define types using other types. It is also possible to define a type in
terms of itself!

Example: List

data List a = Nil | Cons a (List a)

Example: Some Functions on Lists

head’ (Cons x) = x
tail ’ (Cons xs) = xs
length’ Nil = 0
length’ (Cons xs) = 1 + (length’ xs)

Vsevolod Nikulin (OIST) Functional Programming November 26, 2020 10 / 19

Exercises

Vsevolod Nikulin (OIST) Functional Programming November 26, 2020 11 / 19

Monads

Vsevolod Nikulin (OIST) Functional Programming November 26, 2020 12 / 19

Imperative programming

We can easily write functional programs in imperative languages.
Can we write imperative programs in Haskell? Yes we can!
First, recall operator ”apply” and define operator ”bind”:

Definition of bind

($) :: (a −> b) −> a −> b
f $ x = f x

(>>=) :: a −> (a −> b) −> b
(>>=) = flip ($)

The following terms are identical

f $ x
x >>= f

Vsevolod Nikulin (OIST) Functional Programming November 26, 2020 13 / 19

Imperative programming is back!

Looks like imperative programs!

Python

def f(x):
y = 1
z = y // x
return z∗z

Haskell

f x = 1 >>= (\y −>
(y ‘div‘ x) >>= (\z −>
z∗z))

There is a special syntactic sugar for these constructions. Will cover later!
Also, let ... in ... could be used for this purpose:

Haskell

f x = let y = 1 in
(y ‘div‘ x) >>= (\z −>
z∗z)

Vsevolod Nikulin (OIST) Functional Programming November 26, 2020 14 / 19

Maybe, revisited

Suppose we live in a universe where all functions instead of returning
values of type a return values of type Maybe a. Lets define bind for such
universe.

bind for Maybe

(>>=) :: Maybe a −> (a −> Maybe b) −> Maybe b
(Just x) >>= f = f x
Nothing >>= f = Nothing

We also want to lift functions from our ordinary universe to Maybe
universe. It is enough to just lift values of type a to type Maybe a. The
function is called return.

return for Maybe

return :: a −> Maybe a
return x = Just x

Vsevolod Nikulin (OIST) Functional Programming November 26, 2020 15 / 19

Maybe, example

Example: Safe division

safeDiv :: Int −> Int −> Maybe Int
safeDiv 0 = Nothing
safeDiv x y = Just (x ‘div‘ y)

Then rewrite the imperative example with safe division:

Example: Usage of Maybe monad

f x = let y = 1 in
(y ‘ safeDiv ‘ x) >>= (\z −>
return z∗z)

Vsevolod Nikulin (OIST) Functional Programming November 26, 2020 16 / 19

Monad

If you have bind and return defined with the following signature

General signature for bind and return

(>>=) :: m a −> (a −> m b) −> m b
return :: a −> m a

Where m is some polymorphic type of kind ∗− > ∗. Such type together
with these functions is called Monad.
Then you can use special syntactic sugar called do notation.

Example: do notation

f x = do
let y = 1
z <− y ‘safeDiv‘ x
return z∗z

Example: without do notation

f x = let y = 1 in
(y ‘ safeDiv ‘ x) >>= (\z −>
return z∗z)

Vsevolod Nikulin (OIST) Functional Programming November 26, 2020 17 / 19

Some Other Monads

Writer is a Monad for ”things with description”.

Writer Type

data Writer a = Writer a String

Reader is a Monad for ”things which depend on shared environment”.

Reader Type

data Reader e a = Reader (e −> a)

State is a Monad for ”things which depend on some state and may modify
that state”.

State Type

data State s a = State (s −> (a, s))

Vsevolod Nikulin (OIST) Functional Programming November 26, 2020 18 / 19

The End

Vsevolod Nikulin (OIST) Functional Programming November 26, 2020 19 / 19

	Algebraic Data Types
	Monads

