
Functional Programming

Vsevolod Nikulin

Okinawa Institute of Science and Technology

vsevolod.nikulin@oist.jp

November 22, 2020

Vsevolod Nikulin (OIST) Functional Programming November 22, 2020 1 / 17

Overview

1 Immutability

2 Laziness

3 Parallelism

Vsevolod Nikulin (OIST) Functional Programming November 22, 2020 2 / 17

Immutability

Vsevolod Nikulin (OIST) Functional Programming November 22, 2020 3 / 17

Immutability

Imperative programming languages:

Commands executed one after another

There are variables

Variables are changed (mutated) by commands

Purely functional programming languages:

There are terms (expressions)

Terms are written using other terms

Terms are evaluated only once

No ”Variables”, therefore no mutation

Example: Terms

2+2
\x −> 2∗x
(\x −> 2∗x) (2 + 2)

Vsevolod Nikulin (OIST) Functional Programming November 22, 2020 4 / 17

Example: List (1)

When we want to ”change” a list, we actually create an entire new list
based on the old one.

Example: Apply function to the head of a list

apply head f x:xs = (f x) : xs

But don’t worry! No unnecessary copying under the hood of compiled
program:

x

x

f x

apply_head f

Vsevolod Nikulin (OIST) Functional Programming November 22, 2020 5 / 17

Example: List (2)

When it useful:

Example: Shared term

do two lists (x1 : x1s) (x2 : x2s) = ...
do two lists xs (apply head f xs)

No copying, if not needed. The same elements (except heads) are used in
both lists.

Vsevolod Nikulin (OIST) Functional Programming November 22, 2020 6 / 17

Advanced Example: Tree

Suppose we want to change black element of the illustrated tree

Tree Tree New Tree

Notice, here we need to copy some elements, but the number of copied
elements is proportional to the tree’s height. Very small in general!

Vsevolod Nikulin (OIST) Functional Programming November 22, 2020 7 / 17

Laziness

Vsevolod Nikulin (OIST) Functional Programming November 22, 2020 8 / 17

Short-Circuit Evaluation

Liar’s paradox

bottom :: Bool
bottom = not bottom

What will happen here?

Liar’s paradox

if 2 + 2 == 4 || bottom then ”Yes!” else ”The Matrix is Broken”

This feature is called short-circuit evaluation. Can be found in many
languages.

Vsevolod Nikulin (OIST) Functional Programming November 22, 2020 9 / 17

Laziness

However, in Haskell this applies to all expressions, not just functions on
booleans. It’s called Laziness.

Example: Laziness

const42 x = 42
const42 bottom

(Almost) Every term is evaluated (if evaluated at all) at the very last
moment when its value is actually required.

Vsevolod Nikulin (OIST) Functional Programming November 22, 2020 10 / 17

Laziness: Pros and Cons

Pros:

If some values are not required, they will not be computed at all!

Parallel computations on multiple threads are easy to implement (will
show later).

One more cool feature.

Cons:

Sometimes a long stack of unevaluated terms appears.

However, it is possible to change this behaviour and force computation.
Not lazy function is called strict. Moreover, Haskell compiler does some
optimization by itself.

Vsevolod Nikulin (OIST) Functional Programming November 22, 2020 11 / 17

Strictness

There is one built-in strict function with the following semantics.

Built-in strict function

seq :: a −> b −> b
seq a b = b

This function forces evaluation of it’s first argument.

GHCi session

let x = 1 + 1 :: Int
: sprint x
seq x ()
: sprint x

Vsevolod Nikulin (OIST) Functional Programming November 22, 2020 12 / 17

When laziness is actually useful

What is happening here?

Example: Laziness in full glory

ones = 1 : ones
numbers = 1 : map (+1) numbers

Check your understanding by running the following.

Example: Extracting values

take 10 numbers

Vsevolod Nikulin (OIST) Functional Programming November 22, 2020 13 / 17

Exercises

Vsevolod Nikulin (OIST) Functional Programming November 22, 2020 14 / 17

Parallelism

Vsevolod Nikulin (OIST) Functional Programming November 22, 2020 15 / 17

Multithreading

Three main features of Haskell, namely immutability, purity and laziness,
allow us to safely use the following function:

Built-in multithreading function

par :: a −> b −> b
par a b = b

This function is semantically identical to seq. However, it sparks a new
thread for evaluation of its first argument.

Example: Parallelism

par x (f x)

For example, we can evaluate function and it’s argument at the same
time.

Vsevolod Nikulin (OIST) Functional Programming November 22, 2020 16 / 17

The End

Vsevolod Nikulin (OIST) Functional Programming November 22, 2020 17 / 17

	Immutability
	Laziness
	Parallelism

