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Kähler  ⟷  Complex Structure

A-branes  ⟷  B-branes

 Mirror duality applies also to D-brane sector

D-branes wrapped 
on special lagrangian 

3-cycles

“B-branes”
In large volume limit, 

D-branes on holomorphic 
cycles, with holomorphic (and 
stable) gauge vector bundles

In other regimes, 
description has no geometric 

counterpart
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induced D3-brane charge

Z

D5
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D5
B2 ^ C4

D4 on (1,0), (0,1) D3 at point
D5 on T2 

D4 on (n,m)
T2 with B-field 

n D5 on T2

with m unit of magnetic flux

Induced D3 charge from 
flux and B-field

n

Z

T2

F2 = m

Generalize

Z

D5
C6 +

Z

D5
(F2 �B2) ^ C4



 Extends easily to three-dimensional case

Magnetized D-branes

(n1,m1)

Bound state of 
D9s, D7s, D5s, D3s

 So continue with one-dimensional building block

D6 on

n1n2n3

Z

D9
C10 +

Z

D9
trF2 ^ C8 +

Z

D9
trF 2

2 ^ C6 +

Z

D9
trF 3

2 ^ C4

�

n1n2n3

Z

D9
C10 +

Z

D9
trF2 ^ C8 +

Z

D9
trF 2

2 ^ C6 +

Z

D9
trF 3

2 ^ C4

�

(n2,m2) (n3,m3)

n1n2n3 D9s on T2 x T2 x T2

with mi units of magnetic flux on i-th T2
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Matter multiplicity. Start with na=nb=1
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Magnetized D-branes: Matter
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Magnetized D-branes: Susy

In the T-duality relation, tan ✓ = F

Susy conditions
X

i

arctanFi = 0

In large volume IIB limit, F is diluted, 
T-dual to large compx structure in IIA, small angle

F1 + F2 + F3 = 0 i.e. F ^ J = 0

“Holomorphic and stable bundles”

Away from large volume limit, alpha’ corrections: “Pi-stability”

Actually “Holomorphic and stable sheaves”
(to allow for lower dimensional branes: skyscraper sheaf)
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 Yukawa couplings at points

Towards the SM

430 Type II compactifications: e�ective action

Figure 12.2 Schematic Yukawa coupling among three chiral fields C7i7j living at D7-brane
intersections. Each dimension represent one complex coordinate zi, i = 1, 2, 3.

and leptons often reside at D7i-D7j intersections, and the relevant Yukawa couplings
arise from the first term in W7. Using (12.40), (12.30) the supergravity formula
(12.73) gives for the physical Yukawa coupling for three intersecting D7-branes,

Yinter =
(S + S⇥)1/4

[ (T1 + T ⇥
1 )(T2 + T ⇥

2 )(T3 + T ⇥
3 ) ]

1/4
, (12.76)

for the flux-less case. Incidentally, this coupling is a geometric mean of the gauge
couplings of the three intersecting D7-branes. For the other two terms in (12.74), the
physical Yukawa couplings are (Ti + T ⇥

i )
�1/2, and hence equal the corresponding

gauge coupling constants; this is expected, as these terms are related to gauge
interactions by an enhanced N = 2 SUSY preserved by the fields involved.
For other toroidal orientifolds, the Yukawa coupling superpotentials are directly

inherited from the above, by simply truncating the fields to those surviving the
orbifold projection, as described in section 11.3.2. In particular, this truncation
applied to (12.75) leads to the superpotential (11.46), (11.50) for local systems of
D3/D7-branes at C3/ZN abelian orbifold singularities, since it involves only fields
localized at the singularity. There are also generalizations of these expressions for
D3-brane systems at toric singularities, with some terms in the D3-brane superpo-
tentials in (11.72) for the conifold and (11.77) for the dP1 theory. We will not need
to delve further into their description.

12.5.3 Type IIA orientifolds: Yukawas from disk worldsheet instantons

In the context of type IIA orientifolds, Yukawa couplings between fields living at D6-
brane intersections arise from worldsheet instantons, in a way somewhat analogous
to the Yukawa couplings in heterotic orbifolds described in section 9.3.2. These



D-term

 Orbifolds etc: D-branes at singularities

F(2,0) = 0 , Im(eJ+i(B+F ))|⇧ = 0

At large volume, reproduces Donaldson, Uhlenbeck,Yau,  slope stability, etc
[cf. heterotic on CY]

 Susy conditions: Holomorphic cycles with holomorphic & stable bundles
 Large volume: wrapped branes

F-term

Type IIB on CY orientifold with “B-branes”

Generalization
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Non-perturbative version: F-theory

 F-theory GUT local models have attracted a lot of attention, and 
shown to contain a number of phenomenological virtues

 F-theory: type IIB sugra+ localized sources ⟹ geometry

 F-theory: Geometrization of IIB with (p,q) 7-branes 
in terms of a T2 fibered CY4 with degenerate fibers
 

Singular locus is 4-cycle on base, describing 7-brane 
geometry 



F-theory GUTs

 Local models as first step previous to global embedding



F-theory GUTs

 Local models as first step previous to global embedding



F-theory GUTs

 Local models as first step previous to global embedding

 Gauge group on 4-cycles: Pick SU(5)

SU(5)



F-theory GUTs

 Local models as first step previous to global embedding

 Gauge group on 4-cycles: Pick SU(5)

SU(5)

subsequently broken by hypercharge flux
SU(5) → SU(3) x SU(2) x U(1)Y



F-theory GUTs

 Local models as first step previous to global embedding

 Gauge group on 4-cycles: Pick SU(5)

SU(5)

(ensuring no BF couplings)

subsequently broken by hypercharge flux
SU(5) → SU(3) x SU(2) x U(1)Y
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5Hd5Hu

510
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F-theory GUTs

 Local models as first step previous to global embedding

 Gauge group on 4-cycles: Pick SU(5)

5Hd5Hu

510

 Matter on 2-cycles - Representations from unfolding G→H1 x H2

Must turn on worldvolume magnetic fluxes to produce 4d chirality

Intersecting magnetized 7-brane models
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F-theory GUTs

 Local models as first step previous to global embedding

 Gauge group on 4-cycles: Pick SU(5)

5Hd5Hu

510

 Matter on 2-cycles

 Yukawas at points Also from unfolding G→H1 x H2

E6 → SU(5) x U(1) x U(1) 
78 → 24+1+1+1+1+ 10b + 10b + 5b 

+ 10 + 10 + 5

SO(12) → SU(5) x U(1) xU(1) 
66 → 24 + 1 +1+ 10b + 5 + 5

+ 10 + 5b +5b
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 Local models as first step previous to global embedding

 Gauge group on 4-cycles

 Matter on 2-cycles

 Yukawas at points Overlap of chiral matter wavefunctions

Z
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 Gauge group on 4-cycles

 Matter on 2-cycles

 Yukawas at points Heuristics

Choose local coords z, u, v for e.g. HU, QL, U

Three families: 1,u, u2 ; 1,v, v2 for QL, U

0
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1 0 0
0 0 0
0 0 0

1

A Order 1 top Yukawa. Everyone else massless

A whole industry of refinement
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Branes at singularities

 Basic branes are “fractional branes”: D-branes wrapped on 
collapsed 4- and 2-cycles

C3/Z3

 Spectrum on a set of fractional branes given by a quiver gauge theory
Toric singus: Inclusion of superpotential data using dimer diagrams
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Branes at singularities

 Dimer diagrams

Orbifold of conifold

Dictionary

Faces ⇔ Gauge factors

Edges ⇔ Bifundamental matter

Nodes ⇔ Superpotential couplings
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Branes at singularities

 SM model building with D3/D7s at singus, possible but very restrictive

 Often used to describe holographi duals of warped throats
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Why IIB models?

- F-theory models

- Flux compactifications, see lecture 4

 If just mirror of IIA, why IIB?

- Interesting by themselves

- Not always, “just mirror of IIA”


