>Panorama A

>Non-perturbative aspects

Plan

Plan

>D-brane instantons

Plan

- >D-brane instantons
- > Discrete gauge symmetries

Flash back

Tadpoles, anomalies and all that

Due to BF couplings, all 'anomalous' and some 'non-anomalous' U(1)'s become massive, with mass of order the string scale

$$\sum_{k,a} \int_{4d} B_k \wedge \operatorname{tr} F_a = -\sum_{k,a} \int_{4d} \partial_{\mu} a_k A_{\mu}^a$$

$$U(1)_{a} \qquad U(1)_{a} = m^{2}A_{u}^{2}$$

Consequences

- Impose that hypercharge generator remains massless
- Additional U(1)'s removed remain as global symmetries exact in perturbation theory
- Operators violating the latter can appear non-perturbatively D-brane instantons, see later

Flash back

Tadpoles, anomalies and all that

Due to BF couplings, all 'anomalous' and some 'non-anomalous' U(1)'s become massive, with mass of order the string scale

$$\sum_{k,a} \int_{4d} B_k \wedge \operatorname{tr} F_a = -\sum_{k,a} \int_{4d} \partial_{\mu} a_k A_{\mu}^a$$

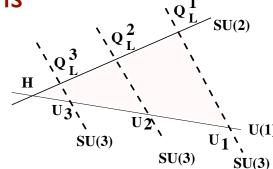
$$U(1)_{a} \qquad U(1)_{a} = m^{2}A_{u}^{2}$$

- Impose that hypercharge generator remains massless
- -Additional U(I)'s removed remain as global symmetries exact in perturbation theory
- Operators violating the latter can appear non-perturbatively D-brane instantons, see later

Couplings

Arise from worldsheet instantons

e.g. SM Yukawa couplings

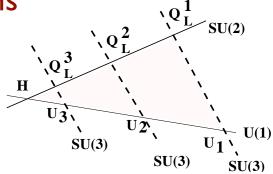


 \mathbb{P} Preserve the global symmetries associated to massive U(1)'s

Couplings

Arise from worldsheet instantons

e.g. SM Yukawa couplings

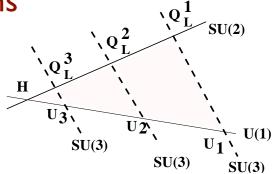


- \mathbb{P} Preserve the global symmetries associated to massive U(1)'s
- Useful to avoid e.g. proton decay....

Couplings

Arise from worldsheet instantons

e.g. SM Yukawa couplings



- \mathbb{P} Preserve the global symmetries associated to massive U(1)'s
- Useful to avoid e.g. proton decay....
- But prevent some phenomenologically interesting couplings
 - Right-handed neutrino masses
 - top quark Yukawa in SU(5) GUTs

Finy neutrino masses are nicely explained by the see-saw mechanism, which requires right-handed neutrinos with Majorana and Dirac masses

$$\lambda LH\nu_R + M\nu_R\nu_R \longrightarrow M_{\nu} \simeq \frac{\lambda^2 \langle H \rangle^2}{M}$$

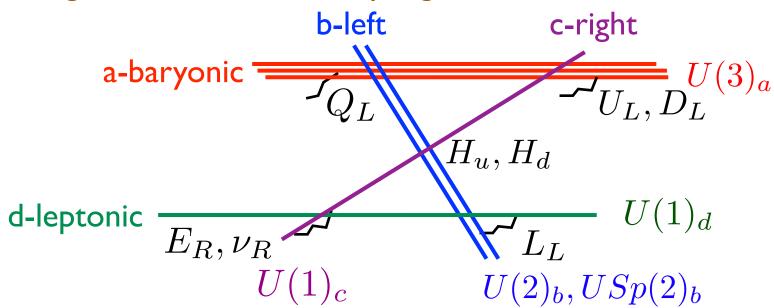
with $M_D \simeq \text{lepton mass, need } M_M \simeq 10^{11} - 10^{13} \text{GeV}$

Finy neutrino masses are nicely explained by the see-saw mechanism, which requires right-handed neutrinos with Majorana and Dirac masses

$$\lambda LH\nu_R + M\nu_R\nu_R \longrightarrow M_{\nu} \simeq \frac{\lambda^2 \langle H \rangle^2}{M}$$

with $M_D \simeq \text{lepton mass, need } M_M \simeq 10^{11} - 10^{13} \text{GeV}$

 $\mbox{\ensuremath{\wp}}$ Many semi-realistic string models contain ν_R SM singlets with Yukawa couplings to the left neutrinos

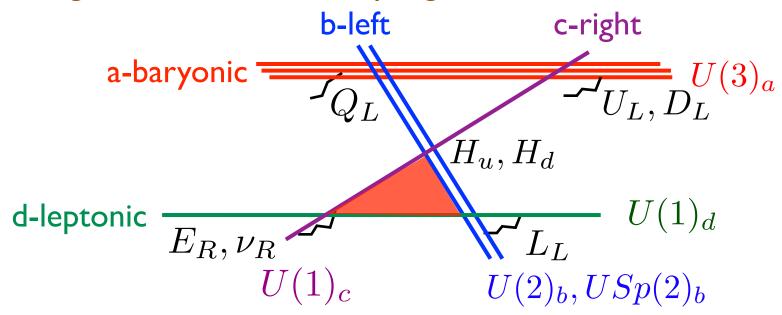


Finy neutrino masses are nicely explained by the see-saw mechanism, which requires right-handed neutrinos with Majorana and Dirac masses

$$\lambda LH\nu_R + M\nu_R\nu_R \longrightarrow M_\nu \simeq \frac{\lambda^2 \langle H \rangle^2}{M}$$

with $M_D \simeq \text{lepton mass, need } M_M \simeq 10^{11} - 10^{13} \text{GeV}$

 $\mbox{\ensuremath{\wp}}$ Many semi-realistic string models contain ν_R SM singlets with Yukawa couplings to the left neutrinos

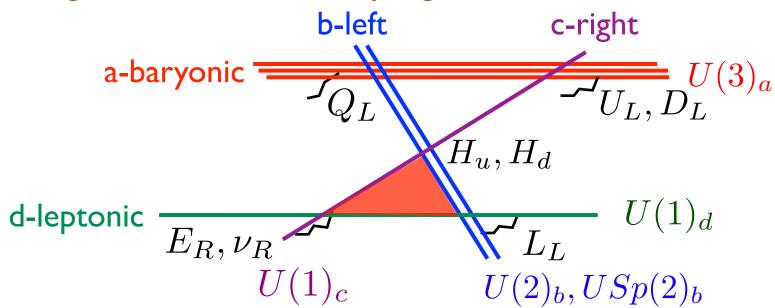


Finy neutrino masses are nicely explained by the see-saw mechanism, which requires right-handed neutrinos with Majorana and Dirac masses

$$\lambda LH\nu_R + M\nu_R\nu_R \longrightarrow M_\nu \simeq \frac{\lambda^2 \langle H \rangle^2}{M}$$

with $M_D \simeq \text{lepton mass, need } M_M \simeq 10^{11} - 10^{13} \text{GeV}$

 $\mbox{\ensuremath{\wp}}$ Many semi-realistic string models contain ν_R SM singlets with Yukawa couplings to the left neutrinos

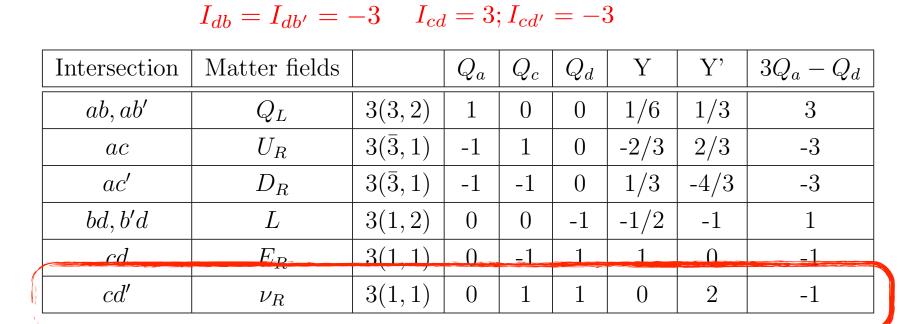


$$N_{\alpha}$$
 $(n_{\alpha}^{1}, m_{\alpha}^{1})$ $(n_{\alpha}^{2}, m_{\alpha}^{2})$ $(n_{\alpha}^{3}, m_{\alpha}^{3})$
 $N_{a} = 3$ (I,0) (I,3) (I,-3)
 $N_{b} = 1$ (0,1) (I,0) (0,-1)
 $N_{c} = 1$ (0,1) (0,-1) (I,0)
 $N_{d} = 1$ (I,0) (I,3) (I,-3)
 $I_{ab} = I_{ab'} = 3$ $I_{ac} = I_{ac'} = -3$
 $I_{db} = I_{db'} = -3$ $I_{cd} = 3; I_{cd'} = -3$

$$N_{\alpha}$$
 $(n_{\alpha}^{1}, m_{\alpha}^{1})$ $(n_{\alpha}^{2}, m_{\alpha}^{2})$ $(n_{\alpha}^{3}, m_{\alpha}^{3})$
 $N_{a} = 3$ (I,0) (I,3) (I,-3)
 $N_{b} = 1$ (0,1) (I,0) (0,-1)
 $N_{c} = 1$ (0,1) (0,-1) (1,0)
 $N_{d} = 1$ (I,0) (I,3) (I,-3)
 $I_{ab} = I_{ab'} = 3$ $I_{ac} = I_{ac'} = -3$
 $I_{db} = I_{db'} = -3$ $I_{cd} = 3; I_{cd'} = -3$

Intersection	Matter fields		Q_a	Q_c	Q_d	Y	Y'	$3Q_a - Q_d$
ab, ab'	Q_L	3(3,2)	1	0	0	1/6	1/3	3
ac	U_R	$3(\bar{3},1)$	-1	1	0	-2/3	2/3	-3
ac'	D_R	$3(\bar{3},1)$	-1	-1	0	1/3	-4/3	-3
bd, b'd	L	3(1,2)	0	0	-1	-1/2	-1	1
cd	E_R	3(1,1)	0	-1	1	1	0	-1
cd'	$ u_R$	3(1,1)	0	1	1	0	2	-1

$$N_{\alpha}$$
 $(n_{\alpha}^{1}, m_{\alpha}^{1})$ $(n_{\alpha}^{2}, m_{\alpha}^{2})$ $(n_{\alpha}^{3}, m_{\alpha}^{3})$
 $N_{a} = 3$ (I,0) (I,3) (I,-3)
 $N_{b} = 1$ (0,1) (I,0) (0,-1)
 $N_{c} = 1$ (0,1) (0,-1) (I,0)
 $N_{d} = 1$ (I,0) (I,3) (I,-3)
 $I_{ab} = I_{ab'} = 3$ $I_{ac} = I_{ac'} = -3$

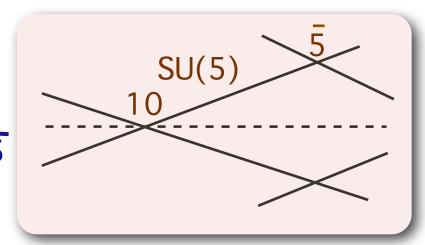


$$N_{\alpha}$$
 $(n_{\alpha}^{1}, m_{\alpha}^{1})$ $(n_{\alpha}^{2}, m_{\alpha}^{2})$ $(n_{\alpha}^{3}, m_{\alpha}^{3})$ $N_{a} = 3$ $(I,0)$ $(I,3)$ $(I,-3)$ $N_{b} = 1$ $(0,I)$ $(1,0)$ $(0,-I)$ $N_{c} = 1$ $(0,I)$ $(0,-I)$ $(1,0)$ $N_{d} = 1$ $(1,0)$ $(1,3)$ $(1,-3)$ $I_{ab} = I_{ab'} = 3$ $I_{ac} = I_{ac'} = -3$

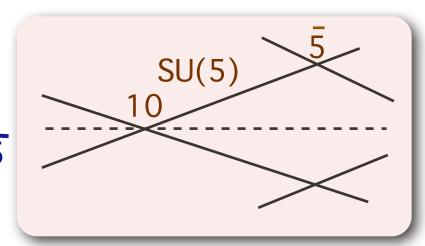
$$I_{db} = I_{db'} = -3$$
 $I_{cd} = 3; I_{cd'} = -3$
Intersection Matter fields Q_a Q_c Q_d Y Y' $3Q_a - Q_d$
 ab, ab' Q_L $3(3,2)$ 1 0 0 1/6 1/3 3

ab, ab'	Q_L	3(3,2)	1	0	0	1/6	1/3	3				
ac	U_R	$3(\bar{3},1)$	-1	1	0	-2/3	2/3	-3				
ac'	D_R	$3(\bar{3},1)$	-1	-1	0	Majorana mass terms						
bd, b'd	L	3(1,2)	0	0	-1	NOT allowed						
cd	E_{R}	3(1, 1)	0_	_1_	1							
cd'	$ u_R$	3(1,1)	0	1	1	0	2	-1				

- Possible to build SU(5) unifications models
 - 5 overlapping Dbranes
 - Intersection with image gives 10
 - Intersection with extra brane gives 5, 5



- Possible to build SU(5) unifications models
 - 5 overlapping Dbranes
 - Intersection with image gives 10
 - Intersection with extra brane gives 5, 5



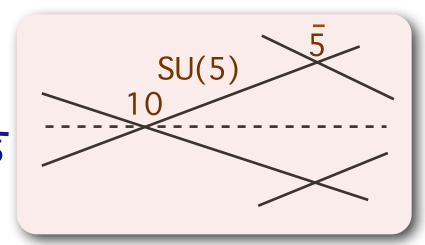
 $\stackrel{\text{\tiny }}{\Rightarrow}$ But problems with top Yukawa coupling \Rightarrow U(I) global symmetries

5 has U(1) charge +1, 5 has charge -1, 10 has charge +2

 $10.\overline{5}.\overline{5}$ is allowed by U(1) symmetry

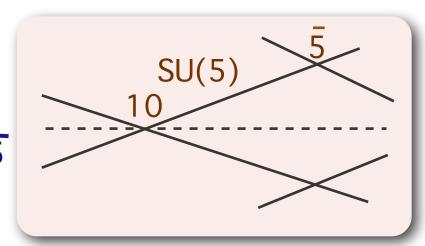
10.10.5 is NOT allowed by U(1) symmetry

- Possible to build SU(5) unifications models
 - 5 overlapping Dbranes
 - Intersection with image gives 10
 - Intersection with extra brane gives 5, 5



- $\stackrel{\text{\tiny }}{\Rightarrow}$ But problems with top Yukawa coupling \Rightarrow U(I) global symmetries
 - 5 has U(1) charge +1, 5 has charge -1, 10 has charge +2
 - $10.\overline{5}.\overline{5}$ is allowed by U(1) symmetry
 - 10.10.5 is NOT allowed by U(1) symmetry
- Geometrically, no triangles bounding worldsheet instantons

- Possible to build SU(5) unifications models
 - 5 overlapping Dbranes
 - Intersection with image gives 10
 - Intersection with extra brane gives 5, 5



- $\stackrel{\text{\tiny }}{\Rightarrow}$ But problems with top Yukawa coupling \Rightarrow U(I) global symmetries
 - 5 has U(1) charge +1, 5 has charge -1, 10 has charge +2
 - $10.\overline{5}.\overline{5}$ is allowed by U(1) symmetry
 - 10.10.5 is NOT allowed by U(1) symmetry
- Geometrically, no triangles bounding worldsheet instantons
- Need to go non-perturbative...

Non-perturbative effects in string theory are relevant in a number of phenomenological model building issues

- Moduli stabilization (see lecture 4)
- Generation of perturbatively forbidden couplings

Neutrino masses, Yukawas, mu term, ...

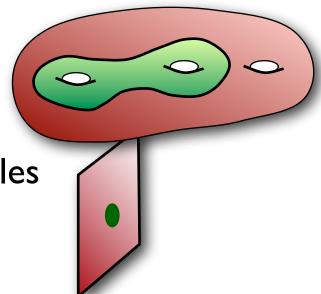
Non-perturbative effects in string theory are relevant in a number of phenomenological model building issues

- Moduli stabilization (see lecture 4)
- Generation of perturbatively forbidden couplings

Neutrino masses, Yukawas, mu term, ...

Focus on type II (or orientifolds): D-brane instantons

Euclidean D-branes wrapped on CY cycles and localized on 4d Minkowski

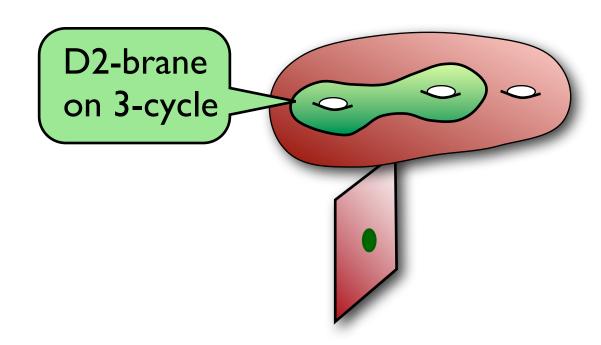


Violate certain perturbatively exact U(I) global symmetries

Ex: Take one complex structure modulus in IIA CY orientifold

$$T = t + i a = \int_C \operatorname{Re}\Omega + i \int_C C_3$$

PQ symmetry $a \rightarrow a + \lambda$ violated by D2-brane instanton $\simeq e^{-T}$



Some correspond to gauge theory instantons

Some correspond to gauge theory instantons

 $\stackrel{\text{$\cal P}}{=}$ D2-branes within D6-branes are equivalent to tr F^2 on D6-brane gauge theory

$$T = t + i a = \int_C \operatorname{Re}\Omega + i \int_C C_3$$

PQ symmetry $a \rightarrow a + \lambda$ violated by D2-brane instanton $\simeq e^{-T}$

Some correspond to gauge theory instantons

 $\stackrel{\mathcal{L}}{=}$ D2-branes within D6-branes are equivalent to tr F^2 on D6-brane gauge theory

$$T = t + i a = \int_C \operatorname{Re}\Omega + i \int_C C_3$$

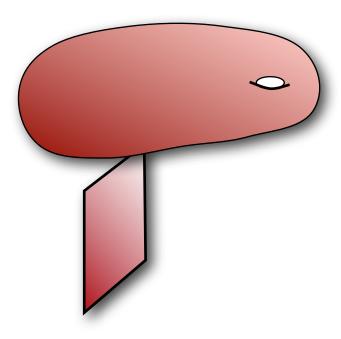
PQ symmetry $a \rightarrow a + \lambda$ violated by D2-brane instanton $\simeq e^{-T}$

Some correspond to gauge theory instantons

 $\stackrel{\text{$\cal P}}{=}$ D2-branes within D6-branes are equivalent to tr F^2 on D6-brane gauge theory

$$T = t + i a = \int_C \operatorname{Re}\Omega + i \int_C C_3$$

PQ symmetry $a \rightarrow a + \lambda$ violated by D2-brane instanton $\simeq e^{-T}$

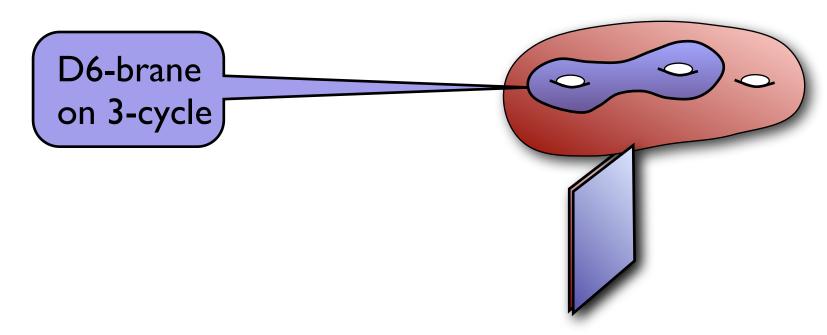


Some correspond to gauge theory instantons

 $\stackrel{\text{$}}{\Rightarrow}$ D2-branes within D6-branes are equivalent to tr F^2 on D6-brane gauge theory

$$T = t + i a = \int_C \operatorname{Re}\Omega + i \int_C C_3$$

PQ symmetry $a \rightarrow a + \lambda$ violated by D2-brane instanton $\simeq e^{-T}$

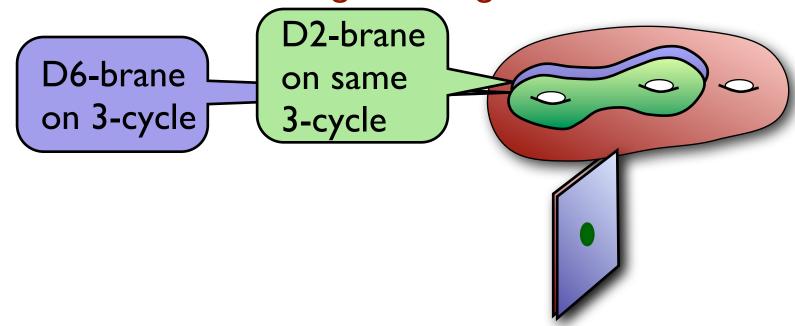


Some correspond to gauge theory instantons

 $\stackrel{\text{$}}{\Rightarrow}$ D2-branes within D6-branes are equivalent to tr F^2 on D6-brane gauge theory

$$T = t + i a = \int_C \operatorname{Re}\Omega + i \int_C C_3$$

PQ symmetry $a \rightarrow a + \lambda$ violated by D2-brane instanton $\simeq e^{-T}$



 $\stackrel{\mathbb{P}}{=}$ If the scalar is involved in a BF coupling, interesting structure wrt U(1)

$$\int_{4d} |H_3|^2 + \int_{4d} B_2 \wedge \operatorname{tr} F \to \int_{4d} (\partial_{\mu} a + A_{\mu})^2$$

$$A_{\mu} \to A_{\mu} + \partial_{\mu} \lambda \quad ; \quad a \to a + \lambda$$

$$U(1)_{\mathbf{a}} \qquad U(1)_{\mathbf{a}} \qquad = \mathbf{m}^2 \mathbf{A}_{\mathbf{u}}^2$$

 \mathcal{P} If the scalar is involved in a BF coupling, interesting structure wrt U(1)

$$\int_{4d} |H_3|^2 + \int_{4d} B_2 \wedge \operatorname{tr} F \to \int_{4d} (\partial_{\mu} a + A_{\mu})^2$$

$$A_{\mu} \to A_{\mu} + \partial_{\mu} \lambda \quad ; \quad a \to a + \lambda$$

$$U(1)_{\mathbf{a}} \qquad U(1)_{\mathbf{a}} \qquad = \mathbf{m}^2 \mathbf{A}_{\mu}^2$$

Exponential in scalar is carries charge under U(I) $e^{-ia} \rightarrow e^{-i\lambda} e^{-ia}$

 $\stackrel{\checkmark}{=}$ If the scalar is involved in a BF coupling, interesting structure wrt U(1)

$$\int_{4d} |H_3|^2 + \int_{4d} B_2 \wedge \operatorname{tr} F \to \int_{4d} (\partial_{\mu} a + A_{\mu})^2$$

$$A_{\mu} \to A_{\mu} + \partial_{\mu} \lambda \quad ; \quad a \to a + \lambda$$

$$U(1)_{\mathbf{a}} \qquad U(1)_{\mathbf{a}} \qquad = \mathbf{m}^2 \mathbf{A}_{\mathbf{u}}^2$$

- § Exponential in scalar is carries charge under U(I) $e^{-ia} \rightarrow e^{-i\lambda} e^{-ia}$
- \Rightarrow Exponential must be dressed by charged field $e^{-T}\Phi$
- ⇒ Role in generating perturbatively forbidden couplings

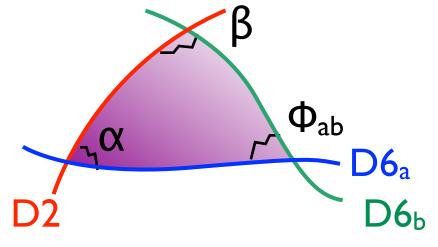
$$e^{-T}\Phi_1\ldots\Phi_n$$

Microscopic explanation

Microscopic explanation

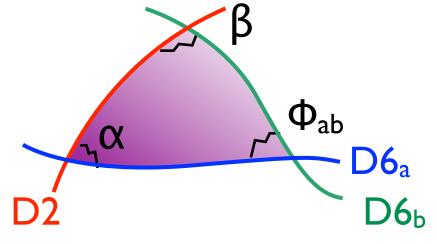
⇒ D-brane instanton has charged fermion zero modes

⇒ Arise from D2/D6 intersections



Microscopic explanation

- ⇒ D-brane instanton has charged fermion zero modes
- ⇒ Arise from D2/D6 intersections



Integration over instanton fermion zero modes leads to insertions of charged 4d fields

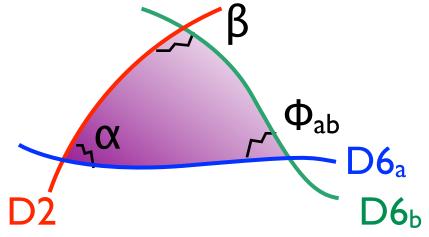
$$\int d\alpha \, d\beta \, \exp\left(-S_{\rm inst} + \alpha \Phi \beta\right) \sim e^{-S_{\rm inst}} \det \phi$$

Degree of "det" is number of intersections

Microscopic explanation

- ⇒ D-brane instanton has charged fermion zero modes
- ⇒ Arise from D2/D6 intersections

(different from the familiar 2 neutral fermion zero modes required for the instanton to induce a superpotential term)



Integration over instanton fermion zero modes leads to insertions of charged 4d fields

$$\int d\alpha \, d\beta \, \exp\left(-S_{\rm inst} + \alpha \Phi \beta\right) \sim e^{-S_{\rm inst}} \det \phi$$

Degree of "det" is number of intersections

Numerology works automatically

Numerology works automatically

$$(B_2)_k = \int_{[\Lambda_k]} C_5 \quad , \quad \phi_{\tilde{l}} = \int_{[\Lambda_{\tilde{l}}]} C_3 \quad \text{with } d\phi_{\tilde{l}} = -\delta_{k\tilde{l}} *_{4d} (B_2)_k$$

$$\text{4d couplings} \quad N_a q_{ak} \int_{4d} (B_2)_k \mathrm{tr} \, F_a \quad \text{with} \quad q_{ak} = [\Pi_a] \cdot [\Lambda_k]$$

Numerology works automatically

$$(B_2)_k = \int_{[\Lambda_k]} C_5 \quad , \quad \phi_{\tilde{l}} = \int_{[\Lambda_{\tilde{l}}]} C_3 \qquad \text{with } d\phi_{\tilde{l}} = -\delta_{k\tilde{l}} *_{4d} (B_2)_k$$
 and the description of the descrip

Axion shift
$$A_a \to A_a + d\lambda_a$$
 ; $\phi_k \to \phi_k + \sum_a N_a q_{ak} \lambda_a$

Numerology works automatically

$$(B_2)_k = \int_{[\Lambda_k]} C_5 \quad , \quad \phi_{\tilde{l}} = \int_{[\Lambda_{\tilde{l}}]} C_3 \qquad \text{with } d\phi_{\tilde{l}} = -\delta_{k\tilde{l}} *_{4d} (B_2)_k$$
 and the description of the descrip

Axion shift
$$A_a \to A_a + d\lambda_a$$
 ; $\phi_k \to \phi_k + \sum_a N_a q_{ak} \lambda_a$

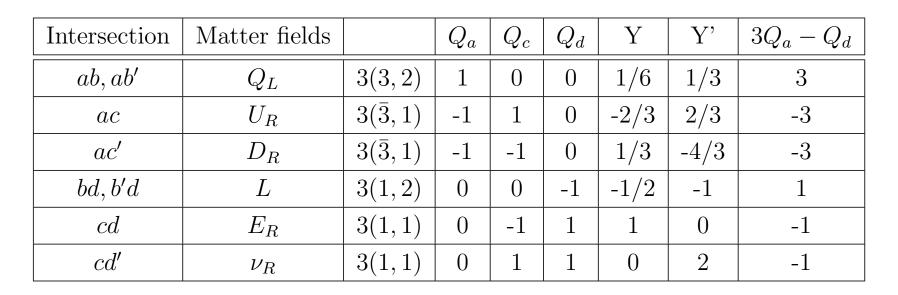
 \Rightarrow For a D2-brane instanton on $[\Pi] = \sum p_k [\Lambda_{\tilde{k}}]$ $W \sim \exp\left(-S_{\text{inst}} - i\sum_{k} p_k \phi_k\right) \rightarrow W \exp\left(-i\sum_{k} p_k I_{a,\Pi} \lambda_a\right)$

Phase rotation of exponential cancels against operator charge

Right handed neutrinos are in cd' sector

Right handed neutrinos are in cd' sector

$$N_{\alpha}$$
 $(n_{\alpha}^{1}, m_{\alpha}^{1})$ $(n_{\alpha}^{2}, m_{\alpha}^{2})$ $(n_{\alpha}^{3}, m_{\alpha}^{3})$
 $N_{a} = 3$ (I,0) (I,3) (I,-3)
 $N_{b} = 1$ (0,1) (I,0) (0,-1)
 $N_{c} = 1$ (0,1) (0,-1) (1,0)
 $N_{d} = 1$ (I,0) (I,3) (I,-3)
 $I_{ab} = I_{ab'} = 3$ $I_{ac} = I_{ac'} = -3$
 $I_{db} = I_{db'} = -3$ $I_{cd} = 3; I_{cd'} = -3$

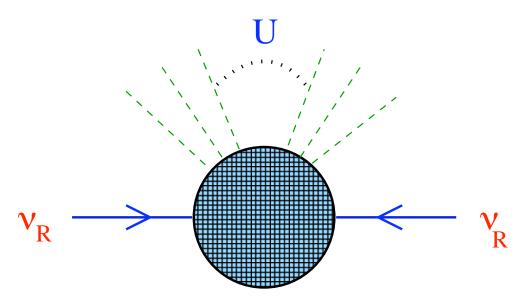


- Right handed neutrinos are in cd' sector
- Majorana mass terms can be induced if the model contains instantons with
 - Two uncharged fermion zero modes
 - Charged fermion zero modes with the pattern

$$I_{Ma} - I_{Ma'} = I_{Mb} - I_{Mb'} = 0$$
 ; $I_{Mc} - I_{Mc'} = I_{Md} - I_{Md'} = 2$

- Right handed neutrinos are in cd' sector
- Majorana mass terms can be induced if the model contains instantons with
 - Two uncharged fermion zero modes
 - Charged fermion zero modes with the pattern

$$I_{Ma} - I_{Ma'} = I_{Mb} - I_{Mb'} = 0$$
 ; $I_{Mc} - I_{Mc'} = I_{Md} - I_{Md'} = 2$



- Right handed neutrinos are in cd' sector
- Majorana mass terms can be induced if the model contains instantons with
 - Two uncharged fermion zero modes
 - Charged fermion zero modes with the pattern

$$I_{Ma} - I_{Ma'} = I_{Mb} - I_{Mb'} = 0$$
 ; $I_{Mc} - I_{Mc'} = I_{Md} - I_{Md'} = 2$

$$\int d^2\theta \, d^2\alpha \, d^2\beta \exp(-S_{\rm inst} + \alpha_1 \nu_R \beta_1 + \alpha_2 \nu_R \beta_2) \sim e^{-S_{\rm inst}} \int d^2\theta \nu_R \nu_R$$

- Right handed neutrinos are in cd' sector
- Majorana mass terms can be induced if the model contains instantons with
 - Two uncharged fermion zero modes
 - Charged fermion zero modes with the pattern

$$I_{Ma} - I_{Ma'} = I_{Mb} - I_{Mb'} = 0$$
 ; $I_{Mc} - I_{Mc'} = I_{Md} - I_{Md'} = 2$

$$\int d^2\theta \, d^2\alpha \, d^2\beta \exp(-S_{\rm inst} + \alpha_1 \nu_R \beta_1 + \alpha_2 \nu_R \beta_2) \sim e^{-S_{\rm inst}} \int d^2\theta \nu_R \nu_R$$

• Exponential suppression wrt string scale may be ok i.e. may have 10¹¹ Gev << Ms

- Right handed neutrinos are in cd' sector
- Majorana mass terms can be induced if the model contains instantons with
 - Two uncharged fermion zero modes
 - Charged fermion zero modes with the pattern

$$I_{Ma} - I_{Ma'} = I_{Mb} - I_{Mb'} = 0$$
 ; $I_{Mc} - I_{Mc'} = I_{Md} - I_{Md'} = 2$

- Right handed neutrinos are in cd' sector
- Majorana mass terms can be induced if the model contains instantons with
 - Two uncharged fermion zero modes
 - Charged fermion zero modes with the pattern

$$I_{Ma} - I_{Ma'} = I_{Mb} - I_{Mb'} = 0$$
; $I_{Mc} - I_{Mc'} = I_{Md} - I_{Md'} = 2$

Similar solutions to top Yukawa coupling problem

- Right handed neutrinos are in cd' sector
- Majorana mass terms can be induced if the model contains instantons with
 - Two uncharged fermion zero modes
 - Charged fermion zero modes with the pattern

$$I_{Ma} - I_{Ma'} = I_{Mb} - I_{Mb'} = 0$$
; $I_{Mc} - I_{Mc'} = I_{Md} - I_{Md'} = 2$

- Similar solutions to top Yukawa coupling problem
 - But why so large??? theory still under control?

- Right handed neutrinos are in cd' sector
- Majorana mass terms can be induced if the model contains instantons with
 - Two uncharged fermion zero modes
 - Charged fermion zero modes with the pattern

$$I_{Ma} - I_{Ma'} = I_{Mb} - I_{Mb'} = 0$$
; $I_{Mc} - I_{Mc'} = I_{Md} - I_{Md'} = 2$

- Similar solutions to top Yukawa coupling problem
 - But why so large??? theory still under control?
 - The top Yukawa is better understood in F-theory, see lecture 3

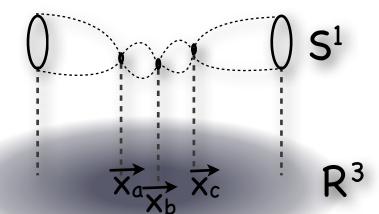
- Right handed neutrinos are in cd' sector
- Majorana mass terms can be induced if the model contains instantons with
 - Two uncharged fermion zero modes
 - Charged fermion zero modes with the pattern

$$I_{Ma} - I_{Ma'} = I_{Mb} - I_{Mb'} = 0$$
; $I_{Mc} - I_{Mc'} = I_{Md} - I_{Md'} = 2$

- Similar solutions to top Yukawa coupling problem
 - But why so large??? theory still under control?
 - The top Yukawa is better understood in F-theory, see lecture 3
 - Can we try a non-perturbative geometrization in IIA?

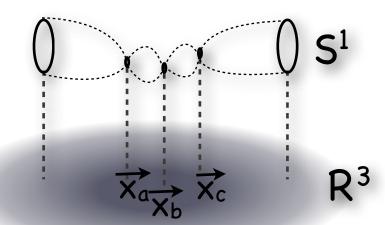
Lift of IIA D6-brane to M-theory is purely geometrical: Taub-NUT space

Circle fibration over 3d space with fiber shrinkint over "centers"



Lift of IIA D6-brane to M-theory is purely geometrical: Taub-NUT space

Circle fibration over 3d space with fiber shrinkint over "centers"



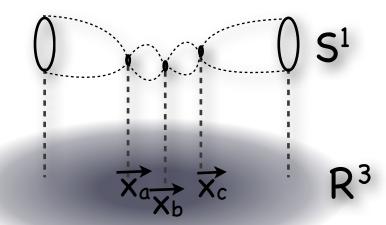
Dictionary

D6-brane gauge field \iff C3 over normalizable harmonic 2-form

Open strings among D6s \iff M2s on compact 2-cycles

Lift of IIA D6-brane to M-theory is purely geometrical: Taub-NUT space

Circle fibration over 3d space with fiber shrinkint over "centers"



Dictionary

D6-brane positions ← Taub-NUT centers

D6-brane gauge field \iff C3 over normalizable harmonic 2-form

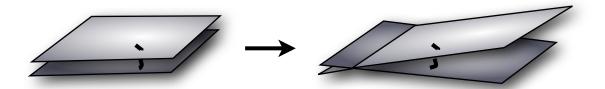
Open strings among D6s \iff M2s on compact 2-cycles

(O6 lifts to Atiyah-Hitchin space)

↓ Lift of 4d N=1 susy intersecting D6-brane models
 is M-theory compactification on a G2 holonomy 7-manifold

Gauge symmetry from codimension-4 singularity (singular TN) Chiral fermions from codimension-7 singularity (intersection of TN)

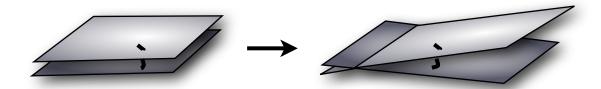
Representation determined by 'unfolding' of degenerate fiber locus



↓ Lift of 4d N=1 susy intersecting D6-brane models
 is M-theory compactification on a G2 holonomy 7-manifold

Gauge symmetry from codimension-4 singularity (singular TN) Chiral fermions from codimension-7 singularity (intersection of TN)

Representation determined by 'unfolding' of degenerate fiber locus

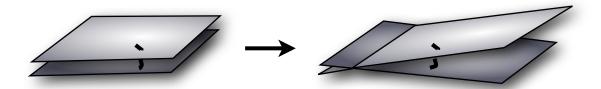


Can allow for exceptional gauge groups, richer matter, and richer Yukawa coupling patterns

↓ Lift of 4d N=1 susy intersecting D6-brane models
 is M-theory compactification on a G2 holonomy 7-manifold

Gauge symmetry from codimension-4 singularity (singular TN)
Chiral fermions from codimension-7 singularity (intersection of TN)

Representation determined by 'unfolding' of degenerate fiber locus



- Can allow for exceptional gauge groups, richer matter, and richer Yukawa coupling patterns

Lift of 4d N=1 susy intersecting D6-brane models is M-theory compactification on a G2 holonomy 7-manifold m codimoncian 1 cinquiarity (cinquiar TNI) But no algebraic geometry in 7 real dimensions Life is too hard!

and richer tukawa coupling patterns

Lift of 4d N=1 susy intersecting D6-brane models is M-theory compactification on a G2 holonomy 7-manifold m codimoncion 1 cinquiarity (cinquiar TNI) But no algebraic geometry in 7 real dimensions us Life is too hard! But similar ideas hold in a tractable way in F-theory, see lecture 3

and richer Yukawa coupling patterns

Discrete gauge symmetries

Let us stay a bit more on D-brane models & U(1)s

Discrete gauge symmetries

Let us stay a bit more on D-brane models & U(1)s

We said "U(I)s disappear as gauge symmetries but remain as global symmetries, exact in perturbation theory"

Discrete gauge symmetries

- Let us stay a bit more on D-brane models & U(1)s
- We said "U(I)s disappear as gauge symmetries but remain as global symmetries, exact in perturbation theory"
- Actually, a discrete subgroup of the U(I)s can remain as discrete gauge symmetry, thus exact even non-perturbatively.

Discrete symmetries are a key ingredient in SM

- Discrete symmetries are a key ingredient in SM
- and a useful tool in BSM model building

- Discrete symmetries are a key ingredient in SM
- and a useful tool in BSM model building
- For instance in the MSSM, the most general supo, up to dim 4

$$W_{\text{MSSM}} = Y_U^{ij} Q_i U_j H_u + Y_D^{ij} Q_i D_j H_d + Y_L^{ij} L_i E_j H_d + \mu H_u H_d + \lambda^{ijk} U_i D_j D_k + \lambda^{ijk'} Q_i D_j L_k + \lambda^{ijk''} L_i L_j E_k + \mu_R^i L_i H_u$$

Ops in second line can combine and induce fast proton decay

- Discrete symmetries are a key ingredient in SM
- and a useful tool in BSM model building
- For instance in the MSSM, the most general supo, up to dim 4

$$W_{\text{MSSM}} = Y_U^{ij} Q_i U_j H_u + Y_D^{ij} Q_i D_j H_d + Y_L^{ij} L_i E_j H_d + \mu H_u H_d + \lambda^{ijk} U_i D_j D_k + \lambda^{ijk'} Q_i D_j L_k + \lambda^{ijk''} L_i L_j E_k + \mu_R^i L_i H_u$$

Ops in second line can combine and induce fast proton decay Introduce discrete symmetries that forbid

- all such ops, e.g. R-parity (Q, D, L, E odd, Hu, Hd even)
- dangerous combinations, e.g. baryon triality B_3 (Q,U, D, L, E, Hu, Hd have charge 0,-1/3,+1/3,-1/3,+1/3,+1/3,-1/3)

Experimental signatures (at the LHC) depend on the symmetry!

- Quantum gravity does not like global symmetries
 - Microscopic arguments in string theory

vacuum

General black hole arguments
 Charged black hole evaporates thermally into uncharged

Why discrete gauge symmetries?

- Quantum gravity does not like global symmetries
 - Microscopic arguments in string theory
 - General black hole arguments
 Charged black hole evaporates thermally into uncharged vacuum
- Exact symmetries should be gauge
 - Continuous symmetries: Charged black hole's electric field produces biased evaporation
 - Key point is that gauge charge is detectable by measurements at infinity

Why discrete gauge symmetries?

- Quantum gravity does not like global symmetries
 - Microscopic arguments in string theory
 - General black hole arguments
 Charged black hole evaporates thermally into uncharged vacuum
- Exact symmetries should be gauge
 - Continuous symmetries: Charged black hole's electric field produces biased evaporation
 - Key point is that gauge charge is detectable by measurements at infinity
 - Also true for discrete gauge symmetries: lasso black hole with charged strings and measure holonomy

Realize Z_n as "U(I) Higgssed by field of charge n" Lagrangian for gauge field and phase of scalar field

$$|d\phi - nA|^2 + \frac{1}{2}F \wedge *F$$

i.e. gauge transformation is

$$A \to A + d\lambda$$
 ; $\phi \to \phi + n\lambda$

Realize Z_n as "U(I) Higgssed by field of charge n" Lagrangian for gauge field and phase of scalar field

$$|d\phi - nA|^2 + \frac{1}{2}F \wedge *F$$

i.e. gauge transformation is

$$A \to A + d\lambda$$
 ; $\phi \to \phi + n\lambda$

Can be dualized to BF theory

schematically

$$\frac{1}{2}H \wedge *H + nB \wedge F + \frac{1}{2}F \wedge *F$$

Zn symmetry read from coefficient of BF coupling

Realize Z_n as U(I) Higgssed by field of charge n Lagrangian for gauge field and phase of scalar field

$$|d\phi - nA|^2 + \frac{1}{2}F \wedge *F$$

i.e. gauge transformation is

$$A \to A + d\lambda$$
 ; $\phi \to \phi + n\lambda$

Dualizing also the gauge field

schematically

$$|d\tilde{A}_1 - nB_2|^2 + \frac{1}{2}H \wedge *H$$

Dual gauge invariance

$$B_2 \to B_2 + d\Lambda_1 \quad ; \quad \tilde{A}_1 \to \tilde{A}_1 + n\Lambda_1$$

Another equivalent view

Another equivalent view

Periodic axion $\phi \simeq \phi + 1$ defines lattice Γ

Another equivalent view

Periodic axion $\phi \simeq \phi + 1$ defines lattice Γ

Gauge transformation
$$A_{\mu} \rightarrow A_{\mu} + \partial_{\mu} \lambda$$
 ; $\phi \rightarrow \phi + n \lambda$

Another equivalent view

Periodic axion $\phi \simeq \phi + 1$ defines lattice Γ

Gauge transformation
$$A_{\mu} \rightarrow A_{\mu} + \partial_{\mu} \lambda$$
 ; $\phi \rightarrow \phi + n\lambda$

Embedding of U(I) S^1 into axion S^1 with winding n

Defines lattice Γ'=nZ

$$A \to A + d\lambda \quad ; \quad \phi \to \phi + n\lambda$$

$$\phi \to \phi + 1$$

Another equivalent view

Periodic axion $\phi \simeq \phi + 1$ defines lattice Γ

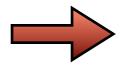
Gauge transformation
$$A_{\mu} \rightarrow A_{\mu} + \partial_{\mu}\lambda$$
 ; $\phi \rightarrow \phi + n\lambda$

Embedding of U(I) S^1 into axion S^1 with winding n

Defines lattice Γ'=nZ

$$A \to A + d\lambda \quad ; \quad \phi \to \phi + n\lambda$$

$$\phi \to \phi + 1$$



Discrete gauge symmetry: field identifications not implemented by U(1) gauge transformations

$$\frac{\Gamma}{\Gamma'} = \mathbf{Z}_n$$

Generalizes to multiple U(1), $=\mathbf{Z}_n$ non-abelian, etc

Charged particles and strings (conserved mod n)

Charged particles and strings (conserved mod n)

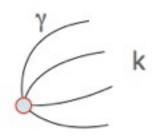
- Particles couple to A₁, and end on instanton
- Strings couple to B2 and end on monopole

Charged particles and strings (conserved mod n)

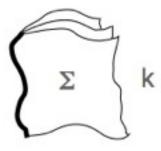
- Particles couple to A1, and end on instanton
- Strings couple to B2 and end on monopole

$$\mathcal{O}_{\text{particle}} \sim e^{2\pi i n \int_{\gamma} A}$$

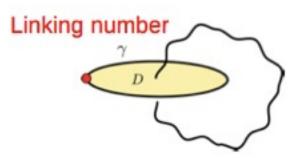
$$\mathcal{O}_{\text{string}} \sim e^{2\pi i m \int_{\Sigma} B_2}$$



$$e^{-2\pi i\phi}e^{2\pi ik\int_{\gamma}A}$$



$$e^{-2\pi i \int_{\partial \Sigma} A} e^{2\pi i k \int_{\Sigma} B_2}$$

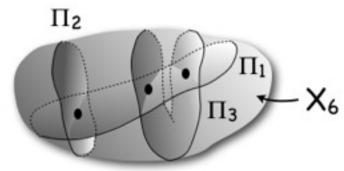


$$\exp\left[2\pi i \frac{nm}{k} L(\Sigma, \gamma)\right]$$

BF couplings permeate the physics of D-branes in compactifications to 4d, due to Chern-Simons action

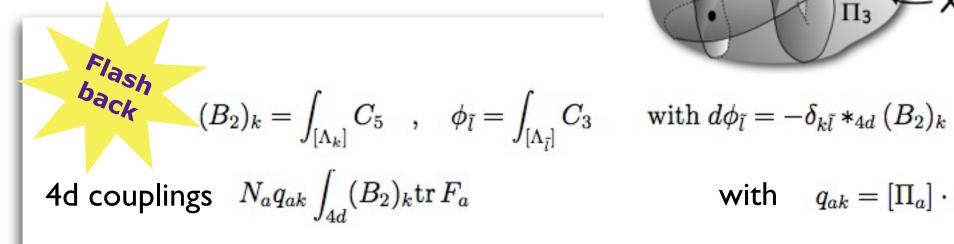
BF couplings permeate the physics of D-branes in compactifications to 4d, due to Chern-Simons action

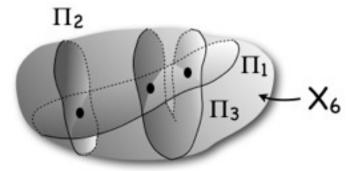
For D6-brane models...



BF couplings permeate the physics of D-branes in compactifications to 4d, due to Chern-Simons action

For D6-brane models...



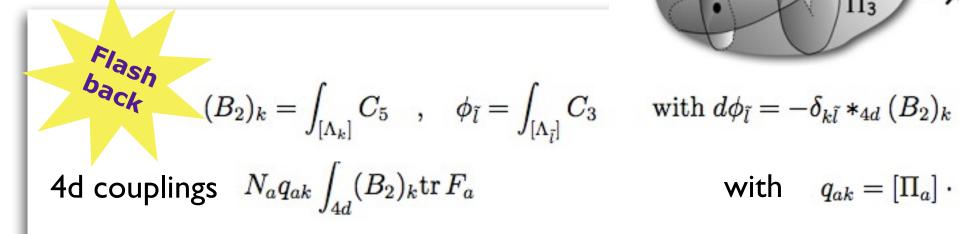


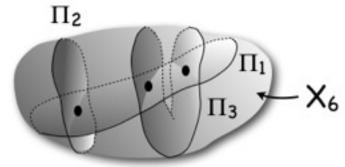
with
$$d\phi_{\tilde{l}} = -\delta_{k\tilde{l}} *_{4d} (B_2)_k$$

with
$$q_{ak} = [\Pi_a] \cdot [\Lambda_k]$$

BF couplings permeate the physics of D-branes in compactifications to 4d, due to Chern-Simons action

For D6-brane models...





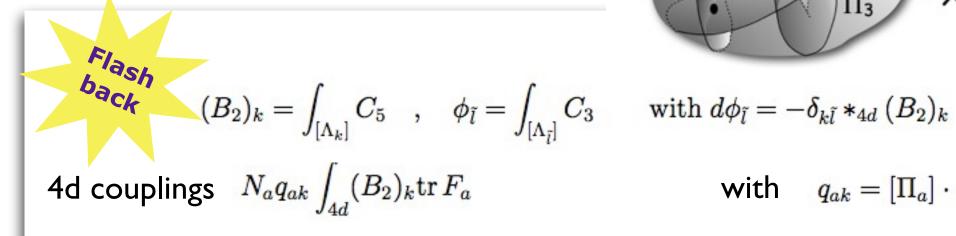
with
$$d\phi_{\tilde{l}} = -\delta_{k\tilde{l}} *_{4d} (B_2)_k$$

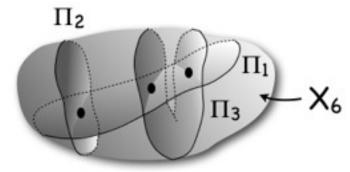
with
$$q_{ak} = [\Pi_a] \cdot [\Lambda_k]$$

For U(I) comb:
$$Q = \sum_A c_A Q_A \Rightarrow (\sum_A c_A N_A q_{ak}) B_k \wedge F$$

BF couplings permeate the physics of D-branes in compactifications to 4d, due to Chern-Simons action

For D6-brane models...





with
$$d\phi_{\tilde{l}} = -\delta_{k\tilde{l}} *_{4d} (B_2)_k$$

with
$$q_{ak} = [\Pi_a] \cdot [\Lambda_k]$$

For U(I) comb:
$$Q = \sum_A c_A Q_A \Rightarrow (\sum_A c_A N_A q_{ak}) B_k \wedge F$$

$$\sum_{A} c_A N_A q_{ak} = 0 \mod n, \text{ for all } k$$

Instantons from euclidean D2-branes wrapped on 3-cycles [Π], violate U(I)'s

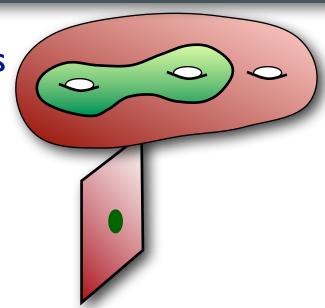
but consistently with unbroken Zn's



$$\sum_{A} c_A N_A q_{ak} = 0 \mod n, \text{ for all } k$$

Instantons from euclidean D2-branes wrapped on 3-cycles [Π], violate U(1)'s

but consistently with unbroken Zn's

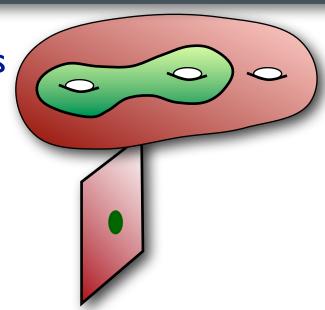


Precisely controls the phase of rotation of instanton exponential

$$\sum_{A} c_A N_A q_{ak} = 0 \mod n, \text{ for all } k$$

Instantons from euclidean D2-branes wrapped on 3-cycles [Π], violate U(I)'s

but consistently with unbroken Zn's



Precisely controls the phase of rotation of instanton exponential

Equivalently: **any** instanton intersects the U(I) brane with intersection number multiple of n

 Z_n gauge symmetry iff

$$\sum_{A} c_A N_A q_{ak} = 0 \bmod n, \text{ for all } k$$

Charged particles and strings?

Charged particles and strings? Solution Nicer view in M-theory

$$H^2(X_7, \mathbf{Z}) = \mathbf{Z}_n$$
 , $H^4(X_7, \mathbf{Z}) = \mathbf{Z}_n$ $d\alpha_2 = n\beta_3$

Charged particles and strings?

Nicer view in M-theory

$$H^2(X_7, \mathbf{Z}) = \mathbf{Z}_n$$
 , $H^4(X_7, \mathbf{Z}) = \mathbf{Z}_n$ $d\alpha_2 = n\beta_3$

$$C_3 = \alpha_2 \wedge A_1 - \beta_3 \phi + \dots$$
 , $F_4 = (d\phi - nA_1) \wedge \beta_3 + \dots$

Charged particles and strings?

Nicer view in M-theory

$$H^2(X_7, \mathbf{Z}) = \mathbf{Z}_n$$
 , $H^4(X_7, \mathbf{Z}) = \mathbf{Z}_n$ $d\alpha_2 = n\beta_3$

$$C_3 = \alpha_2 \wedge A_1 - \beta_3 \phi + \dots , \quad F_4 = (d\phi - nA_1) \wedge \beta_3 + \dots$$

$$H_2(X_7, \mathbf{Z}) = \mathbf{Z}_n$$
 , $H_4(X_7, \mathbf{Z}) = \mathbf{Z}_n$

Charged particles and strings? Solution Nicer view in M-theory

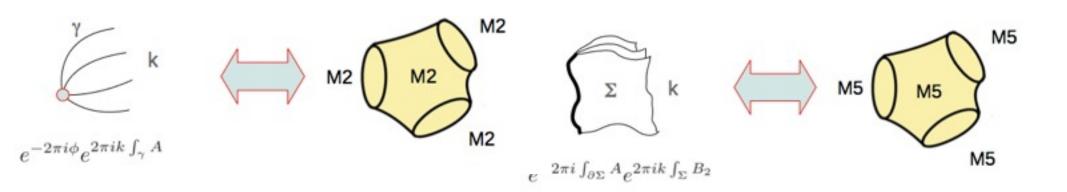
$$H^2(X_7, \mathbf{Z}) = \mathbf{Z}_n$$
 , $H^4(X_7, \mathbf{Z}) = \mathbf{Z}_n$ $d\alpha_2 = n\beta_3$

$$C_3 = \alpha_2 \wedge A_1 - \beta_3 \phi + \dots$$
 , $F_4 = (d\phi - nA_1) \wedge \beta_3 + \dots$

$$H_2(X_7, \mathbf{Z}) = \mathbf{Z}_n$$
 , $H_4(X_7, \mathbf{Z}) = \mathbf{Z}_n$

- Zn particles are M2-branes wrapped on torsion 2-cycle
- Instanton is 3-chain joining n such 2-cycles
- Zn strings are M5-branes on dual torsion 4-cycle
- Monopole junction is M5-brane on 5-chain

Charged particles and strings?



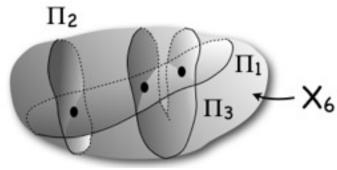
$$H_2(X_7, \mathbf{Z}) = \mathbf{Z}_n$$
 , $H_4(X_7, \mathbf{Z}) = \mathbf{Z}_n$

- Zn particles are M2-branes wrapped on torsion 2-cycle
- Instanton is 3-chain joining n such 2-cycles
- Zn strings are M5-branes on dual torsion 4-cycle
- Monopole junction is M5-brane on 5-chain

Zn symmetry in BSM

BF couplings permeate the physics of D-branes in compactifications to 4d, due to Chern-Simons action

For D6-brane models...



Recall

$$(B_2)_k = \int_{[\Lambda_k]} C_5$$
 , $\phi_{\tilde{l}} = \int_{[\Lambda_{\tilde{l}}]} C_3$ with $d\phi_{\tilde{l}} = -\delta_{k\tilde{l}} *_{4d} (B_2)_k$

4d couplings
$$N_a q_{ak} \int_{4d} (B_2)_k \operatorname{tr} F_a$$

with
$$d\phi_{\tilde{l}} = -\delta_{k\tilde{l}} *_{4d} (B_2)_k$$

with
$$q_{ak} = [\Pi_a] \cdot [\Lambda_k]$$

For U(I) comb:
$$Q = \sum_A c_A Q_A \Rightarrow (\sum_A c_A N_A q_{ak}) B_k \wedge F$$

$$\sum_{A} c_A N_A q_{ak} = 0 \mod n, \text{ for all } k$$

Zn symmetry in BSM

For instance, in toroidal models Ibáñez, Marchesano, Rabadán'01

N_i	(n_A^1,m_A^1)	(n_A^2,m_A^2)	(n_A^3,m_A^3)
$N_a = 3$	$(1/\beta^1, 0)$	$(n_a^2,\epsilon eta^2)$	$(1/\rho, 1/2)$
$N_b = 2$	$(n_b^1, -\epsilon eta^1)$	$(1/eta^2,0)$	$(1, 3\rho/2)$
$N_c = 1$	$(n_c^1, 3 ho\epsiloneta^1)$	$(1/\beta^2, 0)$	(0,1)
$N_d = 1$	$(1/\beta^1, 0)$	$(n_d^2, -eta^2\epsilon/ ho)$	$(1, 3\rho/2)$

$$F^{a} \wedge 3 \left(\frac{1}{\rho} B_{2}^{2} + n_{a}^{2} \frac{B_{2}^{3}}{2} \right)$$
 $F^{b} \wedge 2 \left(-B_{2}^{1} + 3\rho n_{b}^{1} \frac{B_{2}^{3}}{2} \right)$
 $F^{c} \wedge 2n_{c}^{1} \frac{B_{2}^{3}}{2}$
 $F^{d} \wedge \left(-\frac{1}{\rho} B_{2}^{2} + 3\rho n_{d}^{2} \frac{B_{2}^{3}}{2} \right)$

- R-parity (Qc) is automatic
- Baryon triality (Qa) if $\rho = 1/3$ and $n_a^2 = 0 \mod 3$
- Etc...
- Nicely dovetails the classification of discrete gauge symmetries in the MSSM (plus right-handed neutrinos)

Let us stay a bit more with discrete gauge symmetries

Let us stay a bit more with discrete gauge symmetries Zn particles, Zn strings, ...

- Let us stay a bit more with discrete gauge symmetries Zn particles, Zn strings, ...
- Figure There are Zn gauge symmetries associated to 4d domain walls

- Let us stay a bit more with discrete gauge symmetries Zn particles, Zn strings, ...
- Figure There are Zn gauge symmetries associated to 4d domain walls

Zn symmetry of a 3-form that eats up a 2-form

$$\frac{1}{2}|F_4|^2 + |db_2 - n c_3|^2$$

Gauge invariance

$$c_3 \rightarrow c_3 + d\Lambda_2$$
 ; $b_2 \rightarrow b_2 + n\Lambda_2$

- Let us stay a bit more with discrete gauge symmetries Zn particles, Zn strings, ...
- Figure 1 There are Zn gauge symmetries associated to 4d domain walls

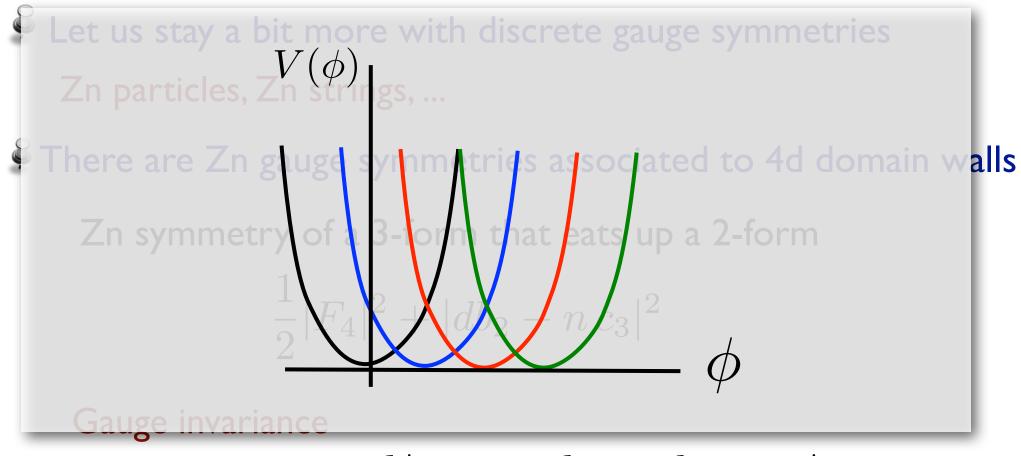
Zn symmetry of a 3-form that eats up a 2-form

$$\frac{1}{2}|F_4|^2 + |db_2 - n c_3|^2$$

Gauge invariance

$$c_3 \rightarrow c_3 + d\Lambda_2$$
 ; $b_2 \rightarrow b_2 + n\Lambda_2$

Dualizing b2 to an axion, get Kaloper-Sorbo description of axion monodromy models.



$$c_3 \rightarrow c_3 + d\Lambda_2$$
 ; $b_2 \rightarrow b_2 + n\Lambda_2$

Dualizing b2 to an axion, get Kaloper-Sorbo description of axion monodromy models.

Can consider other Zn charged objects in 4d

Lagrangian for 3-form eating up a 2-form

$$(|F_4|^2 + |dC_2 - nC_3|^2)$$

Gauge transformation
$$C_3 o C_3 + d\Lambda_2$$
 ; $C_2 o C_2 + n\Lambda_2$

Can consider other Zn charged objects in 4d Lagrangian for 3-form eating up a 2-form

$$(|F_4|^2 + |dC_2 - nC_3|^2)$$

Gauge transformation
$$C_3 \rightarrow C_3 + d\Lambda_2$$
 ; $C_2 \rightarrow C_2 + n\Lambda_2$

Can be dualized to Φ F4 theory

$$|F_4|^2 + n \phi F_4 + |d\phi|^2$$

Can consider other Zn charged objects in 4d Lagrangian for 3-form eating up a 2-form

$$(|F_4|^2 + |dC_2 - nC_3|^2)$$

Gauge transformation
$$C_3 o C_3 + d\Lambda_2$$
 ; $C_2 o C_2 + n\Lambda_2$

Can be dualized to Φ F4 theory

$$|F_4|^2 + n \phi F_4 + |d\phi|^2$$

Dualizing also 3-form (to "(-1)form"), we get

$$|d\phi|^2 + \phi^2$$
 Massive axion

Can consider other Zn charged objects in 4d Lagrangian for 3-form eating up a 2-form

$$(|F_4|^2 + |dC_2 - nC_3|^2)$$

Gauge transformation
$$C_3 \rightarrow C_3 + d\Lambda_2$$
 ; $C_2 \rightarrow C_2 + n\Lambda_2$

Can be dualized to Φ F4 theory

$$|F_4|^2 + n \phi F_4 + |d\phi|^2$$

Dualizing also 3-form (to "(-1)form"), we get

$$|d\phi|^2 + \phi^2$$
 Massive axion

Can arise in D-brane models. Will come back in lecture 4