O(D,D) COVARIANT NOETHER CURRENT AND GLOBAL CHARGES IN DFT

Woohyun Rim Seoul National University

arXiv:1507.07545 with Jeong-Hyuck Park, Soo-Jong Rey, Yuho Sakatani

INTRODUCTION

- Double Field Theory
 - A reformulation of SUGRA with manifest T-duality covariance.
- •Under T-duality, $P_{\mu} \leftrightarrow W^{\mu}$.
- In Einstein Gravity, we have ADM momenta
- •ADM momenta in DFT will give (P, W).

O(D,D)-COVARIANT REFORMULATION

SUGRA(NSNS) on TD

- Field Content: $G_{\mu\nu}$, $B_{\mu\nu}$, $e^{-2\phi}$
- Gauge Symmetries
- Diffeomorphism Local $B_2 \to B_2 + d\Lambda_1$

Global Symmetries

- GL(D)
- Global $B_2 \rightarrow B_2 + \Lambda_2$
 - T-duality

Double Field Theory

$$\mathcal{H}_{MN} = \begin{bmatrix} G^{-1} & -G^{-1}B \\ BG^{-1} & G - BG^{-1}B \end{bmatrix}$$

$$e^{-2d} = e^{-2\phi}\sqrt{-G}$$

Generalised Diffeomorphism

O(D,D) Rotations

DOUBLE FIELD THEORY [HULL, ZWIEBACH '09]

- Background fields depend on (x^m, \tilde{x}_m) . Level matching condition; $\tilde{\partial}^m \partial_m = 0$ \longrightarrow $\tilde{\partial}^m = 0$ (canonical section).
- Generalised Lie derivative $\mathcal{L}_X T^{M\cdots} = X^N \partial_N T^{M\cdots} + \omega \partial_N X^N T^{M\cdots} + (\partial^M X_N \partial_N X^M) T^{N\cdots} + \cdots$
- DFT action = O(D,D) inv. curvature $\mathcal{S}(\mathcal{H}_{MN},d)$ [Jeon, Lee, Park '11] $I = \int e^{-2d}\mathcal{S} = \int e^{-2\phi}\sqrt{-g}\left(R + 4(\partial\phi)^2 \frac{1}{12}H^2\right) + (boundary) + (section)$
- Necessary to describe
 - Non-geometric backgrounds (T-folds)
 - Non-Riemannian backgrounds.

CONSERVED CHARGES IN DFT

Action with Boundary term

$$I = \int e^{-2d} (\mathcal{S} - \nabla_{\!A} B^A)$$

Dirichlet boundary problem well-defined with

$$B^A = 4\mathcal{H}^{AB}\partial_B d - \partial_B \mathcal{H}^{AB}$$

• We considered asymp. flat backgrounds in DFT. Noether charge associated with an asymp. Killing vector, \boldsymbol{X}^{M} ,

$$Q[X] = \int_{\partial \mathcal{M}} dx_{AB} e^{-2d} \left(K^{[AB]} + 2X^{[A}B^{B]} \right)$$
$$K^{AB} = 4 \left[(\overline{P}\nabla)^{[A}(PX)^{B]} - (P\nabla)^{[A}(\overline{P}X)^{B]} \right]$$

Same form with lyer-Wald's conserved charge.

APPLICATIONS

- In pure gravity, they give ADM momenta.
- Null waves $P_A = (M, -M; 0,0)$
- •F1 String $P_A = (M, 0; 0, -M)$
- *Non-Riemannian Background [K Lee, JH Park '13]

$$\mathcal{H}_{MN} = \begin{bmatrix} 0 & * \\ * & * \end{bmatrix} \neq \begin{bmatrix} G^{-1} & -G^{-1}B \\ BG^{-1} & G - BG^{-1}B \end{bmatrix}$$

Still, O(D,D) current formula can be evaluated.

THANK YOU FOR LISTENING