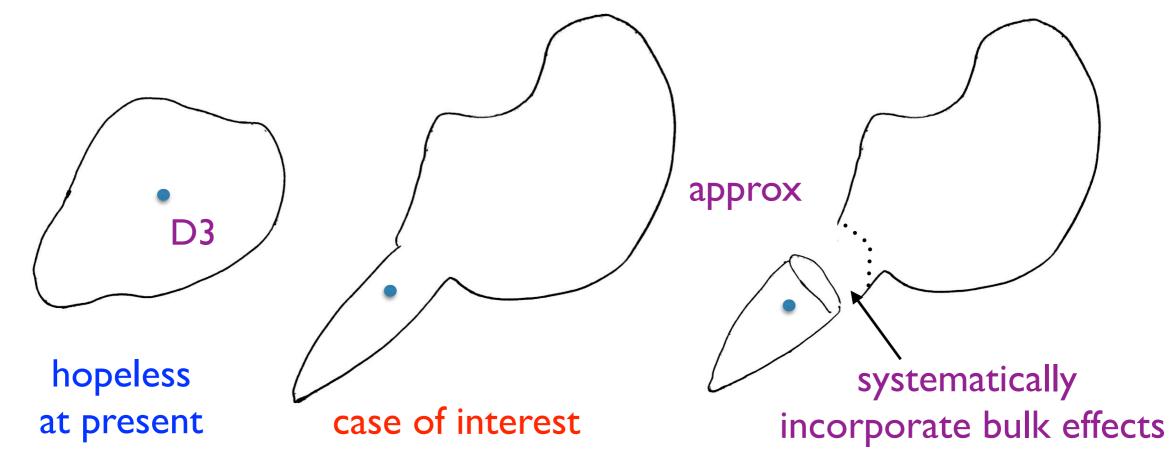
The Kahler potential contains:

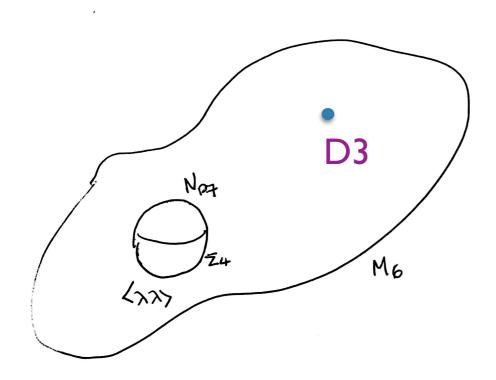
$$K(T, \bar{T}, z_{\alpha}, \bar{z}_{\alpha}) = -3 \ln \left[T + \bar{T} - \gamma k(z_{\alpha}, \bar{z}_{\alpha}) \right] \quad \nabla_{\alpha} \overline{\nabla}_{\beta} k = g_{\alpha \overline{\beta}}$$

difficult to get metric for compact $CY \rightarrow need$ a simpler setting

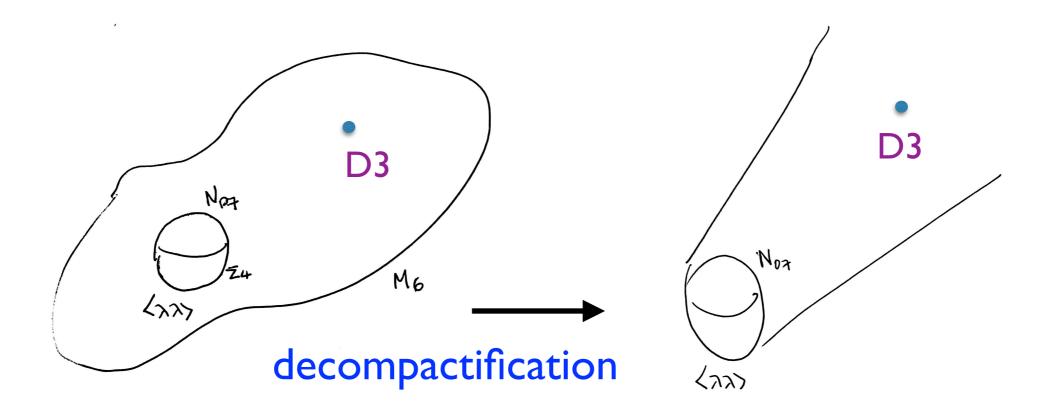
Idea:



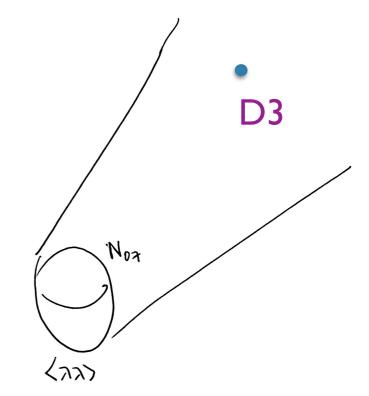
- To leading order, D3 feels no force (∵ no scale).
- What is the effect of W_{NP} on D3?



- To leading order, D3 feels no force (∵ no scale).
- What is the effect of W_{NP} on D3?



- $N=1 SU(N_c) SYM with 4D G_N = 0$
- Not pure glue but $N_f = I$
- Mass of 37 matter = ϕ $\phi_7 \propto I_{37}$
- Using "Seiberiology" for SQCD w/ N_f=1



$$W(m) = (N_c \Lambda^{3N_c - N_f} \det m)^{\frac{1}{N_c}} \to m^{\frac{1}{N_c}} \times (\text{independent of } m)$$

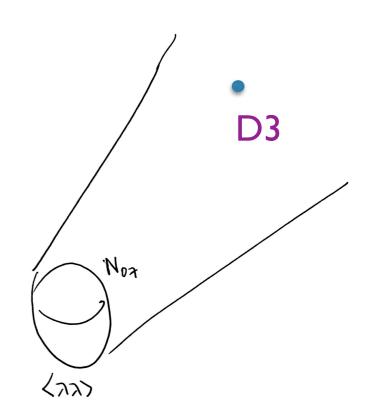
see e.g., Intriligator and Seiberg, hep-th/9509066

$$m \propto \phi \Rightarrow W \propto \phi^{\frac{1}{N_c}} \Rightarrow V(\phi) \neq 0$$

Non-perturbative superpotential:

$$W_{NP} = A_0 e^{-aT} \rightarrow A_0 f(z)^{\frac{1}{N_c}} e^{-aT}$$

$$f(z)=0 \leftrightarrow \text{locus of } \Sigma_4$$

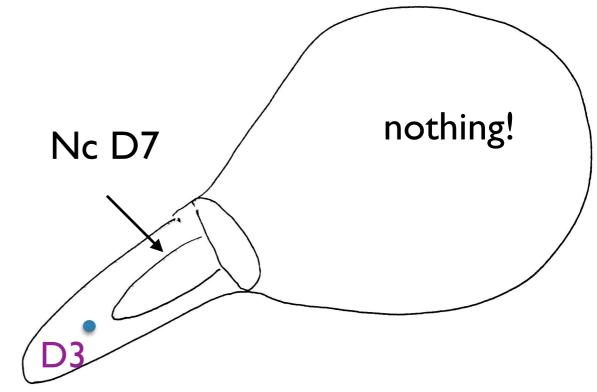


- Many ways to derive this:
 - I. open string I-loop corr. to gauge kin, function (BHK '04)
 - 2. general topological considerations (Ganor '96)
 - 3. closed string (i.e., SUGRA) (BDKMMM '06)
- Implications: W_{NP} gives non-negligible contribution to $V(\phi)$

Compactification Effects

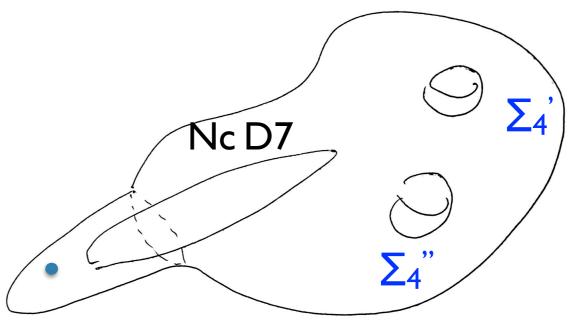
• For a toy model:

we can compute $V\varphi$) in full!



• Distant Σ_4 can give non-negligible contribution to $V(\phi)$

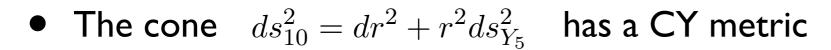
we'll parametrize these effects for Calabi-Yau cones



Calabi-Yau Cones

Let Y₅ be a Sasaki-Einstein manifold

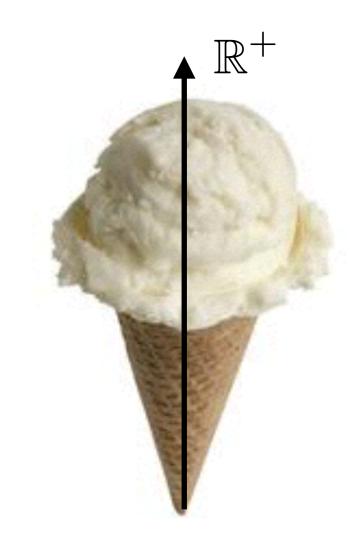
if
$$Y_5 \times \mathbb{R}^+$$
 is Kahler $R_{ab} \propto g_{ab}$



$$ds_{10}^{2} = \left(\frac{r}{R}\right)^{2} \eta_{\mu\nu} dx^{\mu} dx^{\nu} + \left(\frac{R}{r}\right)^{2} \left(dr^{2} + r^{2} ds_{Y_{5}}^{2}\right)$$

$$\Leftrightarrow AdS_5 \times Y_5 \text{ with } R^4 = \frac{4\pi^4 g_s N \alpha'^2}{\text{Vol}(Y_5)}$$

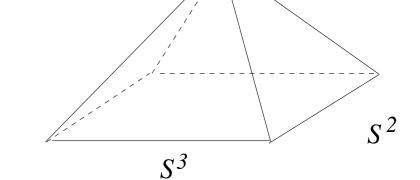
This is dual to an N=1 SCFT (useful later on).



Conifold

Simplest example of CY cones is the conifold:

$$\sum_{A=1}^{4} z_A^2 = 0$$



• Topologically, the conifold is a cone over $S^2 \times S^3$:

$$z^{A} = x^{A} + iy^{A}$$
 $x \cdot x = \frac{1}{2}\rho^{2}$, $y \cdot y = \frac{1}{2}\rho^{2}$, $x \cdot y = 0$

• Metrically, the base Y_5 is the Einstein manifold $T^{1,1}$:

$$T^{1,1} = [SU(2) \times SU(2)]/U(1)$$

parametrized by coordinates θ_1 , θ_2 , Φ_1 , Φ_2 , Ψ (detailed form of the metric can be found e.g., in [Candelas, de la Ossa]). Isometry group SU(2) x SU(2) x U(1).

Warped Conifold

- N D3 at the tip of the conifold \rightarrow warped conifold; FT dual is an N=1 SCFT worked out by [Klebanov, Witten] (more later).
- If we have N D3 at the tip and M D5 wrapping the shrinking S², the conifold is warped and deformed:

$$\sum_{A=1}^{4} z_A^2 = \varepsilon^2$$

• S² shrinks to zero size while the S³ size remains finite:

$$r_A = \sqrt{g_s M \alpha'}$$
 SUGRA valid if $g_s M \gg I$

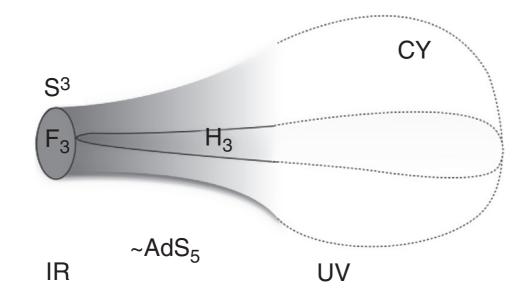
SUGRA solution[Klebanov, Strassler] is everywhere smooth.

Warped Deformed Conifold

Alternative description in terms of fluxes:

$$\frac{1}{(2\pi)^2 \alpha'} \int_A F_3 = M \quad \text{and} \quad \frac{1}{(2\pi)^2 \alpha'} \int_B H_3 = K \quad N \equiv MK$$

Near tip, S³ x R³



Far from tip,

approximated by AdS₅ x T^{1,1} (up to "log corrections")

See [GS, Underwood];[GS, Underwood, Kecskemeti, Maiden] for CMB effects.

CFT Dual

KW CFT has U(N)xU(N) gauge group & matter fields:

	U(N)	U(N)	SU(2)	SU(2)	$U(1)_R$
A_1, A_2	N	$\overline{\mathbf{N}}$	2	1	$\frac{1}{2}$
B_1, B_2	$\overline{\mathbf{N}}$	N	1	2	$\frac{1}{2}$

w/ a superpotential (see [Klebanov, Witten] for details)

$$W_{\text{tree}} = \lambda \epsilon^{ik} \epsilon^{j\ell} A_i B_j A_k B_\ell$$

- Isometry becomes SU(2)xSU(2) global symmetries and $U(1)_R$
- Moduli space of vacua = $\{D=0\}/U(1)$ is the coset space $T^{1,1}$:

$$D = |A_1|^2 + |A_2|^2 - |B_1|^2 - |B_2|^2 - \xi_{FI} = 0$$

$$\xi_{FI} \neq 0$$
(resolved conifold)

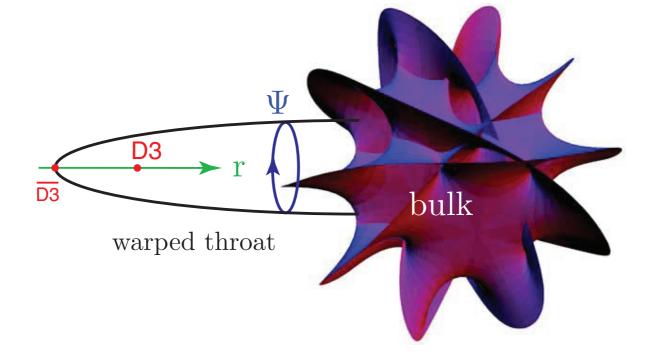
Our Strategy

• Non-compactification gives $G_N = 0$ (not useful)

General SU(3) holonomy manifold is intractable (need metric)

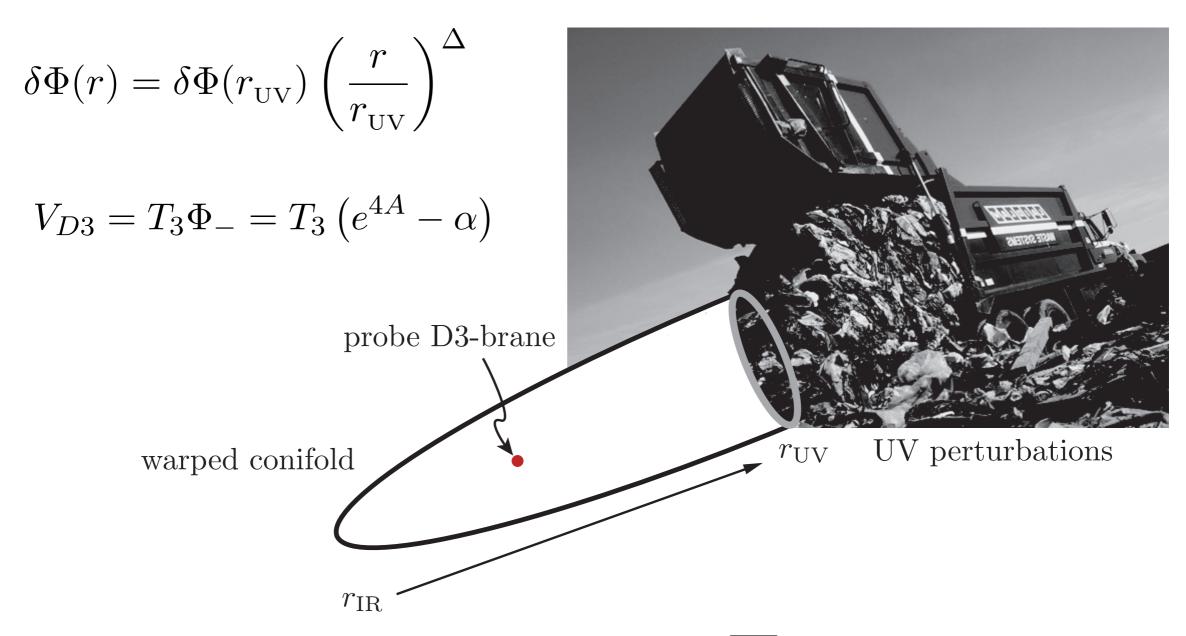
Middle ground: inclusion of compactification effects in a <u>finite</u>

throat:



 Planck-scale effects come from the bulk of compactification ("Planck brane").

UV Perturbations



On the CFT side: $\mathcal{L}_{CFT} o \mathcal{L}_{CFT} + \sum_{i} \mathcal{O}_{i}^{\Delta} c_{i}$

Two Dual Views

 $AdS \times T^{1,1}$

$$\delta\Phi(r) = \delta\Phi(r_{\rm UV}) \left(\frac{r}{r_{\rm UV}}\right)^{\Delta}$$

D3 postion

KW CFT

$$\mathcal{L}_{CFT}
ightarrow \mathcal{L}_{CFT} + \sum_{i} \mathcal{O}_{i}^{\Delta} c_{i}$$

vev describing location on Coulomb branch

Now in EFT, we could write:
$$V_{renorm} + \sum_{i,\Delta_i>4} c_i \mathcal{O}^{\Delta_i} \frac{1}{\Lambda^{\Delta_i-4}}$$

Spectroscopy of T^{1,1} gives the "structure" of the potential; not the Wilson coefficients ci

Two Dual Views

Here, the structure of operator dimensions $\{\Delta_i\}$ is not easy to get from the QFT, as the KW theory is strongly coupled.

We can obtain the spectroscopy of $\{\Delta_i\}$ in SUGRA and learn:

 $\{\Delta_i\} \Leftrightarrow \text{what sort of physics (fluxes, branes) in the bulk}$

This is a first step; next could try to understand the typical values of c_i and eventually statistics of c_i in the landscape.

Conifold Spectroscopy

D3-potential is given by Φ_{-} , whose solutions are given by:

$$\nabla^{2}\Phi_{-} = R_{4} + \frac{g_{s}}{96}|\Lambda|^{2} + e^{-4A}|\nabla\Phi_{-}|^{2} + \mathcal{S}_{loc}$$

$$\Lambda \equiv \Phi_{+}G_{-} + \Phi_{-}G_{+}$$

The 3-form flux in turn satisfies: $d\Lambda + \frac{i}{2}\frac{d\tau}{{\rm Im}\tau}\wedge(\Lambda+\bar{\Lambda})=0$

Consider first: $\nabla^2 \Phi_- = R_4$

In quasi-dS: $R_4 \approx 12H^2 \Rightarrow V = T_3\Phi_- = V_0 + H^2\phi^2 + ...$

$$\eta = M_P^2 \frac{V''}{V} = \frac{2}{3} + \dots$$
 can this contribution be canceled by other sources?

Conifold Spectroscopy

Localized sources:

$$\nabla^2 \Phi_- = R_4 + \frac{g_s}{96} |\Lambda|^2 + e^{-4A} |\nabla \Phi_-|^2 + \mathcal{S}_{loc}\rangle$$

$$V_{\mathcal{C}}(x) = D_0 \left(1 - \frac{27}{64\pi^2} \frac{D_0}{T_3^2 r_{\text{UV}}^4} \frac{1}{x^4} \right)$$

Brane Inflation [Dvali-Tye]

Warping flattens the potential

[Kachru, Kallosh, Linde, Maldacena, McAllister, Trivedi] (KKLMMT)

Conifold Spectroscopy

Bulk contributions: $V_{\mathcal{B}}(x,\Psi) = \mu^4 \sum_{LM} c_{LM} \, x^{\Delta(L)} \, f_{LM}(\Psi)$

After some work, one obtains in this example [Baumann et al]

$$V = V_0 + c_{ij}(\Psi)\phi^1 + a_{3/2}h_{3/2}(\Psi)\phi^{3/2} + [b_2 + c_2 + a_2h_2(\Psi)]\phi^2 + c_{\sqrt{28}-3}j_{\sqrt{28}-3}(\Psi)\phi^{\sqrt{28}-3} + \dots$$

Tracing the origin: a-terms: fluxes; b-terms: effect of R_4 ; c-terms: harmonic parts of Φ_-

Dual CFT Operators

On the gravity side, Δ is related to the eigenvalue of Laplacian:

$$\Delta(L) \equiv -2 + \sqrt{6[J_1(J_1+1) + J_2(J_2+2) - R^2/8] + 4}$$

 Δ should correspond to conformal dim. of operators in CFT.

Strongly coupled CFT, but Δ of some operators are protected.

Chiral operators
$$\mathcal{O}_{3/2} = \operatorname{Tr}(A_i B_j) + c.c.$$

Δ determined by R-charge | = | = R/2 = I/4

Non-chiral operators

$$\mathcal{O}_2 = \operatorname{Tr}(A_1 \bar{A}_2)$$
, $\operatorname{Tr}(A_2 \bar{A}_1)$, $\frac{1}{\sqrt{2}} \operatorname{Tr}(A_1 \bar{A}_1 - A_2 \bar{A}_2)$

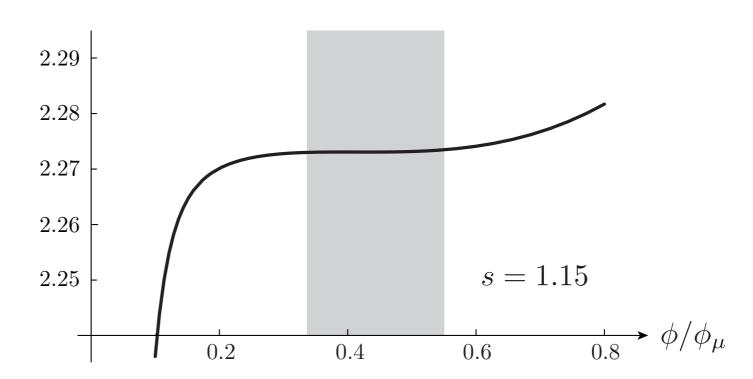
same multiplet as $SU(2)\times SU(2)$ global sym, current, $\Delta=2$

Some Features of D3-brane Inflation

- Small field inflation (undetectable r) → next lecture
- Kinetic term of DBI form: for "relativistic" motion, inflaton reaches "speed limit" (strong and distinctive NG).
- V(φ) receives crucial contribution from moduli stabilization,
 e.g., W_{NP} & bulk effects.
- Wilson coefficients depend on UV completion (string theory).

Phenomenology:

inflection point inflation



にふぇーでーびる=Thank you!