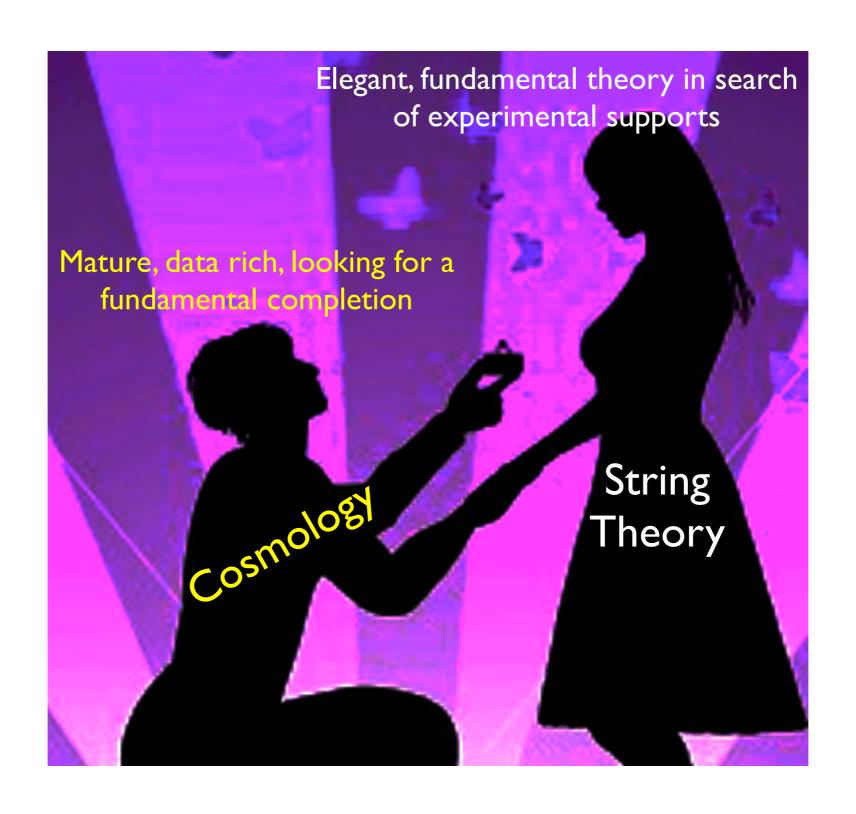
Inflation in String Theory

Gary Shiu

Inflation in String Theory

Gary Shiu

- String Cosmology: a broad & fast-growing subject, impossible to give a comprehensive review in 4 lectures!
- Focus on Inflation in String Theory, leaving many interesting topics (de Sitter vacua, big bang singularity, alternatives to inflation, ...) for another occasion.
- Some key issues require inputs from a quantum theory of gravity, and can be addressed with our present knowledge of string theory in a concrete way.
- Many excellent reviews on this subject (see INSPIRE). I have also some handwritten lecture notes for previous schools (e.g., Asian Winter School, 08 & 11; Florence String School, 09; Summer Institute, Mount Fuji, 10; IFT-Madrid, 14). Email me if you are interested.
- Baumann & McAllister, ``Inflation and String Theory", Cambridge U. Press.



Outline

- Lecture 1: Motivations for Inflation in String Theory; Some inflationary basics; General discussions of realizing inflation in string theory.
- Lecture 2: Small-field inflation in String Theory (e.g., D-brane inflation)
- Lecture 3: Large field inflation in String Theory (e.g., Axion Mondromy)
- Lecture 4: Fencing in the Swampland (and the Weak Gravity Conjecture)

Lecture 1

Inflationary Universe

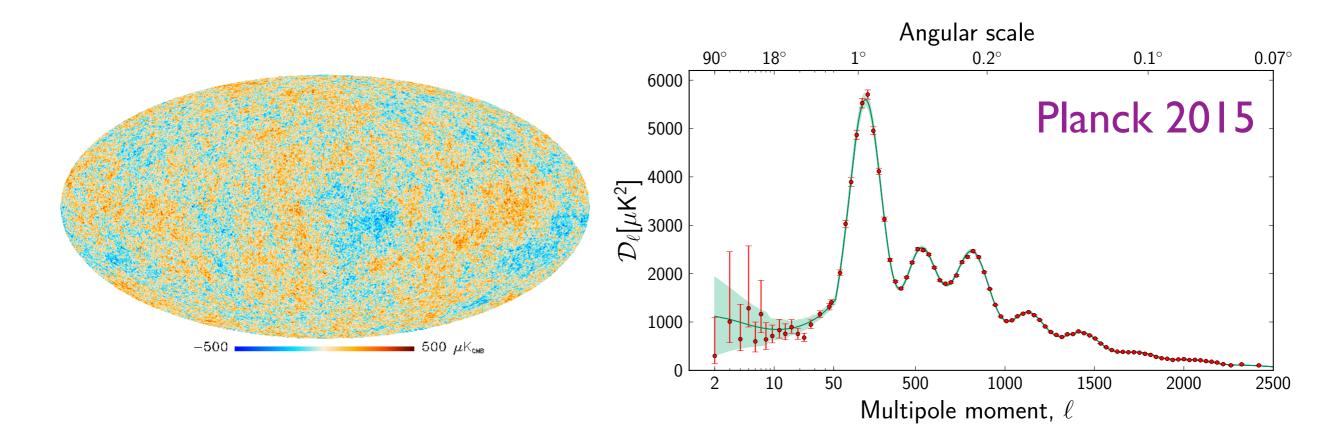
Starobinsky; Guth; Linde; Albrecht, Steinhardt; ...

- Remarkably successful effective theory! (c.f., LG theory of superconductivity; Fermi's theory of the weak interaction):
 - Solves the flatness and horizon problems.
 - Provides a first principle mechanism to generate large-scale structure and CMB fluctuations.
 - Generic predictions (nearly scale-invariant, adiabatic, Gaussian primordial spectrum) in good agreement with data.

Inflationary Universe

Starobinsky; Guth; Linde; Albrecht, Steinhardt; ...

Standard Model of Cosmology fits data exceedingly well:



 Near future experiments (e.g., PLANCK, BICEP/KECK, ACT, PolarBeaR, SPT, SPIDER, QUEIT, Clover, EBEX, QUaD, LiteBIRD, & CMBS4) can test its predictions with higher precision.

Why String Inflation?

 Suppose we accept that (i) inflation solves the key problems in standard hot BB cosmology and (ii) provides the seed for structure formation. Are we done?

Why String Inflation?

- Suppose we accept that (i) inflation solves the key problems in standard hot BB cosmology and (ii) provides the seed for structure formation. Are we done?
- Goal of these lectures is to show that:

Inflation is sensitive to UV physics

or (state more positively)

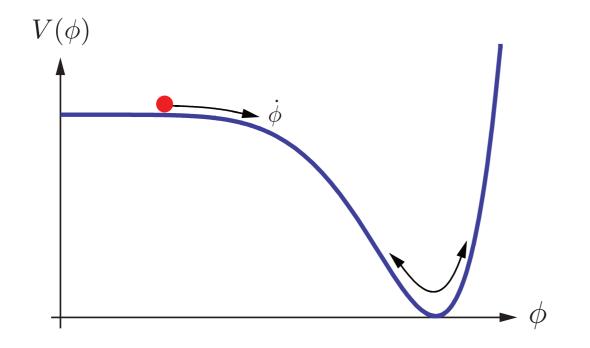
Observational Cosmology (via inflation) is a powerful window into Planck scale physics!

UV Sensitivity of Inflation

- Condition for inflation: $\frac{\ddot{a}}{a} > 0 \Leftrightarrow \dot{H} + H^2 > 0 \Leftrightarrow -\frac{\dot{H}}{H^2} < 1$
- Define the slow-roll parameters:

$$\epsilon_H \equiv -\frac{\dot{H}}{H^2}, \quad \epsilon_H << 1 \quad \text{inflation occurs}$$
 $\eta_H \equiv \frac{\epsilon_H}{1+\epsilon_H}, \quad \eta_H << 1 \quad \text{inflation lasts}$

• Inflation is usually realized by a scalar field with a flat potential:



$$\epsilon_{V} \equiv \frac{M_{P}^{2}}{2} \left(\frac{V'}{V}\right)^{2} << 1$$

$$|\eta_{V}| \equiv |M_{P}^{2} \left(\frac{V''}{V}\right)| << 1$$

∃ linear map: $(\epsilon_H, \eta_H) \rightarrow (\epsilon_V, \eta_V)$

UV Sensitivity of Inflation

- The slow-roll conditions are highly sensitive to UV physics!
- Consider the inflationary Lagrangian which contains:

$$\mathcal{L} \supset \frac{1}{2} m^2 \varphi^2, \qquad V'' \qquad = \quad m^2 + \dots$$

$$V \qquad = \quad 3H^2 M_P^2$$

$$\Rightarrow \eta \qquad = \quad \frac{m^2}{3H^2} \qquad \qquad |\eta| << \text{1 if m} << \text{H}$$

- Eta Problem: why is the inflaton so light?
- Quantum corrections tend to drive m to the cutoff $\Lambda >> H$.
- SUSY not helpful here: SUSY is broken with $m_{3/2} \sim H$, so $m_{\varphi} \rightarrow H$

Higher Dimensional Operators

- UV completion of GR typically involves new dofs with $M < M_P$
- In String Theory, these include the string and KK states:

$$M_{KK} < M_s < M_P$$

• If the inflaton has O(I) couplings to these heavy dofs ξ , integrating them out yields:

$$\Delta \mathcal{L}_{\varphi} = \frac{\mathcal{O}^{\Delta}(\varphi)}{M^{\Delta - 4}}$$
 with \mathcal{O} some allowed operator in the φ QFT

• If before considering ξ , we have

$$\mathcal{L}_{\varphi} = \frac{1}{2} \left(\partial \varphi \right)^2 - V(\varphi)$$

Higher Dimensional Operators

- UV completion of GR typically involves new dofs with $M < M_P$
- In String Theory, these include the string and KK states:

$$M_{KK} < M_s < M_P$$

• If the inflaton has O(I) couplings to these heavy dofs ξ , integrating them out yields:

$$\Delta \mathcal{L}_{\varphi} = \frac{\mathcal{O}^{\Delta}(\varphi)}{M^{\Delta - 4}}$$
 with \mathcal{O} some allowed operator in the φ QFT

• If before considering ξ , we have

$$\mathcal{L}_{\varphi} = \frac{1}{2} \left(\partial \varphi \right)^2 - V(\varphi)$$

$$\Delta \mathcal{L}_{\varphi} = c \ V(\varphi) \frac{\varphi^2}{M^2}$$
integrate out ξ

Higher Dimensional Operators

If this dimension-6 Planck suppressed operator arises:

$$\Delta \eta = 2c \left(\frac{M_P}{M}\right)^2 >> 1 \text{ for } M << M_P \text{ and Wilson coefficient } c \sim \mathcal{O}(1)$$

• The above Planck-scale sensitivity is general, and applies to any model of inflation.

 Models with interesting next-generation observables such as large, distinctive non-Gaussianity (e.g. [Chen, Huang, Kachru, GS]) and gravity waves are even more UV sensitive!

Towards Inflation in String Theory

Moduli Problem

- Given its UV sensitivity, natural to search for inflation in string theory.
- For inflation, we need (at least) a scalar (the inflaton) which
 - drives $\ddot{a} > 0$ for $\gtrsim 60$ e-folds
 - then reheats the universe
- Scalars are plentiful (too plentiful!) in string theory, e.g., a CY compactification comes w/ many Kahler moduli (size), complex structure moduli (shape), axio-dilaton, D-brane scalars, ...
- Scalars w/ G_N -strength coupling & m $\gtrsim 30$ TeV decay $\gtrsim 1$ sec (recall $\Gamma \sim M^3/M_P^2$) and spoil BBN.
- If present today, these moduli lead to 5-th force.

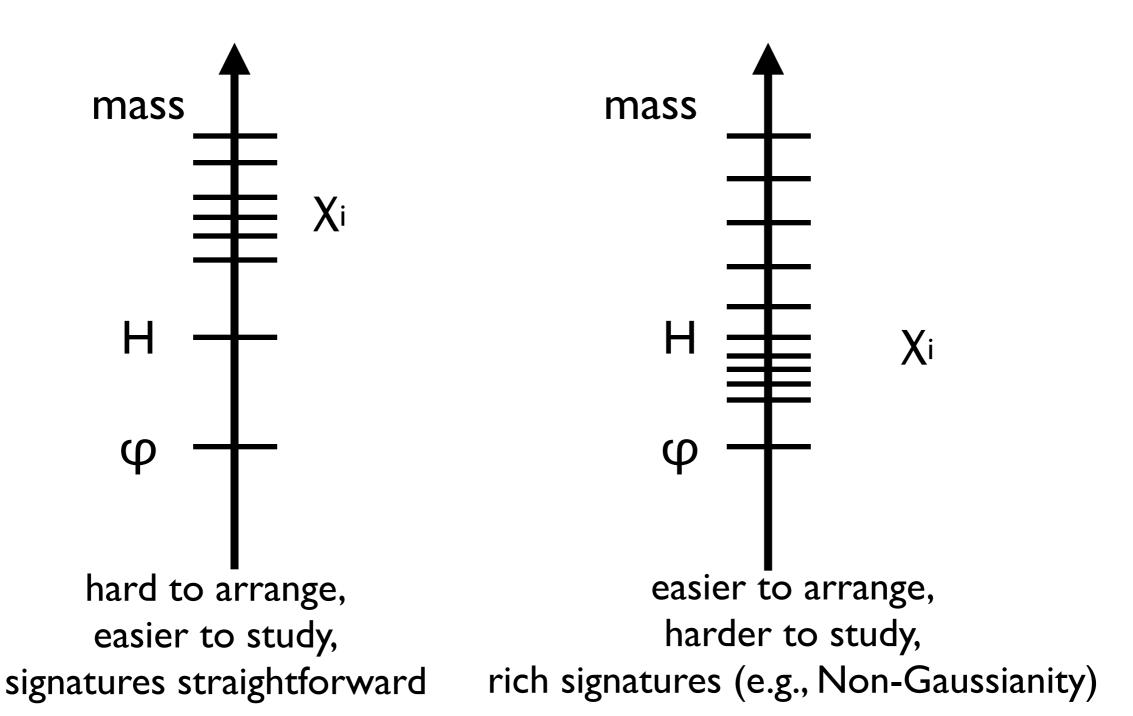
Moduli Problem

- This problem is generic for string theory: need moduli stabilization mechanism to give moduli masses ≥ 30 TeV to not ruin late time cosmology.
- Flux compactification provides a class of vacua where many/ most/all moduli are stabilized (more in Lecture 2).
- Realizing inflation in string theory introduces new subtleties:
 - inflaton is one of the moduli
 - giving other moduli masses 30 TeV < m < H solves the moduli problem but they are dynamical during inflation!

$$\delta \chi \sim \frac{H}{2\pi}$$

Moduli Stabilization

Inflationary physics tied to moduli stabilization:

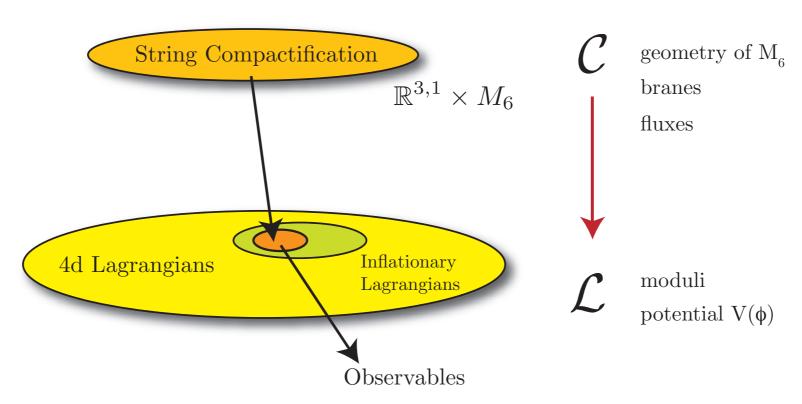


Moduli Stabilization & Inflation

- Single Field Inflation: after integrating out χ_i , the EFT contains only I scalar ϕ with m< H <u>and</u> V(ϕ) satisfying ϵ_V , $|\eta_V|$ << I.
- Challenge: Integrate over Planck-scale dofs ξ already gives substantial corrections to $\mathcal{L}(\phi)$ (in particular η_{\vee}), and here ...
- Moduli masses m << M_P (or even m<< M_{KK} if stabilized in 4D theory), integrating out χ_i can give a large correction to $\mathcal{L}(\phi)$!
 - One must understand moduli stabilization in detail
 - Corrections (g_s , α ', warping, backreaction, ...) to the EFT, often ignored in other contexts, <u>can be crucial</u>.

Effective Action of String Compactification

- A <u>complete</u> and <u>reliable</u> dimensional reduction, almost always beyond the leading order, is needed.
- This strongly motivates us to develop tools to compute the 4D EFT arising from string compactifications!



Will see examples illustrating this point in the coming lectures.

Inflationary Basics

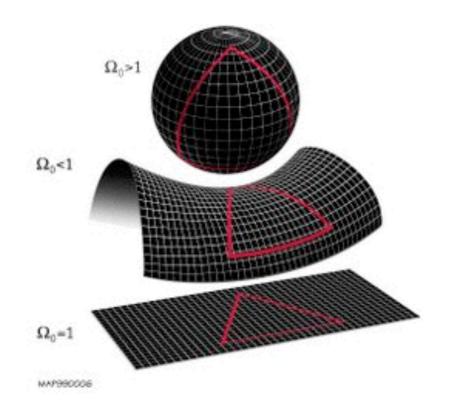
Inflation

An equivalent way of stating the condition for inflation is:

$$\frac{\ddot{a}}{a} > 0 \leftrightarrow \frac{d}{dt} (aH)^{-1} < 0$$

A shrinking comoving horizon solves the flatness & horizon problems.

Flatness problem



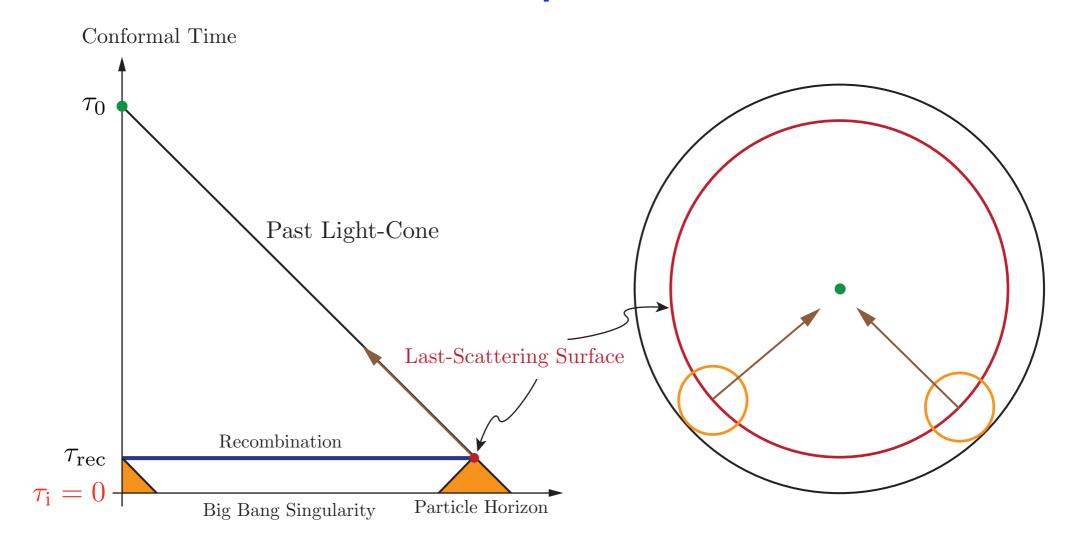
$$1 - \frac{\rho}{\rho_{\text{cric}}} \equiv 1 - \Omega(a) = -\frac{k}{(aH)^2}$$

$$(aH)^{-1} \propto a^{\frac{1}{2}(1+3w)}$$

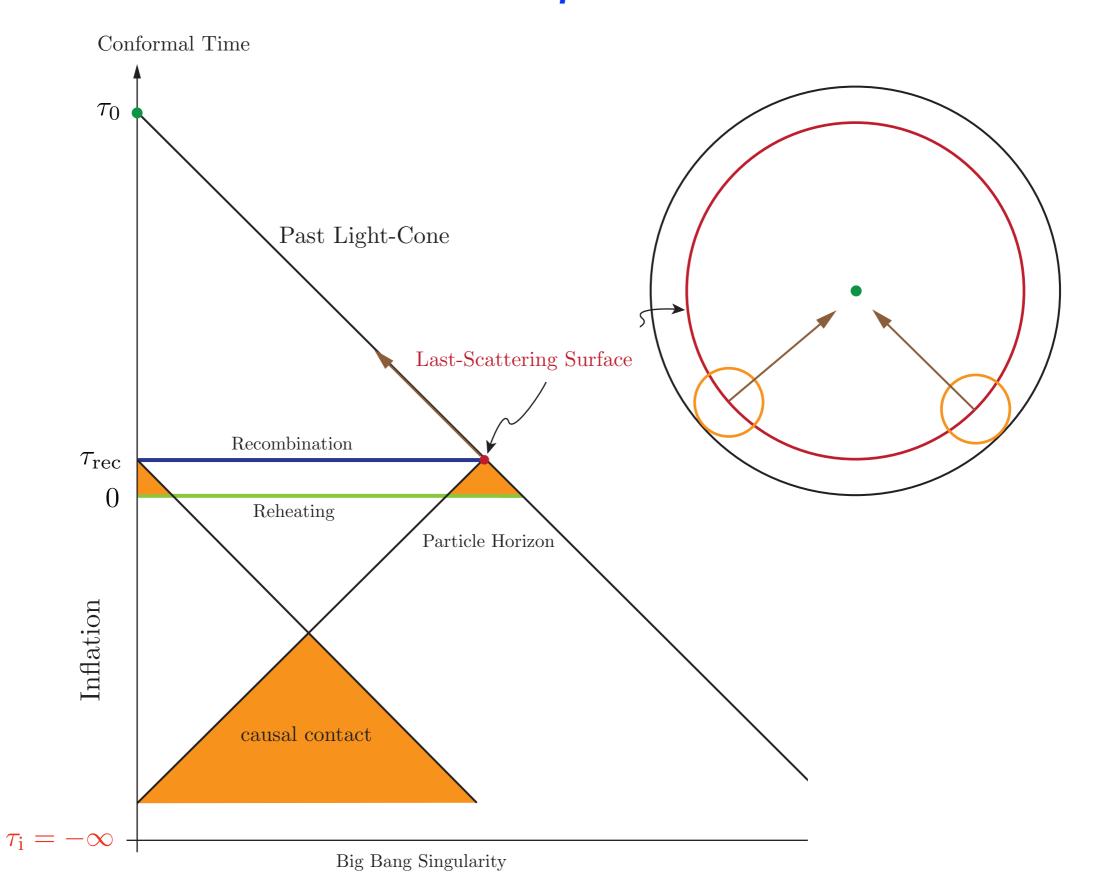
$$|\Omega-1|\sim 10^{-18}$$
 MeV temp. (BBN)

$$|\Omega-1|\sim 10^{-54}$$
 GUT temp.

Horizon problem

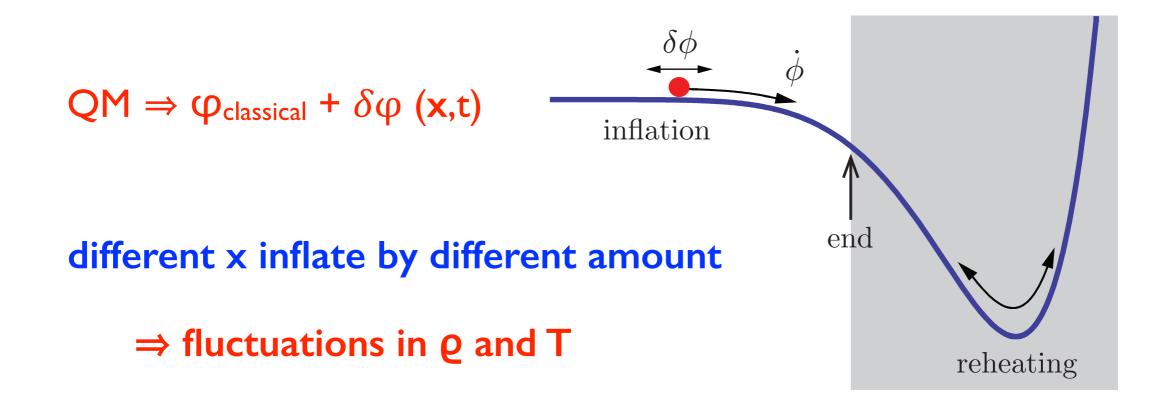


Horizon problem

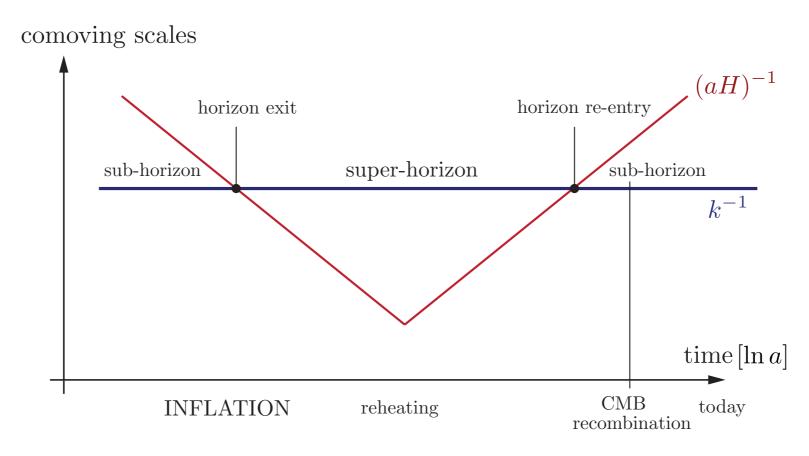


Cosmological Perturbations

- A shrinking comoving horizon also leads to a prediction!
- The inflation φ governs ϱ and the end of inflation (clock):



Cosmological Perturbations



Cosmological perturbations amount to linearizing fluctuations:

$$\varphi(t, \vec{x}) = \overline{\varphi}(t) + \delta \varphi(t, \vec{x})$$

$$g_{\mu\nu}(t, \vec{x}) = \overline{g}_{\mu\nu}(t) + \delta g_{\mu,\nu}(t, \vec{x})$$

and linearizing the EOMs. A linear treatment is justified because observed fluctuations are small (e.g., $\Delta T/T \sim 10^{-5}$).

Gauge Choice

- Homogeneity and isotropy fixes the form of the background.
- Perturbations no longer preserve homogeneity.
- Be careful to distinguish between real and fake perturbations
 - Example 1: $\varrho(t,x) = \varrho(t)$, but we can introduce fake perturbations by a change of coordinates:

$$\tilde{t} = t + \delta(t, \vec{x}) \Rightarrow \tilde{\rho}(\tilde{t}, \vec{x}) = \rho(t(\tilde{t}, \vec{x}), \vec{x})$$
 fake inhomogeneity

 Example 2: By choosing the hypersurface of constant time to coincide w/ surface of constant energy density:

$$\delta \tilde{
ho} = 0$$
 though there are real inhomogeneities

Gauge Invariant Perturbations

- Physical dofs are the gauge invariant combinations of matter field + metric perturbations.
- How many scalar perturbations dof?
- Naively 5: $\delta \varphi$, δg_{00} , δg_{ii} , $\delta g_{0i} = \partial_i B$, $\delta g_{ij} = \partial_i \partial_j H$
- Coordinate transf. removes 2: $t \to t + \epsilon_0, x_i \to x_i + \partial_i \epsilon$
- Einstein constraint equation removes another 2.
- The only remaining gauge invariant combination of scalar dofs leads to density perturbation.

Comoving Gauge

- An efficient approach is to
 - I. Choose a good gauge
 - 2. Expand the action
- Fix time & space reparametrizations by using comoving gauge:

$$\delta\varphi = 0$$

$$\delta g_{00} = \delta g_{0i} = 0$$

$$\delta g_{ij} = a^2(t) \delta_{ij} (1 - 2\mathcal{R}) + a^2(t) h_{ij}$$

where \mathcal{R} is a scalar, h_{ij} is transverse-traceless, i.e., $\nabla_i h^{ij} = h^i_i = 0$

• We refer to \mathcal{R} as the curvature perturbation as comoving spatial slices ϕ =constant have $R^{(3)} = \frac{4}{a^2} \nabla^2 \mathcal{R}$; h_{ij} ~ tensor perturbation.

Curvature Perturbations

Expanding the action (see e.g., Maldacena, '02):

$$S_{(0)} = \int d^4x \sqrt{-g} \left[\frac{1}{2} \mathcal{R} - \frac{1}{2} g^{\mu\nu} \partial_{\mu} \varphi \partial_{\nu} \varphi - V(\varphi) \right]$$

we find the 2nd order action for our (classical) variable ${\mathcal R}$

$$S_{(2)} = \int d^4x \sqrt{-g} \left[\dot{\mathcal{R}}^2 - \frac{1}{a^2} \delta^{ij} \partial_i \mathcal{R} \partial_j \mathcal{R} \right] \frac{\dot{\varphi}^2}{2H^2}$$

Define the canonically normalized field (Mukhanov variable);

$$v \equiv \left(\frac{a\dot{\varphi}}{H}\right) \mathcal{R} \equiv z \ \mathcal{R}$$

• Transforming to conformal time adt = $d\tau$:

$$S_{(2)} = \frac{1}{2} \int d^3x d\tau \left[z^2 \mathcal{R}''^2 - (\nabla v)^2 \right] = \frac{1}{2} \int d^3x d\tau \left[(v')^2 - (\nabla v)^2 + \frac{z''}{z} v^2 \right]$$
 (HW)

Curvature Perturbations

- Now, $z \equiv a\dot{\varphi}/H$ is background (model) dependent
- So we have a scalar w/ a time-dependent mass:

$$S_{(2)} = \int d\tau d^3x \left[-\frac{1}{2} \eta^{\mu\nu} \partial_{\mu} v \partial_{\nu} v - \frac{1}{2} m^2(\tau) v^2 \right]$$

with

$$m^{2}(\tau) = -\frac{z''}{z} = -\frac{H}{a\dot{\varphi}}\frac{\partial^{2}}{\partial \tau^{2}}\left(\frac{a\dot{\varphi}}{H}\right)$$

• Given a homogeneous background solution, one obtains $m(\tau)$:

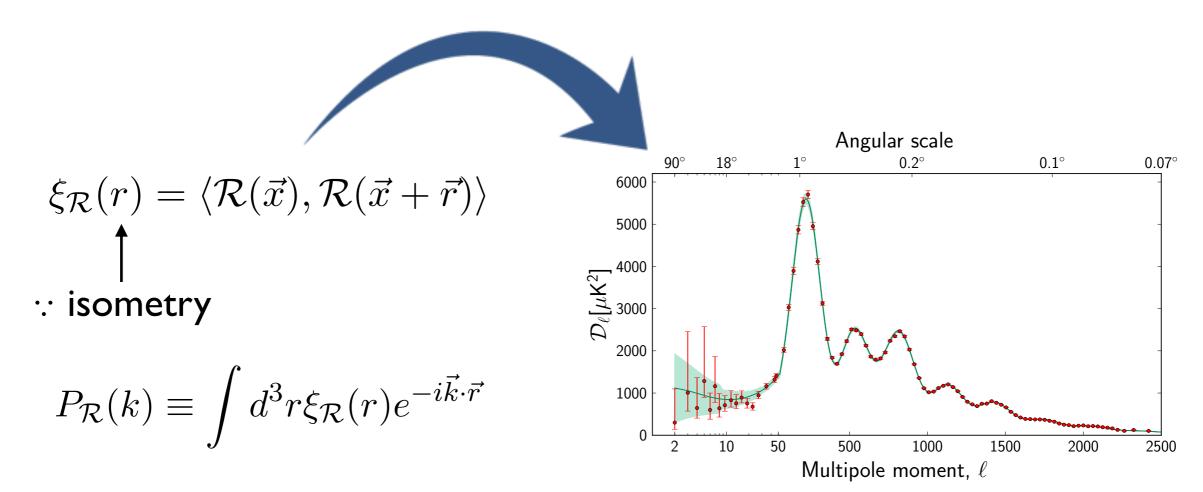
$$\{a(t), \varphi(t)\} \Rightarrow \{\dot{\varphi}(t), H(t), \tau(t)\} \Rightarrow z(\tau)$$

• Mukhanov-Sasaki equation: $v_k'' + \left(k^2 - \frac{z''}{z}\right)v_k = 0$

Statistical properties of $\Delta T/T$ determined by that of $\mathcal{R}!$

Connecting Theory with Observations

The scalar power spectrum is one of the key outputs of inflation:



Not the only observables:

$$\langle \mathcal{R}_{\vec{k}_1} \mathcal{R}_{\vec{k}_2} \mathcal{R}_{\vec{k}_3} \rangle \neq 0$$
 Non-gaussianity

$$\langle h_{ij}(\vec{k})h_{ij}(\vec{k}')\rangle$$

Primordial GW (tensor perturbation)

Power Spectrum & Spectral Index

Quantize the fluctuations by promoting:

$$[\hat{v}(\tau, \mathbf{x}), \hat{\pi}(\tau, \mathbf{y})] = i\delta(\mathbf{x} - \mathbf{y})$$

- Power spectrum is given by:

Power spectrum is given by:
$$P_{\mathcal{R}}(k) = \frac{H^2}{2k^3} \frac{H^2}{\dot{\varphi}^2}|_{k=aH}$$
 Dimensionless power spectrum
$$\Delta^2_{\mathcal{R}}(k) = \frac{k^3}{2\pi^2} P_{\mathcal{R}}(k)$$

$$\Delta_{\mathcal{R}}^2(k) = \frac{k^3}{2\pi^2} P_{\mathcal{R}}(k)$$

Spectral index: parametrizing deviation from scale invariance

$$\Delta_{\mathcal{R}}^{2}(k) = A(k_0) \left(\frac{k}{k_0}\right)^{n_s - 1} \qquad \frac{d}{dlnk} \Delta_{\mathcal{R}}^{2}(k) = n_s - 1$$

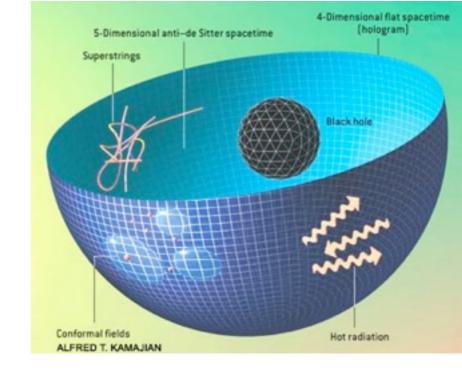
Homework:
$$n_s - 1 = 2\eta_H - 4\epsilon_H = 2\eta_V - 6\epsilon_V$$

Holography?

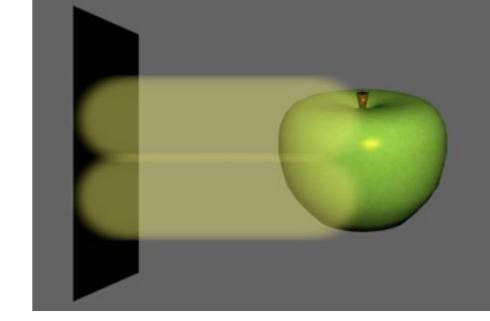
- Is there a dS/CFT? [Strominger]
- Unlike AdS/CFT, challenge for dS/CFT include:
 - no explicit string constructions (and candidate CFT)
 - no boundary
 - no SUSY
- Pragmatic approach: some observables are fixed by symmetries
- Take as working assumption: $\Psi_{dS} = Z_{CFT}$
- Inflation is not exact dS but slightly perturbed:

$$S_{CFT} \to S_{CFT} + g \int d^d x \mathcal{O}(\vec{x})$$

The slow-roll parameters should have their analogues in CFT.



Holography?



The holographic direction is time:

$$ds^2 = -dt^2 + e^{2Ht}dx_d^2$$

Introduce μ =Ha (holographic scale)

$$ds^{2} = H^{-2} \left[-\mu^{2} d\mu^{2} + \mu^{2} ds_{d}^{2} \right]$$

The coupling constant g in the CFT is determined by φ :

$$g = \kappa \phi$$

$$\beta = \frac{dg}{dln\mu} = \frac{\kappa\dot{\phi}}{H} = \sqrt{2\epsilon_H}$$

Anomalous dimension:
$$\lambda = \frac{d\beta}{dg} = \epsilon_H - \eta_H$$

Holographic Dictionary

Back to inflationary perturbations:

$$\langle \mathcal{O}_{\Delta}(x)\mathcal{O}_{\Delta}(y)\rangle = \left. \frac{\delta^2 \Psi_{dS}[\phi]}{\delta \phi(x)\delta \phi(y)} \right|_{\phi=0}$$

• Expand Ψ_{dS} in terms of source φ (justified as $\delta \rho / \rho \sim 10^{-5}$)

$$\Psi_{dS}[\phi] = e^{\frac{1}{2} \int d^3k \, d^3k'} \left\langle \mathcal{O}_{\vec{k}} \mathcal{O}_{\vec{k}'} \right\rangle \phi_{\vec{k}} \phi_{\vec{k}'} + \dots + \frac{1}{n!} \int d^3k \dots d^3k'' \, \phi_{\vec{k}} \dots \phi_{\vec{k}n} \left\langle \mathcal{O}_{\vec{k}} \dots \mathcal{O}_{\vec{k}n} \right\rangle$$

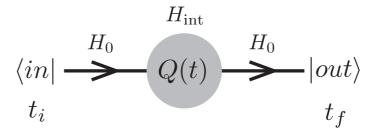
Holographic dictionary [Maldacena, '02]:

$$\langle \phi_{\vec{k}} \phi_{-\vec{k}} \rangle' = -\frac{1}{2Re \langle \mathcal{O}_{\vec{k}} \mathcal{O}_{-\vec{k}} \rangle'} \qquad \langle \phi_{\vec{k}_1} \phi_{\vec{k}_2} \phi_{\vec{k}_3} \rangle' = \frac{2Re \langle \mathcal{O}_{\vec{k}_1} \mathcal{O}_{\vec{k}_2} \mathcal{O}_{\vec{k}_3} \rangle'}{\Pi_i \left(-2Re \langle \mathcal{O}_{\vec{k}_i} \mathcal{O}_{-\vec{k}_i} \rangle' \right)}$$

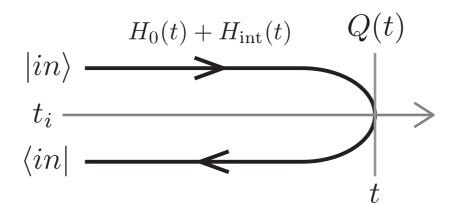
verified for power spectrum [van der Schaar] taking into account RG flow; 3-pt function more subtle, checked only for special kinematic limit or ε<<η [Schalm, Shiu, van der Aalst], [Skenderis et al]; [Trivedi et al]....

Non-Gaussianity

• Particle physicists compute in-out amplitude, say for the LHC:



• Cosmologists compute in-in expectation values aka "Cosmological Collider"



• Sketch of calculations: Expand the action in the comoving gauge:

$$S = S_0 \left[\overline{\varphi}, \overline{g}_{\mu\nu} \right] + S_2(\mathcal{R}^2) + S_3(\mathcal{R}^3) + \dots$$

HW: Compute NG for general single-field inflation [Chen, Huang, Kachru, GS]

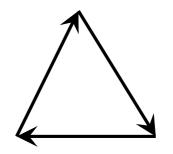
Non-Gaussianity

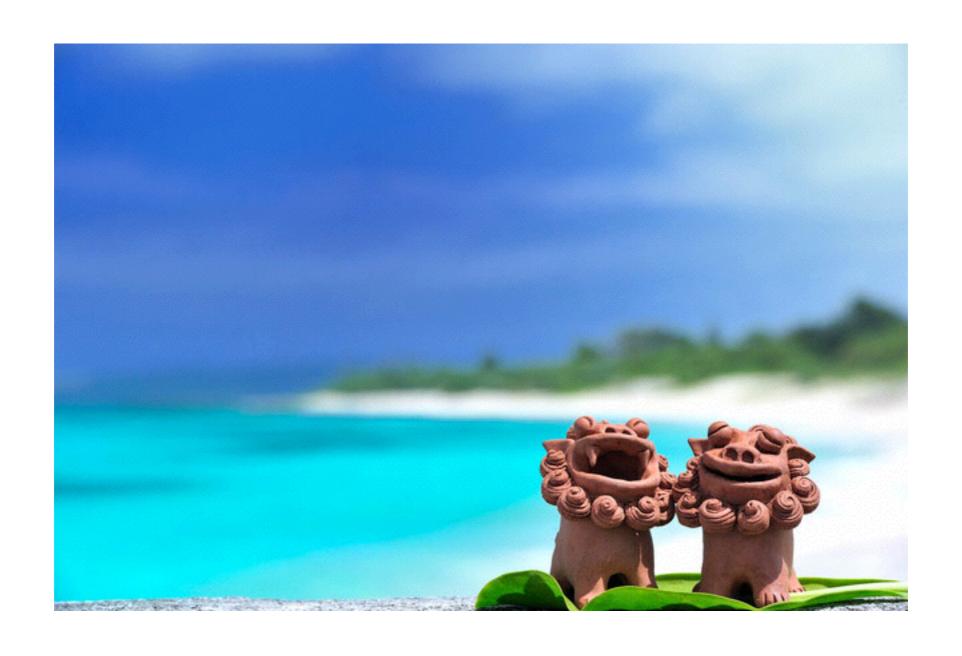
• Consider
$$S=\int \mathrm{d}^4 x \sqrt{-g} \left[\frac{1}{2}R+P(X,\phi)\right]$$
 with $X\equiv -\frac{1}{2}(\partial_\mu\phi)^2$

- NG $<\mathcal{R}_{k1}\mathcal{R}_{k2}\mathcal{R}_{k3}>$ fully worked out in [Chen, Huang, Kachru, GS]
- Slow-roll inflation corresponds to $P(x, \phi) = X V(\phi)$ but generally:

$$P(X,\phi) = \sum c_n(\phi) \frac{X^n}{\Lambda^{4n-4}}$$

- Detectable NG if $X >> \Lambda \Rightarrow UV$ completion needed!
- DBI Inflation [Silverstein, Tong]: $P(X,\phi) = \frac{\Lambda^4}{f(\phi)} \sqrt{1 f(\phi) \frac{X}{\Lambda^4}} V(\phi)$
- Distintive shapes:





にふえーでーびる