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with their coefficients C
Y ′
1 ,Y

′
2

Y⃗
to be determined. AFLT’s claim is that for some primary field

Vα, its normalized matrix element with respect to the AFLT basis

Y⃗ ⟨∆|Vα |∆⟩Y⃗ ′

⟨∆|Vα |∆⟩ ,

is equal to the Nekrasov partition function for a hypermultiplet in bifundamental represen-

tation. Their work inspired a series of attempt to prove the AGT conjecture, [56], [57], [58]

etc.

In this section, we will give a brief introduction to the algebra SHc (short for central

extension of spherical degenerate double affine Hecke algebra) constructed by Schiffmann

and Vasserot [9] in the spirit of AFLT. We will see that by taking the representation labeled

by N Young diagrams, the whole representation space of SHc is spanned by orthogonal basis.

Defining relations for SHc

We follow the notational convention used in [50] for SHc. There are infinite number of

generators in SHc: Dr,l with r ∈ Z and l ∈ Z≥0. All other generators can be generated from

the commutator between three families of more basic generators, D±1,l and D0,l recursively.

Dl+1,0 =
1

l
[D1,1, Dl,0] , D−l−1,0 =

1

l
[D−l,0, D−1,1] ,

Dr,l = [D0,l+1, Dr,0] , D−r,l = [D−r,0, D0,l+1] .
(2.3.3)

The commutation relations between D±1,l and D0,l are given by

[D0,l, D1,k] = D1,l+k−1, l ≥ 1 ,

[D0,l, D−1,k] = −D−1,l+k−1, l ≥ 1 ,

[D−1,k, D1,l] = Ek+l, l, k ≥ 1 ,

[D0,l, D0,k] = 0, k, l ≥ 0 ,

(2.3.4)

where Ek is defined as the expanding coefficient of a generating function

1 + (1− β)
∑

l≥0

Elζ
l+1 = exp

(
∑

l≥0

(−1)l+1clπl(ζ)

)
exp

(
∑

l≥0

D0,l+1ωl(ζ)

)
, (2.3.5)

and

πl(ζ) = ζ lGl (1 + (1− β)ζ) ,

ωl(ζ) =
∑

q=1,−β,β−1

ζ l (Gl(1− qζ)−Gl(1 + qζ)) ,

G0(ζ) = − log(ζ), Gl(ζ) =
ζ−l − 1

l
, l ≥ 1 .

(2.3.6)
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We defined φµ = βj − i (the usual coordinate without a).

We can give “half” of L− to L+ to make them have the same expression without violating the

commutation relation (as that has been done in KMZ [14]). Thus we can see that the q-deformed

representation in the last section, if we restrict the number of Young diagram to one, is exactly this

representation constructed by Schiffmann & Vasserot.

10 With arbitrary number of Young diagrams by Tsymbal-

iuk

In [15], a representation of E with arbitrary number of Young diagrams was constructed. Let

us extract several equations from [15] to suggest the validness of the q-deformed representation

provided in section 8. More details will be found in Masayuki’s updating.

The convention (of triangular decomposition) is different in [15] from [2] etc., and to unify the

notation, we adopt that in [2]. The action of the generator adding one box to the Young diagrams

reads, (k ∈ Z and n is the number of Young diagrams)

ek |Y⃗ ⟩ =
∑

µ∈A(Y⃗ )

q(k−n)φµ

1− qξ

∏

ν∈A(Y⃗ ) 1− qφµ−φν−ξ

∏

ν∈R(Y⃗ ) 1− qφµ−φν
|Y⃗ + µ⟩ , (62)

fk |Y⃗ ⟩ =
∑

µ∈R(Y⃗ )

qkφµ

1− qξ

∏

ν∈R(Y⃗ ) 1− qφν−φµ−ξ

∏

ν∈A(Y⃗ ) 1− qφν−φµ
|Y⃗ − µ⟩ . (63)

This time, φµ := al + βj − i, where we assigned to each Young diagram a parameter al.
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commutator between two D1,l’s: [Dl,1, Dk,1] = Bl,kDk+l,1 + Cl,kDk+l,0 + Fl,k. Bl,k, Cl,k and

Fl,k are antisymmetric about l and k. We can check it with several simple examples:

[D±1,1, D±1,1] = 0 , [D−1,1, D1,1] = E2 = 2βD0,1 + . . . .

Indeed, in [9] it is claimed that the following identification can be established.

αl =
1√

βl−1E0

D−l,0 , α−l =
1√

βl−1E0

Dl,0 , for l > 0 , α0 =
E1√
βE0

,

Ll =
1

l
√
βl
D−l,1 +

(1− l)

2
E3/2

0

(
1√
β
−
√
β

)
αl ,

L−l =
1

l
√
βl
Dl,1 +

(1− l)

2
E3/2

0

(
1√
β
−
√
β

)
α−l ,

L0 =
1

2β
E2 = D0,1 +

1

2β

(
c2 + c1(1− c0)ξ +

1

6
c0(c0 − 1)(c0 − 2)ξ2

)
, (H.0.7)

with the normalization convention [αn,αm] = nδn+m,0. From this claim, we can inversely

extract the commutators for Dl,0’s and Dl,1’s. Let l, k > 0 in the following equations,

[Dl,1, Dk,0] = lkDk+l,0 , [D−l,1, D−k,0] = −lkD−k−l,0 ,

[D−l,1, Dk,0] =
lk√

β|l−k|−(l+k)
D−l+k,0 +

l2(1− l)

2
βl

(
1− 1

β

)
E2

0δl,k ,

[Dl,1, D−k,0] = − lk√
β|l−k|−(l+k)

Dl−k,0 −
l2(1− l)

2
βl

(
1− 1

β

)
E2

0δl,k .

(H.0.8)

[D−l,1, D−k,1] =
(l − k)lk

l + k
D−(l+k),1 , [Dl,1, Dk,1] =

(k − l)lk

l + k
Dl+k,1 ,

[D−l,1, Dk,1] =
lk(l + k)

|l − k|
√
β|l−k|−(l+k)

D−l+k,1 +max(l2, k2)lk
E0√

β|l−k|−(l+k)
(1− β)D−l+k,0

+
1

12
l3(l2 − 1)βl

[
1 + (E0 − 1)

(
1−

(√
β − 1√

β

)2

(E2
0 + E0)

)]
δl,k ,

(H.0.9)

where we used the expression for the central charge

c = 1 + (N − 1)

(
1−

(√
β − 1√

β

)
(N2 +N)

)
.

We will give a further discussion about these commutators in Appendix I, and we just

admit these relations here.

To construct the commutators for higher-spin generators, W (s)
n (s > 2), we make use of

the relation between W (s)
n and the stress tensor.

[Ll,W
(s)
0 ] = (s− 1)lW (s)

l . (H.0.10)
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and width n′
i) and other Young diagrams empty. We can see that they are annihilated by

D−1,l, because of the identity

ai+1 − ai = ni − βn′
i , (2.3.25)

which leads to the vanishment of the factor ai+1 − ai +B1(Yi+1)− A1(Yi)− ξ in Λ(1,−)
i+1 .

The spectrum can be computed explicitly by repeatedly acting D1,l on the highest weight

state and counting the number of possible states. A more elegant way to achieve this has

been proposed in [60]. We note that a singular vector on the top of a series of null states must

be annihilated by D−1,l, therefore, it is possbile to find them out by solving the equation

Λ(p,−)
i = 0. It is shown in [60] that a special family of zeroes in Λ(p,−)

i corresponds to singular

vectors. They are given by the condition

0 = ai+1 − ai + Bp(Yi+1)− Aq(Yi)− ξ = β(ri+1
p − riq−1 − n′

i)− (si+1
p − siq − ni) .

Let us denote the number of boxes in R-th row of the i-th Young diagram by Yi,R, then

when we identify Yi+1,R = ri+1
p , we have si+1

p = R, and identifying riq−1 = Yi,R′ , we have

siq = R′ − 1 . The above zero condition is translated to

β(Yi+1,R − Yi,R′ − n′
i)− (R−R′ − ni + 1) = 0 .

This equation still has a large amount of solutions, however, it is surprising that we can show

the only ones corresponding to singular vectors are with R′ = R− ni + 1 and

Yi,R′ − Yi+1,R′+ni−1 = −n′
i . (2.3.26)

Consdiering on which side of the inequality for the highest weight to locate, we can see that

all non-degenerate components in the Verma module are constrained by

Yi,R − Yi+1,R+ni−1 ≥ −(n′
i − 1) , for ∀R . (2.3.27)

This condition is known as the N -Burge condition in the WN minimal model context ( [61],

[62], [63]). Consdiering the characterizing number x := pai + q− pR for the R-th row in the

i-th Young diargam, we impose the following ordering to this set X := {x},

λ(x− p) ≤ λ(x) ,

λ(x− qñ′
i − (q − p)) ≤ λ(x) + ñ′

i ,
(2.3.28)

where the index i corresponding to that of ai in x. The first condition is just the requirement

that all states in SHc are labeled by Young diagrams and the second condition is the N -Burge

condition. We note that X ⊂ −N, thus the above ordering together with X form a partially

ordered set (POSET). The partition function can be computed as

ZX(q) =
∑

λ∈A(X)

q|λ| , (2.3.29)

where A(X) are the set of all allowed partitions. As we noted before, SHc is isomorphic to

U(1) ⊗WN in the N -Young-diagram representation, therefore the above partition function

(2.3.29) contains an additional U(1) factor χU(1) =
∏∞

i=1
1

(1−qi) .
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Realization of the level-rank duality and the correspondence be-

tween states

Taking p = N and q = N +M , we have all n′
i’s being zero. The N -Burge condition (2.3.27)

in this case reads

λ(x−N) ≤ λ(x) , λ(x−M) ≤ λ(x) . (2.3.30)

Again, the first condition arises from the Young diagrams labeling the state, while this time

the second condition looks very similar to the first one. It is then natural to expect a dual

theory with M Young diagrams to describ the same state. This expectation is supported

by the level-rank duality of A-type W-algebra introduced in section 1.7. As we mentioned

before, an automorphism corresponding to the level-rank duality exists in SHc, and this dual

theory is just that one obtained from the level-rank duality. This time, unlike the original

level-rank duality established rather through the character formula, we can see how a state

labeled by N Young diagrams is mapped to its dual described with M Young diagrams:

we just rearrange the Young diagrams so that two dual rows with the same characterizing

number x have the same number of boxes. Detailed discussion and proof can be found in [60].

Let us show here that the character (1.7.3) can be recovered for N = 2, M = 3 to

conclude this subsection. There are two independent representations, one with ñ1 = 0 and

another is ñ1 = 1. Their corresponding conformal dimensions for the highest weight state

are

∆0 = 0 , ∆1 = −1

5
,

respectively. In the first case, the characterizing numbers for the most upper row in each

Young diagram are respectively 0 and −3. Using (2.3.30), we obtain the following Poset

diagram (Figure 2.2), where the connecting line between two numbers means that the number

of boxes for the characterizing number on the left-hand side is larger than that of the one

on the right-hand side.

−3 −5 −7 −9 −11

−0
−2 −4 −6 −8 −10

· · ·

Figure 2.2: The Poset diagram for ∆0 = 0

Similar computation can be done for ∆1 = −1/5, where two characterizing numbers are

−1 and −2. The corresponding Poset diagram is given in Figure 2.3. As the calculation

of the partition function is clearer in the case of ∆1 = −1/5, let us work on it first. We
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−1 −3 −5 −7 −9

−2 −4 −6 −8 −10

· · ·

Figure 2.3: The Poset diagram for ∆1 = −1
5

abbreviate λ(−1) ≥ λ(−3) to −1 ≥ −3, then consider the partition corresponding to −1 ≥
−2 ≥ −3 ≥ −4 ≥ −5 ≥ . . . , it gives a Young diagram whose partition function is given by

χnorm = lim
n→∞

∑

i1≥i2≥···≥in≥0

qi1+···+in =
∞∏

i=1

1

1− qi
.

This is certainly not the only allowed partition in Figure 2.3, for example, as there is no

specific ordering between −1 and −2, we can also have −2 > −1 ≥ −3 ≥ −4 ≥ . . . . When

> instead of ≥ appears, it produces one more numerator factor qi, where i corresponds to

the position of the factor left to >. Interestingly, in this special case, we have a one-to-one

correspondence between a series of ordered inequality symols, >≥≥> . . . , and the partition

−2 > −1 ≥ −3 ≥ −5 > −4 . . . , as we can see that once we reverse the ordering beyween

−2 and −1, we can never put −1 in other positions than where right after −2. Also notice

that two continued > are not allowed for a partition. Therefore the full partition function

can be computed as

χ∆1 =

⎛

⎝
∞∑

n=0

∞∑

i1=1

∞∑

i2=i1+2

· · ·
∞∑

in=in−1+2

qi1+···+in

⎞

⎠χnorm =

(
∞∑

n=0

qn
2

∏n
i=1(1− qi)

)
χnorm .

For briefness, we use a compact notation, the q-Pochhammer symbol:

(a; q)n :=
n−1∏

i=0

(1− aqk) , (2.3.31)

with which χnorm = 1/(q; q)∞ and

χ∆1 =

(
∞∑

n=0

qn
2

(q; q)n

)
χnorm .

The prefactor before χnorm can be converted to the form of product, with the celebrated

Rogers-Ramanujan identities

1

(q; q5)∞(q4; q5)∞
=

∞∑

n=0

qn
2

(q; q)n
,

1

(q2; q5)∞(q3; q5)∞
=

∞∑

n=0

qn
2+n

(q; q)n
. (2.3.32)

Surprisingly, Figure 2.2 can be obtained by adding one node to Figure 2.3, which modifies

the calculation of χ∆1 by restricting i1 to take value from 2 to ∞, that is to say, modifies

the prefactor to the r.h.s. of the second Rogers-Ramanujan identity.
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