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Introduction

Understanding thermalization in interacting quantum systems
has been an important quest in physics. With the advent of
holography, the issue of thermalization in strongly coupled
QFTs have gained double importance, because of its
correspondence to the problem of black hole formation.
We are concerned with ’thermalization’ in 2D CFTs after a
quantum quench.
The initial state is prepared by a quantum quench.
We will consider critical quenches when the final hamiltonian
is critical.



Main Idea

The main idea is to use conformal symmetries, and other
general principles to examine evolution of states - not every
states.
In arXiv: 1501.04580(MSS), we worked with only Virosoro
symmetry and perturbative resummation and compared the
results with bulk duals results.
In arXiv: 1512.02187, we are examining quantum quenches
more closely in QFT models.
Using ideas from arXiv: 1405.6695, we are trying to exactly
find large number of thermalizing states.



History

I Thermalisation of point functions of a pure state:
Calabrese and Cardy(2006) found the thermalization of
correlation functions in 2D CFT starting from certain
pure states.

I Definition of ’thermalization’.

I Quantum quench and preparation of initial state: They
argued that quantum quench to a critical hamiltonian
from the ground state of the prequench hamiltonian gives
their initial state, which is a boundary state euclidean
time evolved by κ2 where κ2 turns out to be four times
the ‘equivalent temperature’ of the stationary state,
β = 4κ2. |Ψ0〉 = e−κ2H |B〉 and 〈Ψ0| = 〈B |e−κ2H .



Geometry, conformal transformation

I The CFT lives in a strip of width 2κ2 with coordinates
w = σ + iτ and w̄ = σ − iτ , which can be transformed
to upper half plane(UHP) using the conformal map
z = ieπw/(2κ2) and z̄ = −ieπw̄/(2κ2).

Figure: Strip to UHP transformation

I Lorentzian time evolution is obtained by Wick rotation.



Correlation functions

Scalar one point funciton with w = 0 + iτ and w̄ = 0− iτ ,

〈φh,h̄(w , w̄)〉strip = C [i Sech(2πt/(4κ2))]2h

t→∞−−−→ C i2he−4πht/(4κ2)

Similarly 2-point functions on UHP would give 2-point or
3-point or 4-point functions on the plane depending on the
field content of the operators.
Holomorphic 2-point functions(equal time) are already
thermalized because they don’t see the boundary

〈φh(0, t)φh(r , t)〉 = Ci2hcsch2

(
πr

4κ2

)
This is holomorphic 2-point functions in a thermal ensemble
with temperature T = 4κ2.



Thermalization function I (t)
The thermalization function for a spatial region A is defined as

I (t) =
ẐSt,Cy (A)

[ẐSt,St(A)ẐCy ,Cy (A)]
1
2

=
Tr(ρdyn,A(t)ρeqm,A(β, µi))

[Tr(ρdyn,A(t)2)Tr(ρeqm,A(β, µi)2)]1/2

where the dynamical reduced density matrix of ’A’ is

ρdyn,A(t) = TrĀ ρdyn(t), ρdyn(t) ≡ (exp[−iHt]|ψ0〉〈ψ0| exp[iHt])

For Calabrese-Cardy(CC) state e−κ2H |B〉

1− I (t) ∼ −α(l)e−8πht/(4κ2)

Cardy’s preprint and our paper, arXiv: 1501.04580(MSS)



Turning on chemical potentials

If the final theory have other conserved charges. In MSS, we
proposed that the quench state(from ground state) is

|ψ0〉 = exp[(−κ2H − κ3W3 − κ4W4 − ....)]|Bd〉

where W ’s are conserved charges of local currents. In MSS,
we showed that the above state thermalizes to a Generalized
Gibb’s Ensemble(GGE), define by the density matrix,

ρGGE = exp−4κ2H−4κ3W3−4κ4W4−...

We are going to call |ψ0〉, the generalized CC state.



One point function and thermalization

Considering only one chemical potential, in long time limit,

〈φk(w , w̄)〉µstr ∼ exp[−4πht/(4κ2)− (4κn)Qn2πt/(4κ2)n−1 + ...)]

∼ exp[−4πht/β − 2πtµnQn/β
n−1 + O(µ2))]

Turning on other higher spin currents, W3,W4,W5, ....., with
t̂ = 2πt/β, the 1-point function on the strip becomes

〈φ(w , w̄)〉~µSt = exp(−2(~̃µ.~q)t̂)(1 + O(µt̂) + O(µ2t̂2) + . . . )

And
I (t) = 1− α(l) exp(−4(~̃µ.~Q)t̂)



Quench in specific models: mass quench of free

bosons

EOM: Preserving spatial translational symmetry.

d2φ(k , t)

dt2
+ (k2 + m2(t))φ(k , t) = 0

We will always consider lim inf m2(t) = 0. The in(t → −∞)
modes uin’s and the out modes(t →∞) uout ’s are related by a
Bogoluibov transformation and the corresponding oscillators
a’s

uin(k , x , t) = α(|k |)uout(k , x , t) + β(|k |)u†out(k , x , t)

ain(k) = α∗(|k |)aout(k)− β∗(|k |)a†out(k)



So, the ’in’ ground state is

|0, in〉 = exp[
∑
k

γ(|k |)a†out(k)a†out(−k)]|0, out〉

= exp[
∑
k

κ(k)a†out(k)aout(k)]|D〉

And for critical quench or free limit of the Schrodinger
equation, we have the expansion,

−γ(|k |) = 1 + r1|k |+ r2k
2 + ....

⇒ κ(|k |) = −κ2|k | − κ3k
2 − κ4|k |3 − ....



Hence, we have,

|0, in〉 = exp[−κ2H − κ3W3 − κ4W4 − ...]|D〉

where H =
∑

k |k |a
†
out(k)aout(k), W3 =

∑
k k

2a†out(k)aout(k),

W4 =
∑

k |k |3a
†
out(k)aout(k).

This is the general form of the gCC state. Indeed, this state is
obtained in exactly solvable examples of mass profile. If we
start from a squeezed state,

⇒ |f 〉 = exp[
∑
k

f (|k |)a†in(k)a†in(−k)]|0, in〉

then κ(|k |) is modified.
Similar results are also obtained for fermions, where the
effective potential becomes complex.



Exact calculations in Sudden Quench
For free scalars, in the massive-to-massless sudden limit:

|0, in〉 = exp [
∑
k

(
−|k |
m0

+
|k |3

6m3
0

− 3|k |5

40m5
0

+ ...

)
a†out(k)aout(k)]|D〉

Calabrese-Cardy and Cardy-Sotariadis argued that in m0 →∞
limit, only the first term survives.

〈0, in|∂φ(x1, t)∂̄φ(x2, t)|0, in〉 = −2m2
0 K0(m0(r + 2t))

〈0, in|∂φ(x1, t1)∂φ(x2, t2)|0, in〉 = −m2
0

√
2

π
K2(m0r)

H = m2
0/(16π)

These don’t agree with the results of ψ0〉 = e−κ2H |Bd〉, where
κ2 = 1/m0.



Special squeezed state to give CC state
By taking special functions f (|k |), we can obtain CC state in
the ’out’ modes. With

f (|k |) = 1− 2|k |
|k |+ (k2 + m2

0)1/2tanh(κ2|k |)

|f (|k |), in〉 = exp[−κ2H]|D〉

〈f (k), in|∂φ(0, t)∂̄φ(0, t)|f (k), in〉 =
1

4

π2

κ2
2

sech2

(
1

4

π

κ2
(2t)

)

〈f (|k |), in|∂φ(0, t)∂φ(r , t)|f (|k |), in〉 =
1

4

π2

κ2
2

csch2

(
πr

4κ2

)
H =

π

96κ2
2

effective temperature β = 4κ2. Subleading terms in k/m0 are
important.



gCC state with W4 perturbation

Starting with squeezed state with

f (|k |) = 1− 2|k |
|k |+

√
k2 + m2tanh (κ2|k |+ κ4|k |3)

In terms of the out modes,

|f (|k |), in〉 = exp

[∑
k

(−κ2|k | − κ4|k |3)a†out(k)aout(k)

]
|D〉

⇒ |f (|k |), in〉 = exp [−κ2H − κ4W4] |D〉

where κ2 and κ4 are arbitrary.



Scalar one point function:

〈∂φ(0, t)∂̄φ(0, t)〉 =

∫
dk

8π
e−2iktk cosech

(
2κ2k + 2k3κ4

)
The three simple poles for each n ∈ Z ,

k1 =
−2 62/3κ2 + 3

√
6
(√

48κ3
2 − 81π2κ4n2 + 9iπ

√
κ4n
)2/3

6 3

√√
3
√
κ3

4 (16κ3
2 − 27π2κ4n2) + 9iπκ2

4n

k2 =
4 3
√
−6κ2 + i

(√
3 + i

) (√
48κ3

2 − 81π2κ4n2 + 9iπ
√
κ4n
)2/3

2 62/3 3

√√
3
√
κ3

4 (16κ3
2 − 27π2κ4n2) + 9iπκ2

4n

k3 = −

3
√
−1

(
2 3
√
−6κ2 +

(√
48κ3

2 − 81π2κ4n2 + 9iπ
√
κ4n
)2/3

)
62/3
√
κ4

3

√√
48κ3

2 − 81π2κ4n2 + 9iπ
√
κ4n



k1 is the κ4 perturbative branch. Taking the leading order,
which is given by the n = ±1 poles, we find the total residue

〈∂φ(0, t)∂̄φ(0, t)〉

= − π

16κ2
2

(
1 + 4π2κ̃4 + 48π4κ̃2

4

)
exp

(
−4 (π + 4π3κ̃4 + 48π5κ̃2

4) t

4κ2

)
This agrees with MSS.



Other thermalizing states

e−κ2H |Bd〉 is not unique.

I Using conformal transformations of compact
support(done in arXiv: 1405.6695).

I Break conformal invariant boundary condition,
|ψ0〉 = e−κ2H |bB〉, where |bB〉 satisfies
(Ln − L̄−n)|bB〉 = 0 except for finite number of integers
n(ongoing works).
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