Yongwan Gim

(Sogang University, Korea)

collaborated with Wontae Kim

Yongwan Gim

(Sogang University, Korea)

collaborated with Wontae Kim

Yongwan Gim

(Sogang University, Korea)

collaborated with Wontae Kim from the black hole in and based on arxiv: 1508.0031 the thermal equilibrium

which is a local temperature detected by the free fall observer at the finite distance from the black hole in the thermal equilibrium state.

Yongwan Gim

(Sogang University, Korea)

collaborated with Wontae Kim

Yongwan Gim

(Sogang University, Korea)

collaborated with Wontae Kim

Yongwan Gim

(Sogang University, Korea)

collaborated with Wontae Kim

Yongwan Gim

(Sogang University, Korea)

collaborated with Wontae Kim

	Old Tolman Temperature [R.C.Tolman,Phys.Rev.35,904(1930)]	
Conservation law	$\nabla_{\mu}T^{\mu\nu} = 0$	
Perfect fluid	$T^{\mu\nu} = ($	$(\rho + p)u^{\mu}u^{\nu} + pg^{\mu\nu}$
The first law	dU = TdS - pdV	
Trace anomaly	$T^{\mu}_{\mu} = 0$	
Stefan- Boltzmann law	$\rho = \gamma T^2$ $p = \gamma T^2$	
Proper temperature	$T = \frac{C_0}{\sqrt{\gamma f(r)}}$ $\frac{C_0}{\sqrt{\gamma}}$: Hawking temperature	

	Old Tolman Temperature [R.C.Tolman,Phys.Rev.35,904(1930)]	
Conservation law	$ abla_{\mu}$	$_{\mu}T^{\mu\nu}=0$
Perfect fluid	$T^{\mu\nu} = ($	$\rho + p)u^{\mu}u^{\nu} + pg^{\mu\nu}$
The first law	dU = TdS - pdV	
Trace anomaly	$T^{\mu}_{\mu} = 0$	
Stefan- Boltzmann law	$\rho = \gamma T^2$ $p = \gamma T^2$	
Proper temperature	$T = \frac{C_0}{\sqrt{\gamma f(r)}}$ $\frac{C_0}{\sqrt{\gamma}}$: Hawking temperature	

	Old Tolman Temperature [R.C.Tolman,Phys.Rev.35,904(1930)]	
Conservation law	$\nabla_{\mu}T^{\mu\nu} = 0$	
Perfect fluid	$T^{\mu\nu} = ($	$\rho + p)u^{\mu}u^{\nu} + pg^{\mu\nu}$
The first law	dU = TdS - pdV	
Trace anomaly	$T^{\mu}_{\mu} = 0$	
Stefan- Boltzmann law	$\rho = \gamma T^2$ $p = \gamma T^2$	
Proper temperature	$T = \frac{C_0}{\sqrt{\gamma f(r)}}$ $\frac{C_0}{\sqrt{\gamma}}$: Hawking temperature	

	Old Tolman Temperature [R.C.Tolman,Phys.Rev.35,904(1930)]	
Conservation law	$ abla_{\mu}$	$aT^{\mu\nu} = 0$
Perfect fluid	$T^{\mu\nu} = (p^{\mu\nu})$	$(\rho + p)u^{\mu}u^{\nu} + pg^{\mu\nu}$
The first law	dU = TdS - pdV	
Trace anomaly	$T^{\mu}_{\mu} = 0$	
Stefan- Boltzmann law	$\rho = \gamma T^2$ $p = \gamma T^2$	
Proper temperature	$T = \frac{C_0}{\sqrt{\gamma f(r)}}$ $\frac{C_0}{\sqrt{\gamma}}$: Hawking temperature	

	Old Tolman Temperature [R.C.Tolman,Phys.Rev.35,904(1930)]	
Conservation law	$\nabla_{\mu}T^{\mu\nu} = 0$	
Perfect fluid	$T^{\mu\nu} = ($	$\rho + p)u^{\mu}u^{\nu} + pg^{\mu\nu}$
The first law	dU =	=TdS-pdV
Trace anomaly	$T^{\mu}_{\mu} = 0$	
Stefan- Boltzmann law	$\rho = \gamma T^2$ $p = \gamma T^2$	
Proper temperature	$T = \frac{C_0}{\sqrt{\gamma f(r)}}$ $\frac{C_0}{\sqrt{\gamma}}$: Hawking temperature	

	Old Tolman Temperature [R.C.Tolman,Phys.Rev.35,904(1930)]		
Conservation law	$ abla_{\mu}$	$\nabla_{\mu}T^{\mu\nu} = 0$	
Perfect fluid	$T^{\mu\nu} = ($	$(\rho + p)u^{\mu}u^{\nu} + pg^{\mu\nu}$	
The first law	dU =	=TdS-pdV	
Trace anomaly	$T^{\mu}_{\mu} = 0$		
Stefan- Boltzmann law	$\rho = \gamma T^2$ $p = \gamma T^2$		
Proper temperature	$T = rac{C_0}{\sqrt{\gamma f(r)}}$ $rac{C_0}{\sqrt{\gamma}}$: Hawking temperature		

	Old Tolman Temperature [R.C.Tolman,Phys.Rev.35,904(1930)]	
Conservation law	$ abla_{\mu}$	$_{\iota}T^{\mu\nu}=0$
Perfect fluid	$T^{\mu\nu} = ($	$\rho + p)u^{\mu}u^{\nu} + pg^{\mu\nu}$
The first law	dU =	=TdS-pdV
Trace anomaly	$T^{\mu}_{\mu}=0$?	
Stefan- Boltzmann law	$\rho = \gamma T^2$ $p = \gamma T^2$	
Proper temperature	$T = rac{C_0}{\sqrt{\gamma f(r)}}$ $rac{C_0}{\sqrt{\gamma}}$: Hawking temperature	

	Old Tolman Temperature [R.C.Tolman,Phys.Rev.35,904(1930)]	New quantal Tolman Temperature
Conservation law	$\nabla_{\mu}T^{\mu\nu} = 0$	
Perfect fluid	$T^{\mu\nu} = ($	$\rho + p)u^{\mu}u^{\nu} + pg^{\mu\nu}$
The first law	dU =	=TdS-pdV
Trace anomaly	$T^{\mu}_{\mu} = 0$	$T^{\mu}_{\mu} eq 0 \text{ex) } T^{\mu}_{ u} \sim R$
Stefan-	$\rho = \gamma T^2$	$\rho = \gamma T^2 - \frac{1}{2} T^{\mu}_{\mu}$
Boltzmann law	$p = \gamma T^2$	$p = \gamma T^2 + \frac{1}{2} T^{\mu}_{\mu}$
Proper temperature	$T = \frac{C_0}{\sqrt{\gamma f(r)}}$ $\frac{C_0}{\sqrt{\alpha}}$: Hawking temperature	$T = \frac{1}{\sqrt{\gamma f}} \sqrt{C_0 - \frac{f}{2} T^{\mu}_{\mu} + \frac{1}{2} \int T^{\mu}_{\mu} df_1}$

	Old Tolman Temperature [R.C.Tolman,Phys.Rev.35,904(1930)]	New quantal Tolman Temperature
Conservation law	$\nabla_{\mu}T^{\mu\nu} = 0$	
Perfect fluid	$T^{\mu\nu} = ($	$\rho + p)u^{\mu}u^{\nu} + pg^{\mu\nu}$
The first law	dU =	=TdS-pdV
Trace anomaly	$T^{\mu}_{\mu} = 0$	$T_{\mu}^{\mu} eq 0$ ex) $T_{ u}^{\mu} \sim R$
Stefan-	$\rho = \gamma T^2$	$\rho = \gamma T^2 - \frac{1}{2} T^{\mu}_{\mu}$
Boltzmann law	$p = \gamma T^2$	$p = \gamma T^2 + \frac{1}{2} T^{\mu}_{\mu}$
Proper temperature	$T = \frac{C_0}{\sqrt{\gamma f(r)}}$ $\frac{C_0}{\sqrt{\gamma}}$: Hawking temperature	$T = \frac{1}{\sqrt{\gamma f}} \sqrt{C_0 - \frac{f}{2} T^{\mu}_{\mu} + \frac{1}{2} \int T^{\mu}_{\mu} df_1}$

	Old Tolman Temperature [R.C.Tolman,Phys.Rev.35,904(1930)]	New quantal Tolman Temperature
Conservation law	$ abla_{\mu}$	$_{\mu}T^{\mu\nu}=0$
Perfect fluid	$T^{\mu\nu} = ($	$(\rho + p)u^{\mu}u^{\nu} + pg^{\mu\nu}$
The first law	dU =	=TdS-pdV
Trace anomaly	$T^{\mu}_{\mu} = 0$	$T^{\mu}_{\mu} eq 0 \text{ex) } T^{\mu}_{ u} \sim R$
Stefan- Boltzmann law	$\rho = \gamma T^2$ $p = \gamma T^2$	$\rho = \gamma T^2 - \frac{1}{2} T^{\mu}_{\mu}$ $p = \gamma T^2 + \frac{1}{2} T^{\mu}_{\mu}$
Proper temperature	$T = \frac{C_0}{\sqrt{\gamma f(r)}}$ $\frac{C_0}{\sqrt{\gamma}}$: Hawking temperature	$T = \frac{1}{\sqrt{\gamma f}} \sqrt{C_0 - \frac{f}{2} T_\mu^\mu + \frac{1}{2} \int T_\mu^\mu df_1}$

	Old Tolman Temperature [R.C.Tolman,Phys.Rev.35,904(1930)]	New quantal Tolman Temperature
Conservation law	$\nabla_{\mu}T^{\mu\nu} = 0$	
Perfect fluid	$T^{\mu\nu} = ($	$(\rho + p)u^{\mu}u^{\nu} + pg^{\mu\nu}$
The first law	dU =	=TdS-pdV
Trace anomaly	$T^{\mu}_{\mu} = 0$	$T^{\mu}_{\mu} eq 0 \text{ex) } T^{\mu}_{ u} \sim R$
Stefan-	$\rho = \gamma T^2$	$\rho = \gamma T^2 - \frac{1}{2} T^{\mu}_{\mu}$
Boltzmann law	$p = \gamma T^2$	$p = \gamma T^2 + \frac{1}{2} T^{\mu}_{\mu}$
Proper temperature	$T=rac{C_0}{\sqrt{\gamma f(r)}}$	$T = \frac{1}{\sqrt{\gamma f}} \sqrt{C_0 - \frac{f}{2} T^{\mu}_{\mu} + \frac{1}{2} \int T^{\mu}_{\mu} df_1}$
	$T=rac{C_0}{\sqrt{\gamma f(r)}}$ $rac{C_0}{\sqrt{\gamma}}$: Hawking temperature	$\frac{2}{1}$

	Old Tolman Temperature [R.C.Tolman,Phys.Rev.35,904(1930)]	New quantal Tolman Temperature
Conservation law	$ abla_{\mu}$	$_{\iota}T^{\mu\nu}=0$
Perfect fluid	$T^{\mu\nu} = ($	$(\rho + p)u^{\mu}u^{\nu} + pg^{\mu\nu}$
The first law	dU =	=TdS-pdV
Trace anomaly	$T^{\mu}_{\mu} = 0$	$T^{\mu}_{\mu} eq 0 \text{ex) } T^{\mu}_{ u} \sim R$
Stefan-	$\rho = \gamma T^2$	$\rho = \gamma T^2 - \frac{1}{2} T^{\mu}_{\mu}$
Boltzmann law	$p = \gamma T^2$	$p = \gamma T^2 + \frac{1}{2} T^{\mu}_{\mu}$
Proper temperature	$T = \frac{C_0}{\sqrt{\gamma f(r)}}$ $\frac{C_0}{\sqrt{\gamma}}$: Hawking temperature	$T = \frac{1}{\sqrt{\gamma f}} \sqrt{C_0 - \frac{f}{2} T_\mu^\mu + \frac{1}{2} \int T_\mu^\mu df_1}$

	Old Tolman Temperature [R.C.Tolman,Phys.Rev.35,904(1930)]	New quantal Tolman Temperature
2D Schwarzschild black hole	$ds^2 = -\left(1 - \frac{1}{2}\right)^2$	$-\frac{2M}{r}\bigg)dt^2 + \frac{1}{1 - \frac{2M}{r}}dr^2$
Proper temperature	$T = \frac{1}{8\pi GM\sqrt{1 - \frac{2M}{r}}}$	$T = \frac{1}{8\pi M} \sqrt{1 + \frac{2M}{r} + \left(\frac{2M}{r}\right)^2 - 3\left(\frac{2M}{r}\right)^3}$
Graph	T_{max} T_{H} $2M$ r_{c}	Old Tolman temperature

	Old Tolman Temperature [R.C.Tolman,Phys.Rev.35,904(1930)]	New quantal Tolman Temperature
2D Schwarzschild black hole	$ds^2 = -\left(1 - \frac{1}{2}\right)^2$	$-\frac{2M}{r}\bigg)dt^2 + \frac{1}{1 - \frac{2M}{r}}dr^2$
Proper temperature	$T = \frac{1}{8\pi GM\sqrt{1 - \frac{2M}{r}}}$	$T = \frac{1}{8\pi M} \sqrt{1 + \frac{2M}{r} + \left(\frac{2M}{r}\right)^2 - 3\left(\frac{2M}{r}\right)^3}$
Graph	$T_{ m max}$ $T_{ m H}$ $T_{ m H}$ $T_{ m c}$	Old Tolman temperature

Old Tolman Temperature New quantal Tolman Temperature [R.C.Tolman, Phys.Rev.35, 904(1930)] $ds^{2} = -\left(1 - \frac{2M}{r}\right)dt^{2} + \frac{1}{1 - \frac{2M}{r}}dr^{2}$ 2D Schwarzschild black hole $T = \frac{1}{8\pi GM \sqrt{1 - \frac{2M}{r}}} \quad T = \frac{1}{8\pi M} \sqrt{1 + \frac{2M}{r} + \left(\frac{2M}{r}\right)^2 - 3\left(\frac{2M}{r}\right)^3}$ Proper temperature Old Tolman temperature Diverge at the horizon Graph 2M

Old Tolman Temperature New quantal Tolman Temperature [R.C.Tolman, Phys.Rev. 35, 904 (1930)] $ds^{2} = -\left(1 - \frac{2M}{r}\right)dt^{2} + \frac{1}{1 - \frac{2M}{r}}dr^{2}$ 2D Schwarzschild black hole $T = \frac{1}{8\pi GM\sqrt{1 - \frac{2M}{r}}} \quad T = \frac{1}{8\pi M}\sqrt{1 + \frac{2M}{r} + \left(\frac{2M}{r}\right)^2 - 3\left(\frac{2M}{r}\right)^3}$ Proper temperature Old Tolman temperature Diverge at the horizon Graph Firewall-like object in the thermal equilibrium…??

2M

Old Tolman Temperature [R.C.Tolman, Phys.Rev. 35, 904 (1930)]

New quantal Tolman Temperature

2D Schwarzschild black hole

$$ds^{2} = -\left(1 - \frac{2M}{r}\right)dt^{2} + \frac{1}{1 - \frac{2M}{r}}dr^{2}$$

Proper temperature

$$T = \frac{1}{8\pi GM\sqrt{1 - \frac{2M}{r}}}$$

$$T = \frac{1}{8\pi GM \sqrt{1 - \frac{2M}{r}}} \quad T = \frac{1}{8\pi M} \sqrt{1 + \frac{2M}{r} + \left(\frac{2M}{r}\right)^2 - 3\left(\frac{2M}{r}\right)^3}$$

Old Tolman temperature

Graph

Diverge at the horizon

Firewall-like object in the thermal equilibrium…??

Violation of the equivalence principle…??

Old Tolman Temperature [R.C.Tolman, Phys.Rev. 35, 904 (1930)]

New quantal Tolman Temperature

2D Schwarzschild black hole

$$ds^{2} = -\left(1 - \frac{2M}{r}\right)dt^{2} + \frac{1}{1 - \frac{2M}{r}}dr^{2}$$

Proper temperature

$$T = \frac{1}{8\pi GM\sqrt{1 - \frac{2M}{r}}}$$

$$T = \frac{1}{8\pi GM\sqrt{1 - \frac{2M}{r}}} \quad T = \frac{1}{8\pi M}\sqrt{1 + \frac{2M}{r} + \left(\frac{2M}{r}\right)^2 - 3\left(\frac{2M}{r}\right)^3}$$

Old Tolman temperature

Graph

Diverge at the horizon

Firewall-like object in the thermal equilibrium…??

Violation of the equivalence principle…??

	Old Tolman Temperature [R.C.Tolman,Phys.Rev.35,904(1930)]	New quantal Tolman Temperature
2D Schwarzschild black hole	$ds^2 = -\left(1 - \frac{1}{2}\right)^2$	$-\frac{2M}{r}\bigg)dt^2 + \frac{1}{1 - \frac{2M}{r}}dr^2$
Proper temperature	$T = \frac{1}{8\pi GM\sqrt{1 - \frac{2M}{r}}}$	$T = \frac{1}{8\pi M} \sqrt{1 + \frac{2M}{r} + \left(\frac{2M}{r}\right)^2 - 3\left(\frac{2M}{r}\right)^3}$
Graph		Old Tolman temperature New quantal Tolman temperature

2M

 r_{c}

- r

	Old Tolman Temperature [R.C.Tolman,Phys.Rev.35,904(1930)]	New quantal Tolman
2D Schwarzschild black hole	$ds^2 = -\left(1 - \frac{1}{2}\right)^2$	$-\frac{2M}{r}\right)dt^2 + \frac{1}{1 - \frac{2M}{r}}dr^2$
Proper temperature	$T = \frac{1}{8\pi GM\sqrt{1 - \frac{2M}{r}}}$	$T = \frac{1}{8\pi M} \sqrt{1 + \frac{2M}{r} + \left(\frac{2M}{r}\right)^2}$
	T $T_{ m max}$	Old Tolman temperature

Graph

New quantal Tolman temperature

vanish at the horizon

Temperature

	Old Tolman Temperature [R.C.Tolman,Phys.Rev.35,904(1930)]	New quantal Tolman Temperature
2D Schwarzschild black hole	$ds^2 = -\left(1 - \frac{1}{2}\right)^2$	$-\frac{2M}{r}\bigg)dt^2 + \frac{1}{1 - \frac{2M}{r}}dr^2$
Proper temperature	$T = \frac{1}{8\pi GM\sqrt{1 - \frac{2M}{r}}}$	$T = \frac{1}{8\pi M} \sqrt{1 + \frac{2M}{r} + \left(\frac{2M}{r}\right)^2 - 3\left(\frac{2M}{r}\right)^3}$
Graph	S. Carrier	Old Tolman temperature Nothing at the horizon Nothing at the horizon

	Old Tolman Temperature [R.C.Tolman,Phys.Rev.35,904(1930)]	New quantal Tolman Temperature
2D Schwarzschild black hole	$ds^2 = -\left(1 - \frac{1}{2}\right)^2$	$-\frac{2M}{r}\bigg)dt^2 + \frac{1}{1 - \frac{2M}{r}}dr^2$
Proper temperature	$T = \frac{1}{8\pi GM\sqrt{1 - \frac{2M}{r}}}$	$T = \frac{1}{8\pi M} \sqrt{1 + \frac{2M}{r} + \left(\frac{2M}{r}\right)^2 - 3\left(\frac{2M}{r}\right)^3}$
Graph	T Old Tolman temperature That New quantal Tolman temperature	
	^{2M} va	nish at the horizon Nothing at the horizon

Equivalence principle is recovered.

$$\rho = \gamma T^2 - \frac{1}{2} T^{\mu}_{\mu} \qquad p = \gamma T^2 + \frac{1}{2} T^{\mu}_{\mu}$$

Modified
StefanBoltzmann law

Stefan-Boltzmann law should be modified with the trace of the energy-momentum tensor. So, when we calculate the temperature, we should use this modified Stefan-Boltzmann law.

ex) Hawking radiation, Cosmology etc...

$$T = \frac{1}{\sqrt{\gamma f}} \sqrt{C_0 - \frac{f}{2} T^{\mu}_{\mu} + \frac{1}{2} \int T^{\mu}_{\mu} df_1}$$

A quantal Tolman temperature

$$\rho = \gamma T^2 - \frac{1}{2} T^{\mu}_{\mu} \qquad p = \gamma T^2 + \frac{1}{2} T^{\mu}_{\mu}$$

Modified
StefanBoltzmann law

Stefan-Boltzmann law should be modified with the trace of the energy-momentum tensor. So, when we calculate the temperature, we should use this modified Stefan-Boltzmann law.

ex) Hawking radiation, Cosmology etc...

$$T = \frac{1}{\sqrt{\gamma f}} \sqrt{C_0 - \frac{f}{2} T^{\mu}_{\mu} + \frac{1}{2} \int T^{\mu}_{\mu} df_1}$$

A quantal Tolman temperature

$$\rho = \gamma T^2 - \frac{1}{2} T^{\mu}_{\mu} \qquad p = \gamma T^2 + \frac{1}{2} T^{\mu}_{\mu}$$

Modified
StefanBoltzmann law

Stefan-Boltzmann law should be modified with the trace of the energy-momentum tensor. So, when we calculate the temperature, we should use this modified Stefan-Boltzmann law.

ex) Hawking radiation, Cosmology etc...

$$T = \frac{1}{\sqrt{\gamma f}} \sqrt{C_0 - \frac{f}{2} T_\mu^\mu + \frac{1}{2} \int T_\mu^\mu df_1}$$

A quantal Tolman temperature

$$\rho = \gamma T^2 - \frac{1}{2} T^{\mu}_{\mu} \qquad p = \gamma T^2 + \frac{1}{2} T^{\mu}_{\mu}$$

Modified
StefanBoltzmann law

Stefan-Boltzmann law should be modified with the trace of the energy-momentum tensor. So, when we calculate the temperature, we should use this modified Stefan-

Thank you for your attention!!

$$T = \frac{1}{\sqrt{\gamma f}} \sqrt{C_0 - \frac{f}{2} T^{\mu}_{\mu} + \frac{1}{2} \int T^{\mu}_{\mu} df_1}$$

A quantal Tolman temperature