Science and Technology Group Annual Report FY2022

Satoshi Takebayashi Science and Technology Associate

1 Introductions

Project 1: Iron-catalyzed olefin metathesis

The olefin metathesis reaction is among the most widely applicable catalytic reactions for carboncarbon double bond formation. Currently, molybdenum- and ruthenium-carbene catalysts are the most common choices for this reaction. It has been anticipated that base metal catalyst would be a desirable economical and biocompatible substitute of the ruthenium-catalysts. *In this project, we developed such base metal catalyzed olefin metathesis reactions using iron organometallic complexes.*

Project 2: Direct observation of bond homolysis

Bond homolysis is among the most common bond cleavage mechanisms. Thus, a fundamental understanding of bond homolysis influences the development of a wide range of chemistry. Photolytic bond homolysis and its reverse process have been observed directly using time-resolved spectroscopy. However, direct observation of reversible homolysis remains elusive. *In this project, we developed a system that enables us to directly observe reversible homolysis.*

2 Activities and Findings

Project 1: Iron-catalyzed olefin metathesis

We discovered iron-catalyzed ring-opening metathesis polymerization of olefins using threecoordinate iron complexes. The detailed mechanistic investigation revealed a possible initiation mechanism of the polymerization reaction. The result of this project was published at Nature Catalysis in 2022.

Project 2: Direct observation of bond homolysis

We investigated the direct observation of reversible Co-Co bond homolysis using two-dimensional nuclear magnetic resonance exchange spectroscopy. The unambiguous characterization of the Co-Co bond homolysis process enabled us to study ligand steric and electronic factors that influence the strength of the Co-Co bond. Understanding of these factors will contribute to rationally designing multimetallic complexes with desired physical property or catalytic activity. The result of this project was published at Chemical Science in 2022.

3 Collaborations

These projects were carried out partly by corroboration with

Project 1: Iron-catalyzed olefin metathesis

• Prof. David Milstein (Weizmann Institute of Science)

Project 2: Direct observation of bond homolysis

• Dr. Robert R. Fayzullin (Arbuzov Institute of Organic and Physical Chemistry, FCR Kazan Scientific Center, Russian Academy of Sciences)

Project at other labs

• Prof. Akimitsu Narita (OIST)

4 Publications and other outputs

Science and Technology Group Annual Report FY2022

Satoshi Takebayashi Science and Technology Associate

Publication (*: corresponding authors)

- Xu, X.; <u>Takebayashi, S.</u>; Hanayama, H.; Vasylevskyi, S.; Onishi, T.; Ohto, T.;* Tada, H.; Narita, A.*
 6,6'-Biindeno[1,2-b]anthracene: an Open-Shell Biaryl with High diradical Character. J. Am. Chem. Soc. 2023, 145, 3891-3896.
- (2) <u>Takebayashi, S.*;</u> Fayzullin, R. R.; Bansal, R. Direct observation of reversible bond homolysis by 2D EXSY NMR. Chem. Sci. 2022, 13, 9202-9209. Selected as a 2022 Chemical Science HOT Article.
- (3) <u>Takebayashi, S.*;</u> Iron, M. A.; Feller, M.; Rivada-Wheelaghan, O.; Leitus, G.; Diskin-Posner, Y.; Shimon, L. J. W.; Avram, L.; Carmieli, R.; Wolf, S. G.; Cohen-Ofri, I.; Sanguramath, R. A.; Shenhar, R.; Eisen, M.; Milstein, D.* Iron-catalysed ring-opening metathesis polymerization of olefins and mechanistic studies. Nat. Catal. 2022, *5*, 494-502. *Highlighted in Chem-Station (the largest chemistry web portal in Japan)*

Presentation (*: corresponding presenter)

- <u>Takebayashi, S.*,</u> Milstein, D. Iron-catalyzed ring opening metathesis polymerization of olefins 103rd Annual Meeting of The Chemical Society of Japan, Chiba, 2023.
- (2) <u>Takebayashi, S.*</u> Base metal catalysis evolved from organometallic chemistry: Fe-catalyzed olefin metathesis and Co-catalyzed H₂ homolysis *University of Urbino*, Urbino, Italy, 2022.
 (2) Takebayashi, S.*
- (3) <u>Takebayashi, S.*</u> Fayzullin, R. R.; Bansal, R. HOMOLYTIC H₂ ACTIVATION BY 17-ELECTRON COBALT COMPLEX AND ITS DIMER
 44th L to a final Conference of Concentration Characterized Principal Rates 2022
- 44th International Conference of Coordination Chemistry, Rimini, Italy, 2022.
 (4) <u>Takebayashi, S.*, Milstein, D.</u> Iron-catalyzed ring opening metathesis polymerization of olefins and mechanistic investigations
- 29th International Conference on Organometallic Chemistry, Prague, Czech, 2022.
 (5) <u>Takebayashi, S.*</u>, Milstein, D.
 - Iron-catalyzed ring opening metathesis polymerization of olefins Gorgon Research Conference in Organometallic Chemistry, Newport, RI, USA, 2022

Patent

- (1) <u>Takebayashi, S.</u> Cobalt catalysts for the semi-hydrogenation of azo compounds *Japanese provisional patent application*, 2022, 2022-135091.
- Milstein, D.; <u>Takebayashi, S.</u> Iron-Catalyzed Metathesis Polymerization of Olefins. *PCT patent application*, 2022, P-571572-PC.

5 External fundings

KAKENHI Grant-in-Aid for Scientific Research (C), 22K05134, FY2022-FY2024.