
Metric Embeddings - What, Why, How?

Instructor: Sylvester Eriksson-Bique

1 Background

1.1 Literature and overview

These were notes written for a minicourse held at Okinawa Institute of Science and Tech-
nology in Spring 2024. The course consisted of 4 lectures of two hours each.

Some further reading, and notes which I have used in the preparation of these lectures:

1. Matoušek, Jǐŕı, Lecture notes on metric embeddings.

2. Avner Magen’s course on metric embeddings: http://www.cs.toronto.edu/~avner/
teaching/S6-2414/

3. Nathan Linial, Eran London, and Yuri Rabinovich. The geometry of graphs and some
of its algorithmic applications. Combinatorica, 15(2):215–245, 1995.

4. Nice notes by Yury Makarychev, see https://home.ttic.edu/~yury/courses/geometry/.
Especially the section on the sparsest cut problem is very well written.

5. A good reference on the Goemans-Linial semidefinite relaxation is Arora, Lee and
Naor’s paper: https://www.ams.org/journals/jams/2008-21-01/S0894-0347-07-00573-5/
S0894-0347-07-00573-5.pdf

1.2 General background

Some notation and background is listed here. It is advised to merely skim through it, as it
should be standard, and come back to it if needed. These also serve the purpose of listing
some basic pre-requisites, and if the notions here feel very difficult, the course may be quite
difficult to follow.

Given a mapping f : X → Y between two sets, we write Im (f) for its image.
The volume/Lebesgue measure of a subset A ⊂ Rn is denoted |A|. The volume of a unit

ball is given by a dimension dependent constant ωn = B(0, 1).
If f, g : N → (0,∞) are two functions, we write f(n) = O(g(n)) if there exists a constant

C and an n0 ∈ N such that f(n) ≤ Cg(n) for all n ≥ n0.

http://www.cs.toronto.edu/~avner/teaching/S6-2414/
http://www.cs.toronto.edu/~avner/teaching/S6-2414/
https://home.ttic.edu/~yury/courses/geometry/
https://www.ams.org/journals/jams/2008-21-01/S0894-0347-07-00573-5/S0894-0347-07-00573-5.pdf
https://www.ams.org/journals/jams/2008-21-01/S0894-0347-07-00573-5/S0894-0347-07-00573-5.pdf


1.3 A bit on vector spaces

A (real) vector space V is a space together with two operations: addition v + w, v, w ∈ V
and scalar multiplication tv for t ∈ R, v ∈ V . These satisfy the following axioms.

1. Commutativity and Distributivity: v + w = w + v, u + (v + w) = (u + v) + w, for all
u, v, w ∈ V

2. Zero: ∃0 ∈ V : 0 + v = v for all v ∈ V

3. Negation: For all v ∈ V exists − v ∈ V : v + (−v) = 0.

4. Distributivity of scalar multiplication: (a + b)v = av + bv, a(v + w) = av + aw for all
v, w ∈ V, a, b ∈ R.

For most purposes V = Rn = {(x1, . . . , xn) : xi ∈ R, i = 1, . . . , n}, with componentwise
addition and multiplication, suffices for this course, although we will mention some infinite
dimensional normed vector spaces.

1.4 A bit of probability

A probability space (Ω,Σ,P) is a measure space (Ω,Σ), where Σ is a σ-algebra of sets, and
P is a probability measure. For most of the analysis, it will suffice to consider Ω a finite set,
Σ the power set of Ω and P some discrete probability measure on Ω. However, we will also
use a bit of Gaussian random variables, and there the continuous framework is necessary. I
will not review this here, but any standard text on probability theory will suffice.

A random variable X : Ω → R is measurable, if X−1(O) ∈ Σ for every open set O ⊂ R.
For such variables, we can define integrals, which are also called expected values,∫

XdP = E(X),

which exist provided that ∫
|X|dP < ∞.

For non-negative functions, the integrals of measurable functions can always be defined and
may be infinite.

We say that A and B are independent events, if P(A∩P ) = P(A)P(B). We say that X, Y
are independent random variables, if for all open sets A,B the events {X ∈ A} = X−1(A)
and {X ∈ B} = X−1(B) are independent. We say that X and Y are identically distributed,
if for all open sets A we have P(X ∈ A) = P(Y ∈ A). This guarantees, that E(X) = E(Y ),
provided that at least one of these expected values exists.

If X1, . . . , Xn are n independent identically distributed random variables, and if they are
all distributed as X, for which E(X) exists, then

E(
n∑

i=1

Xi) =
n∑

i=1

E(Xi) = nE(X).



We thus expect,
∑n

i=1Xi to be close to nE(X), since E(X) corresponds to the “expected
behavior of X”. Indeed, this can be proven and is the content of the Law of large numbers.
What we will need is the following bound.

Lemma 1.1. Let X1, . . . , Xm be identical, idependently distributed random variables with
values in [0, 1]. Then, for every ϵ > 0, we have

P(X ≤ (1− ϵ)µm) ≤ e−ϵ2µm/2.

2 What? - Lecture 1

This is a course about embeddings of metric spaces f : X → Y , where X is a metric space
and Y is a normed vector space. We have already touched upon the motivation to these in
the general lecture, and will not re-iterate it right away. Instead, let’s dive to the objects of
interest.

2.1 Metric spaces

The domains X in our consideration are metric spaces.

Definition 2.1. A metric space (X, d) is a set X together with a distance function d :
X ×X → [0,∞), which satisfies

1. symmetry: d(x, y) = d(y, x),

2. positivity: d(x, y) = 0 ⇐⇒ x = y,

3. the triangle inequality: d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X.

Elements x ∈ X of a metric space are also called points. The function d is called a metric.
The set X may be either finite, or infinite. It’s size is denoted by |X|. Balls in metric spaces
are denoted B(x, r) = {y ∈ X : d(x, y) < r} for x ∈ X and r > 0. If A ⊂ X, we write
diam(A) = supa,b∈A d(a, b) for its diameter.

Here are a few examples of finite metric spaces.

1. X = {0, 1}n, and d(w, v) is the Hamming distance between w = (w1, . . . , wn), v =
(v1, . . . , vn) ∈ X, that is:

d(w, v) =
n∑

i=1

|wi − vi|,

which equals the number k of bits where w and v differ from each other. This met-
ric arises in the context of error correcting codes, since d(w, v) measures how many
modifications one needs to perform to get from w to v.



2. A graph G = (V,E) consists of a finite set of vertices V and a set E ⊂ {{v, w} : v, w ∈
V, v ̸= w} of edges. We denote {v, w} = ev,w, and we say that v is an end point of
e ∈ E if v ∈ e. We will focus on graphs without an orientation, although much of what
we say is also applicable to oriented graphs.

An edge walk in a graph is a sequence of edges (e1, . . . , en) with ei and ei+1 sharing an
end point. We say that the edge path (e1, . . . , en) connects v to w, where v, w ∈ V ,
if v is an end point of e1 and w an end point of en. The parameter n is the length
of the edge path. We say that a graph G is connected if every pair of vertices can
be connected by an edge path. In a connected graph, we can define the (unweighted)
graph distance as the shortest length of an edge path connecting pairs of points:

d(v, w) = min{n : (e1, . . . , en) is an edge path connecting v to w}.

To increase generality, we attach for associate edge e a weight c(e) > 0. We then define
the (weighted) graph metric as

dc(v, w) = min{
n∑

i=1

c(ei) : (e1, . . . , en) is an edge path connecting v to w}.

Remark 2.2. The metric dc is not substantially more general than the metric d. In-
deed, by modifying and scaling, we can convert dc to d. Indeed, if c(e) ∈ N for e ∈ E,
then we can form a new graph Gc which is obtained by subdividing each edge e ∈ E by
c(e). Then dc(v, w), for v, w ∈ V equals the (unweighted) graph distance in this new
graph. On the other hand, if c(e) ∈ Q for all e ∈ E, then Mdc(v, w) = dMcd(v, w) for
M the least common multiple of all denominators of c(e). By the first part, dMcd(v, w)
is an unweighted graph distance.

Thus, mathematically speaking dc is not more general than d. However, in many cases,
dc is convenient to use. Further, in actual computations it is likely easier to incorporate
a weight, than to increase the complexity of the graph by subdivision.

3. A complete graph G = (V,E) is a graph, where all pairs of vertices are connected by an
edge, that is E = {{v, w} : v, w ∈ V, v ̸= w}. A complete graph is clearly connected,
and d(v, w) = 1 for the unweighted distance d for all v, w ∈ V . If further (V, dV ) is a
metric space and we define a weight c(ev,w) = dV (v, w) for all v, w ∈ V , then

dc = dV .

That is, all finite metric spaces can be thought of as graph metrics.

Remark 2.3. The complexity of storing a very large graph or metric space can be
prohibitive. Indeed, if |V | = n, then |E| ≤ n(n−1)

2
. That is, we may need O(n2) storage

for the graph. Similarly, to store the full distance function d of a space of size n, we need
O(n2) bits. For small or moderate sized data this is fine. However, if say we consider



the space of all websites, we have n ∼ 2 · 109, and n2 ∼ 1018. While both numbers are
large, the first is still reasonable (of the order 1 Gb, if we give each website its own
codename), but the latter is quite far from reasonable (1 exabyte, or 106 terabytes).
This is one of the reasons we may want to consider efficiently representing our data E
in some (hopefully low dimensional) space.

There are a few standard constructions of metric spaces from other metric spaces.

Definition 2.4. If A ⊂ X is a subset of a metric space, then (A, d|A×A) is the restricted
metric space. We often simplify notation and write d instead of d|A×A.

If (X, dX), (Y, dY ) are two metric spaces, their product Z = X × Y is equipped with the
following product metric:

d((x1, y1), (x2, y2)) =
√
dX(x1, x2)2 + dY (y1, y2)2.

Further, there is a somewhat more complex modification of a metric. Let ϕ : [0,∞) →
[0,∞) be a non-negative concave function with ϕ(0) = 0, and ϕ(t) > 0 for all t > 0. Recall,
that ϕ is concave, if for all a, b ∈ [0,∞) and all t ∈ [0, 1], we have

ϕ(ta+ (1− t)b) ≥ tϕ(a) + (1− t)ϕ(b).

Another way to write this inequality is

ϕ(ξt)− ϕ(a)

ξt − a
≥ ϕ(b)− ϕ(ξt)

b− ξt

whenever ξt = ta + (1 − t)b for t ∈ [0, 1]. The point ξt thus represents an arbitrary point
between a, b, and the inequality states that the slope of the secant line between a and ξt is
greater than the slope of the secant line between ξt and b. If ϕ is differentiable, then this
property is equivalent to the fact that ϕ′ is increasing - as can be readily seen from the mean
value property, since then ϕ′ is increasing. Further, if ϕ is twice continuously differentiable,
this property is equivalent to ϕ′′(t) < 0. The most important example of a concave function
for us is ϕ(t) = tϵ for any ϵ ∈ (0, 1), and the concavity can be directly seen by differentiation.

Problem 2.5. Prove that t → tϵ is concave if and only if t ∈ (0, 1].

Lemma 2.6. Let (X, d) be a metric space. Then (X, dϕ = ϕ(d)) is also a metric space,
where dϕ(x, y) = ϕ(d(x, y)).

Proof. It is easy to check that dϕ(x, y) = dϕ(y, x), dϕ(x, y) ≥ 0 and dϕ(x, y) = 0 =⇒ x = y.
These follow directly from their corresponding properties for the metric d. Thus, as usual,
we are left to show the triangle inequality.

First, we show that
ϕ(a+ b) ≤ ϕ(a) + ϕ(b)

for all a, b > 0. For simplicity, assume first a < b,. Consider the three secant lines over the
intervals [0, a], [a, b] and [b, a+ b]. The slopes are increasing by concavity:



ϕ(a)

a
=

ϕ(a)− ϕ(0)

a
≤ ϕ(b)− ϕ(a)

b− a
≤ ϕ(b+ a)− ϕ(b)

a
.

Now multiplying by a and moving terms, we get the desired inequality. If a = b we can
compare directly the slope over [0, a] and [b, a+ b] = [a, 2a], and get the same result.

Now, the triangle inequality readily follows. If x, y, z ∈ X, then

dϕ(x, y) = ϕ(d(x, y)) ≤ ϕ(d(x, z) + d(z, y))

= ϕ(d(x, z)) + ϕ(d(z, y))

= dϕ(x, z) + dϕ(z, y).

In the second line we used that ϕ is increasing, and on the third line we used the inequality
just derived.

2.2 Normed spaces

The target spaces Y are vector spaces together with a norm.

Definition 2.7. A normed space (Y, ∥ · ∥) is a vector space Y together with a norm v →
∥v∥ ∈ [0,∞) for which the following hold.

1. ∥v∥ ∈ [0,∞) for all v ∈ Y .

2. ∥tv∥ = |t|∥v∥ for all v ∈ Y, t ∈ R.

3. ∥v∥ = 0 if and only if v = 0.

4. Triangle inequality: ∥v + w∥ ≤ ∥v∥+ ∥w∥.

A normed space is also a metric space when equipped with the metric d(v, w) = ∥v−w∥.
Additionally, if Y is infinite dimensional, we will additionally assume that the normed space
is complete. Completeness is equivalent to the metric space (Y, d) being complete, or the
property that for all vectors vi ∈ Y , i ∈ N, we have

∞∑
i=0

∥vi∥ < ∞ =⇒
∞∑
i=0

vi exists .

For the most part, we will not need these properties, and thus leave them for now. Also,
all of the spaces that we consider and present as examples are complete, and especially all
finite dimensional spaces are complete. The main spaces that we consider, which also often
appear in applications, are the ℓp spaces.



1. ℓnp is the vector space Rn together with the norm

∥(x1, . . . , xn)∥p =

(
n∑

i=1

|xi|p
) 1

p

,

for p ∈ [1,∞), and
∥(x1, . . . , xn)∥∞ = max

i=1,...,n
|xi|.

2. At times it is easier to have infinitely many co-ordinates ℓp = ℓ∞p is the vector space

ℓ∞p = ℓp = {(x1, x2, . . . , ) ∈ RN : ∥(x1, x2, . . . , )∥p < ∞{

where we equip the space with the norm (which is also part of the definition)

∥(x1, . . . )∥p =

(
∞∑
i=1

|xi|p
) 1

p

,

for p ∈ [1,∞), and
∥(x1, . . . )∥∞ = sup

i∈N
|xi|.

3. It will also be useful to consider the following space. Let (Ω,P) be a probability space,
and let

L1(Ω) = {X : Ω → R : X is measurable and

∫
|X|dP = E(|X|) < ∞}

equipped with the norm

∥X∥1 =
∫

|X|dP = E(|X|).

4. There are many more complicated normed spaces, that one could consider. Consider,
for example, Mn the space of n ×m matrices, with n < m, and consider the nuclear
norm:

∥M∥n =
n∑

i=1

|σi(M)|,

where σi(M) are the singular values of M . If, instead, we take an ℓp-norm of the
singular values,

∥M∥p,s = ∥(σ1(M), . . . , σn(M))∥p,
we get the Shatten-norms on matrices.

Problem 2.8. Show that the nuclear norm is a norm. Hint: Use the fact that
∑n

i=1 |σi(M)| =
supU∈A trace(MU), where A is the collection of m× n matrices with orthonormal rows, and
trace(B) is the trace of a matrix B. Further, note that the supremum of a linear functions
on a vector space is convex, and that this gives the triangle inequality. Asimilar expression
can be written for other Shatten norms.



The p = 2 case of the theory above is quite special. It corresponds to Euclidean space,
where associated to the norm we have a bi-linear inner product structure.

Definition 2.9. An inner product space (Y, ⟨·, ·⟩) is a vector space Y together with an inner
product v, w → ⟨v, w⟩ ∈ R for which the following hold.

1. Symmetry: ⟨v, w⟩ = ⟨w, v⟩

2. Bilinearity: ⟨au+ bv, w⟩ = a⟨u,w⟩+ b⟨v, w⟩

3. ⟨v, v⟩ ∈ [0,∞) for all v ∈ Y .

4. ⟨v, v⟩ = 0 if and only if v = 0.

Associated to an inner product, we have a norm ∥v∥ =
√

⟨v, v⟩. This is a norm, and in
proving so, one uses the Cauchy-Schwartz inequality:

|⟨v, w⟩| ≤ ∥v∥∥w∥.

Every inner product space is isomorphic and isometric to ℓn2 or ℓ2 for some n < ∞ - if Y
is either finite dimensional or separable. An inner product for these spaces is given by the
usual dot product:

⟨(x1, . . . , xn), (y1, . . . , yn)⟩ =
n∑

i=1

xiyi,

where the formula naturally extends to n = ∞. When we say inner product space, we mean
either of these cases, and from now on, you can focus on the case ℓn2 . Below, we will also
focus and write formulas for n ∈ N - but these calculations largely are identical for n = ∞.

On of the most important properties for us that distinguishes Euclidean space is the
Parallelogram identity.

Lemma 2.10. For all a, b ∈ ℓn2 , we have

∥a+ b∥2 + ∥a− b∥2 = 2(∥a∥2 + ∥b∥2).

Proof. We have by bi-Linearity and symmetry

∥a+ b∥2 + ∥a− b∥2 = ⟨a+ b, a+ b⟩+ ⟨a− b, a− b⟩
= ⟨a, a⟩+ 2⟨a, b⟩+ ⟨b, b⟩
+ (⟨a, a⟩ − 2⟨a, b⟩+ ⟨b, b⟩)

= 2⟨a, a⟩+ 2⟨b, b⟩
= 2(∥a∥2 + ∥b∥2).

As a consequence of this, we get the following two geometric facts that concern midpoints.
If X is a metric space, and x, y ∈ X, then a midpoint m between them, or for them, is a
point for which d(x,m) = d(y,m) = d(x,y)

2
.



Example 2.11. Let X = {0, 2, 3}, and equip X with the restricted metric from R. Then
the points x = 0, y = 3 do not have a midpoint in X.

Let X = {a, b, c,m} and let d(a, b) = d(b, c) = d(a, c) = 2, and d(z,m) = 1 for all
z = a, b, c. Them m is a midpoint for all the following pairs of points: (a, b), (b, c) and (a, c).

Let X = {0, 1}2 be the Hamming square equipped with the Hamming metric. Then
x = (0, 0) and y = (1, 1) have two mid-points (1, 0) and (0, 1). Higher dimensional Hamming
cubes have even more midpoints.

Lemma 2.12. Assume that (Y, ⟨·⟩) is an inner product space. Let ϵ > 0. If ∥a∥ = 1 and
∥b∥ = 1 and ∥a− b∥ ≥ ϵ > 0, then∥∥∥∥a+ b

2

∥∥∥∥ ≤
√
1− 4−1ϵ2 ≤ 1− 2ϵ2.

Further, for every a, b ∈ Y with a ̸= b, there is a unique midpoint m.

Proof. From the parallelogram identity we get∥∥∥∥a+ b

2

∥∥∥∥2 + ( ϵ2)2 =
∥∥∥∥a+ b

2

∥∥∥∥2 + ∥∥∥∥a− b

2

∥∥∥∥2 = ∥a∥2 + ∥b∥2

2
= 1.

Solving from this, we get. ∥∥∥∥a+ b

2

∥∥∥∥ ≤
√
1− 4−1ϵ2 ≤ 1− 8−1ϵ2.

We next prove uniqueness. By scale-invariance, we can assume that ∥a − b∥ = 2, and
to simplify notation we also assume a = 0. It is clear that m = b

2
is a midpoint between a

and b. Next, let m′ be some potentially other midpoint. Then, we have ∥m∥ = ∥b −m∥ =
∥m′∥ = ∥b−m′∥ = 1

2
∥b∥ = 1. If ∥m−m′∥ = 0, we are done. If not, then there is some ϵ > 0

so that ∥m−m′∥ > ϵ. By the first part of the proof, we get∥∥∥∥m+m′

2

∥∥∥∥ ≤ 1− 2ϵ2 < 1,

and by the same argument applied to b−m and b−m′,∥∥∥∥b− m+m′

2

∥∥∥∥ =

∥∥∥∥(b−m) + (b−m′)

2

∥∥∥∥ ≤ 1− 2ϵ2 < 1,

Thus, we reach the following contradiction

2 = ∥b∥ ≤
∥∥∥∥m+m′

2

∥∥∥∥+ ∥∥∥∥b− m+m′

2

∥∥∥∥ < 2,

which implies that we must have m = m′



Remark 2.13. For ℓnp and ℓp-spaces the same uniqueness and an analogue of Lemma 3 holds
for all p ∈ (1,∞). In the proof, parallelogram identity is replaced with so called Clarkson’s
inequalities.

In general, one can define the modulus of convexity of a normed space:

ω(δ) = 1− sup{∥a+ b

2
∥ : ∥a∥ = ∥b∥ = 1, ∥a− b∥ ≥ δ}.

A normed space is said to be uniformly convex if ω(δ) > 0 for all δ > 0. Using this, one
can prove an analogue of the previous Lemma for uniformly convex spaces, and with the
ϵ2 term replaced with ω(ϵ). By the previous paragraph, all ℓp spaces are uniformly convex
when p ∈ (1,∞).

If p = 1,∞, then mid-points are not unique, and the previous Lemma fails for ℓnp and ℓ∞p .

Problem 2.14. Prove that if p = 1,∞, then mid-points are not unique, and the previous
Lemma fails for ℓnp . Specifically, find an a, b with ∥a∥ = ∥b∥ = 1 and ∥a − b∥ > 0, but for

which
∥∥a+b

2

∥∥ = 1. Also, find a pair of points a, b with a non-unique mid-point. Does this
hold for all pairs of points?

For general points a, b, c, d ∈ ℓn2 we have the following bound.

Lemma 2.15. If a, b, c, d ∈ ℓn2 , then

∥a− c∥2 + ∥b− d∥2 ≤ ∥a− b∥2 + ∥b− c∥2 + ∥c− d∥2 + ∥d− a∥2

Proof. Group the terms

∥a− b∥2 + ∥b− c∥2 + ∥c− d∥2 + ∥d− a∥2 − (∥a− c∥2 + ∥b− d∥2)
= ∥a∥2 + ∥c∥2 + 2⟨a, c⟩ − ⟨a+ c, b+ d⟩+ ∥b∥2 + ∥d∥2 − 2⟨b, d⟩
= ∥a+ c∥2 − 2⟨a+ c, b+ d⟩+ ∥b+ d∥2 = ∥a+ c− b− d∥2 ≥ 0.

Problem 2.16. Show that equality holds in Lemma 2.15 if and only of a, b, c, d are the four
corners of a parallelogram. Hint: Observe that the opposite sides a− b and c− d are equal,
if the inequality is an equality.

2.3 Embeddings

We now put the two together. We will treat the target Y here as also a metric space, and
use d for the metric on both X and Y .

Definition 2.17. A mapping f : X → Y is called an isometric embedding, if

d(f(x), f(y)) = d(x, y), for all x, y ∈ X.



Let L > 0. A mapping f : X → Y between a metric space X and a metric space Y is
(L−)Lipschitz, if

d(f(x), f(y))

d(x, y)
≤ L, for all x, y ∈ X, x ̸= y.

The smallest L for which this inequality holds is denoted LIP (f).
Let b > 0. A ((b, L))-bi-Lipschitz embedding f : X → Y is a L-Lipschitz map, for which

there exists a constant b for which also

b ≤ d(f(x), f(y))

d(x, y)
≤ L, for all x, y ∈ X, x ̸= y.

The largest constant b is also LIP (f−1), where f−1 : Im (f) → X.

We also say that f is (b, L)-biLipschitz or L-Lipschitz, if we wish
The distortion of a biLipschitz embedding f : X → Y is

D(f) =
LIP (f)

LIP (f−1)
= inf

{
L

b
: f is (b, L)− biLipschitz

}
.

It will often be useful to normalize either b = 1, when we say that f is expanding (since
then d(f(x), f(y)) ≥ d(x, y) for all x, y ∈ X), or L = 1, when we say that f is contracting
(since then d(f(x), f(y)) ≤ d(x, y) for all x, y ∈ X). In these cases, D(f) is the smallest
Lipschitz constant of an expanding biLipschitz map, or the reciprocal of the largest constant
b for contracting biLipschitz maps f .

Isometric mappings have D(f) = 1. For all mappings D(f) ≥ 1, and the distortion is a
measurement of how far away f is from being an isometry. Already from Example 2.11 and
Lemma 2.12, we see that the Hamming cube does not isometrically embed into Euclidean
space, since Euclidean space has unique midpoints, which the Hamming cube does not have.
We can actually say more.

Lemma 2.18. Let X = {0, 1}2 be equipped with the Hamming metric. Then X does not
isometrically embed to ℓn2 for any n ∈ N, and c2(X) ≥

√
2. Further, there exists a biLipschitz

embedding f : X → ℓ22 with D(f) =
√
2.

Proof. Let f be a contracting (b, 1)-biLipschitz map. Let a = f(0, 0), b = f(0, 1), c =
f(1, 0), d = f(1, 1). We have by Lemma 2.15 that

∥a− c∥2 + ∥b− d∥2 ≤ ∥a− b∥2 + ∥b− c∥2 + ∥c− d∥2 + ∥d− a∥2.

We estimate the terms on the right by contraction and the terms on the left using the
biLipschitz condition. We thus get

8b2 ≤ ∥a− c∥2 + ∥b− d∥2 ≤ ∥a− b∥2 + ∥b− c∥2 + ∥c− d∥2 + ∥d− a∥2 ≤ 4.

Solving from this b ≤
√
2
−1
, and D(f) ≥

√
2. If we choose the “identity embeeding”,

a = (0, 0), b = (0, 1), c = (1, 0), d = (1, 1), one can compute that f is 1-Lipschitz and

b =
√
2
−1
. (In that case, the inequality above becomes an equality.)



Motivated by the following, we look at the minimal possible distortion a metric space
can be embedded into ℓnp for some n.

cp(X) = inf{D(f) : f : X → ℓnp , n ∈ N ∪ {∞}}.

Using this notation, we can restate Lemma 2.18 as c2({0, 1}2) =
√
2.

Problem 2.19. Consider the second example from Example 2.11: X = {a, b, c,m} and let
d(a, b) = d(b, c) = d(a, c) = 2, and d(z,m) = 1 for all z = a, b, c. Determine c2(X). You can
either do this directly, or use results from below.

Question 2.20. The big questions for us are the following.

1. How does cp(X) behave for a given X in terms of p?

2. Can we bound cp(X) in terms of the size of X?

3. Can cp(X) be infinite?

It should be noted at this juncture, that these questions are generally very difficult.
Further, while much is known about cp(X), there are many questions which remain open.
We will mention some below.

2.4 Lower bounds for c2(X)

We start to look at the problem of how c2(X) behaves in terms of the size of X. We will
work towards showing that c2(X) = O(log(|X|). The following example shows a slightly
weaker lower bound. (It is known that c2(X) = Ω(log(|X|) for some more involved metric
spaces X.)

We will consider the Hamming cube X = {0, 1}n. It will be useful to consider X as a
graph, where the edges consist of pairs {a, b} with d(a, b) = 1 - i.e. all points which differ
in only one component. It is direct to see that the graph metric is equal to the Hamming
distance.

Lemma 2.21. Let X = {0, 1}n be equipped with the Hamming distance. Then, c2(X) =
√
n.

Proof. That c2(X) ≤
√
n follows by embedding X with the natural inclusion to ℓ2.

First, we state a general inequality. Let E ⊂ {{a, b} : d(a, b) = 1} be the collection of
edges of X, and let D = {{a, b} : d(a, b) = n} be the collection of all “long” diagonals, i.e.
where each component is distinct – i.e. all pairs (a, b) where b is obtained by flipping each
component of a. Let xa ∈ ℓd2 be any vectors for a ∈ X. A generalization of Lemma 2.15 is
the following. ∑

{a,b}∈D

∥xa − xb∥2 ≤
∑

{a,b}∈E

∥xa − xb∥2. (1)



If we choose xa = f(a), and if f is (1, L)-biLipschitz, we get

2n−1n2 =
∑

{a,b}∈D

(d(a, b))2 ≤
∑

{a,b}∈D

∥f(a)− f(b)∥2

≤
∑

{a,b}∈E

∥f(a)− f(b)∥2 ≤
∑

{a,b}∈E

L2 = 2n−1nL2.

Thus,
n ≤ L2,

and L ≥
√
n, which yields the desired distortion bound.

Thus, we are left to show (1). There are several proofs of this inequality – a Fourier
analytic one, an induction proof, and one proving the positive definiteness of a given matrix.
While there are advantages to each, for saving time, we shall do the induction proof.

Lets prove (1). We will prove it by induction on n. The base case n = 2 is the usual
Parallelogram inequality. Now, suppose the claim has been shown for n − 1 and n > 2.
Consider X0

n−1 = {0, 1}n−1 × {0} and X1
n−1 = {0, 1}n−1 × {1}. These are two subsets of Xn

differentiated by their last co-ordinate. Let also D0, D1, E0, E1 be the set of diagonals and
edges of X0

n−1 and X1
n−1, which have been naturally identified with {0, 1}n−1. We have for

i = 0, 1 ∑
{a,b}∈Di

∥xa − xb∥2 ≤
∑

(a,b)∈Ei

∥xa − xb∥2. (2)

Consider a pair of points p, q ∈ {0, 1}n−1 where q is obtained from p by flipping each
bit. Next, p0 means the element in X obtained by adding the bit 0 as the last coordinate,
and other notation is similar. Then, q is obtained from p by flipping each bit. Then,
{p0, q0} ∈ D0, {p1, q1} ∈ D1 and {p0, q1}, {p1, q0} ∈ D. We get from Lemma 2.15, applied
to the parallelogram p0, p1, q1, q0, that for all p ∈ {0, 1}n−1

∥xp0 − xq1∥2 + ∥xp1 − xq0∥2 ≤ ∥xp0 − xq0∥2 + ∥xp1 − xq1∥2 + ∥xp0 − xp1∥2 + ∥xq0 − xq1∥2.

Summing these over all p (and dividing by two, to avoid duplication) yields all the diagonals
of X on the left hand side:∑
{a,b}∈D

∥xa − xb∥2 ≤
1

2

∑
p∈{0,1}n−1

∥xp0 − xq0∥2 + ∥xp1 − xq1∥2 + ∥xp0 − xp1∥2 + ∥xq0 − xq1∥2.

The first and second terms in the sum correspond to the diagonals D0 and D1, while the
third and fourth term yield the same sum. Thus∑

{a,b}∈D

∥xa − xb∥2 ≤
∑

{a,b}∈D0

∥xa − xb∥2 +
∑

{a,b}∈D1

∥xa − xb∥2 +
∑

p∈{0,1}n−1

∥xp0 − xp1∥2.

Now, finally applying the induction hypothesis, we get∑
{a,b}∈D

∥xa−xb∥2 ≤
∑

{a,b}∈E0

∥xa−xb∥2+
∑

{a,b}∈E1

∥xa−xb∥2+
∑

p∈{0,1}n−1

∥xp0−xp1∥2 =
∑

{a,b}∈E

∥xa−xb∥2,

where we recognized the final sum as the sum over all edges.



3 How? - Lecture 2

We will now look at some positive results on embeddings. The idea in both of these will be
that Fréchet embeddings are “the only” way to embed. While there certainly have appeared
many other embeddings, and these are not the only ones used, they are the only ones that are
broadly applicable to the setting of all metric spaces. Thus, a good heuristic in constructing
embeddings is: try distance embeddings. If it doesn’t work, then likely something is causing
problems.

3.1 Kuratowski embedding

We have observed that not all subsets embed to ℓn2 . However, the story with ℓ∞ is quite
different.

Theorem 3.1. (Kuratowski embedding) We have

c∞(X) = 1.

Indeed, every finite metric space X embeds isometrically to ℓn∞ for n = |X|.

Proof. The proof uses a very simple type of embedding, that we will also need in the second
lecture.

Definition 3.2. A Frechét embedding, or a distance embedding is an embedding f : X → ℓkp
of the following form. Let S1, . . . , Sk be subsets of X, and let

f(x) = (d(x, S1), . . . , d(x, Sk)),

where d(x,A) = min{d(x, a) : a ∈ A} for a subset A ⊂ X.

Index the elements of X = {x1, . . . , xn}, and let

f(x) = (d(x, x1), . . . , d(x, xn)) ∈ ℓn∞.

We have
d(f(x), f(y)) = max

i
|d(x, xi)− d(y, xi)|.

Now, we have by the reverse triangle inequality:

|d(x, xi)− d(y, xi)| ≤ d(y, x)

for all i = 1, . . . , n. If we choose i so that xi = x, then

|d(x, xi)− d(y, xi)| = d(y, x).

Thus,
d(f(x), f(y)) = max

i
|d(x, xi)− d(y, xi)| = d(x, y),

and we see that f is an isometric embedding. Therefore, D(f) = 1, and c∞(X) = 1.



3.2 Bourgain embedding

Theorem 3.3. We have
c2(X) = O(log(|X|))

for all metric spaces X. In fact

cp(X) = O(log(|X|))

for all p ∈ [1,∞).

The proof of the theorem also shows that we only need O(log(|X|)2) many coordinates.
We will follow the original proof of Bourgain. The embedding will be of the form

f(x) = (d(x, S1,1), . . . , d(x, SN,M)),

for a given N,M , and sets Si,j for i = 1, . . . , k, j = 1, . . . ,M.
In principle, it is possible to construct the sets Si explicitly. However, this is quite tedious,

and the involved randomized construction will be quite a bit simpler to analyse. We will
construct the sets Si via random sampling of the space. The idea is the following: we show
that with positive probability the mapping f has the desired distortion. This is the power
of the “probabilistic method”, which is quite often used for combinatorial constructions and
to prove existence of objects.

Let k = ⌈log2(|X|)⌉, for which

2k−1 < |X| ≤ 2k.

Now,
Si,j = random set where each v ∈ Si,j with probability 2−i.

and j = 1, . . . ,M , where M = Ck for some constant C. The idea is to easily capture
information about the space at size scales 2−i. You can imagine X being partitioned into
sets of size 2i. Then Si,j are sets which intersect each element in the partition roughly once.

Proof of the Upper Lipschitz bound. Using Hölder’s inequality, we get for f : X → ℓp the
following bound.

|f(x)− f(y)| =

(∑
i,j

|d(x, Si,j)− d(y, Si,j)|p
) 1

p

≤

(∑
i,j

d(x, y)p

) 1
p

= (Ck)
2
p .

Next, we reduce the problem to p = 1.



Enough to prove for p = 1. We have the reverse triangle inequality that

|f(x)− f(y)| =

(∑
i,j

(d(x, Si,j)− d(y, Si,j)
p

) 1
p

≥
∑
i,j

|d(x, Si,j)− d(y, Si,j)|k2 1−p
p

Thus, if we can show that ∑
i,j

|d(x, Si,j)− d(y, Si,j)| ≥
k

4
,

we then get

L

b
=

(Ck)
2
p

k
4
k2 1−p

p

∼ k = O(log(|X|)).

The claim has thus been shown.

Lower bound proof. First fix x, y ∈ X. We will compute the probability that we have the
desired lower bound for x, y. What we want to do is estimate |d(x, Si,j) − d(y, Si,j)| from
below. This involves showing that Si,j contains points close to x, but not close to y with
some definite probability. For this proof, let B(p, r) = {q : d(q, p) ≤ r}.

Choose rt = d(x, y)/4, and let t be the largest integer so that

|B(x, rt)| ≥ 2t, and |B(y, rt)| ≥ 2t

Define for l = 0, . . . , t− 1 the radii

rl = min{r : |B(x, r)| ≥ 2l, |B(y, r)| ≥ 2l}.

With this choice, r0 = 0, rl is an increasing sequence, and

t−1∑
l=0

rl+1 − rl = rt − r0 =
d(x, y)

4
.

Consider the good event Gi,j of when

Si,j ∩B(x, ri) ̸= ∅ and Si,j ∩B(y, ri+1) = ∅.

This is good, because, when Gi,j happens, then

|d(x, Si,j)− d(y, Si,j)| ≥ ri+1 − ri.

The good news is that the good event has positive probability.



Lemma 3.4. There is a constant δ > 0 (independent of x, y) so that for i = 1, . . . , t− 1 and
any j = 1, . . . , Ck we have

P(Gi,j) ≥ δ.

Proof. The balls B(x, ri) and B(y, ri+1) are disjoint, and thus, whether Ai,j chooses a point
in them are independent event, thus

P(Gi,j) = P(Si,j ∩B(x, ri) ̸= ∅)P(Si,j ∩B(y, ri+1) = ∅)

≥
(
1− (1− 2−i)2

i
)(

(1− 2−i)2
i+1
)
.

Now,
1− x ≤ ex

for all x, since ex is convex, and

1− x

2
≥ 1− x+

1

2
x2 ≥ e−x

for all x ∈ [0, 1], by using the alternation of the Taylor series. Thus(
1− (1− 2−i)2

i
)(

(1− 2−i)2
i+1
)
≥
(
1− e−1

)
e−21−i2i+1

= e−2 − e−3 = δ.

We can now fix C = ⌈100δ−1⌉. Next, let Gi be the event that for k many indices
j = 1, . . . , Ck the event Gi,j happens. We expect at least δCk ≥ 100k events to happen.
Let Bi be the event that Gi does not happen, that is, that less than k events Gi,j occur. By
Lemma 1.1 with ϵ = 1/2, we get

P(Bj) ≤ e−Cδk/8 ≤ e−10k ≤ n−10.

Each of these is indepenent, and we can compute

P(Gi) ≥ 1− n−10.

The probability that all Gi occur, is 1− kn−10. When all Gi occur, we get

∑
i,j

|d(x, Si,j)− d(y, Si,j)| ≥
t−1∑
i=0

k(ri+1 − ri) ≥ k
d(x, y)

4
. (3)

Call Gxy the event that all Gi occurs. Now, this good event, Gxy has probability at least
1− kn−10. The probability that for some x, y we have that Gx,y fails is at most

kn−10n2 = kn−8 < 1,

and thus with positive probability allGxy succeed. This means, that with positive probability,
f satisfies the bound (3) for all x, y ∈ X. This was the desired bound.



4 How? Continued: Assouad embedding

4.1 Example

Let us start with a simple example. Consider the metric space

[0, 1], d(x, y) = |x− y|ϵ,

for some ϵ ∈ (0, 1). This is called the snow-flake curve.
Let fk(x) = (sin(2kx)2−k, cos(2kx)2−k) ∈ R2, and let

F (x) = (f0(x), 2
(1−ϵ)f1(x), 2

2(1−ϵ)f2(x), · · · , fk(x)2k(1−ϵ), · · · ).

We claim that this is a biLipschitz embedding.

Lemma 4.1. The map F is bi-Lipschitz from ([0, 1], | · |ϵ) to ℓ2.

Proof. First, we prove the Lipschitz bound. We have

| sin(x)− sin(y)| ≤ |x− y|, | cos(x)− cos(y)| ≤ |x− y| (4)

Let x, y ∈ [0, 1]. Choose k so that 2−k−1 < |x− y| ≤ 2−k. For i ≤ k, we have by (4)

|fi(x)− fi(y)| ≤ 2|x− y|.

For k > i, we have for all x ∈ [0, 1] that

|fk(x)| ≤ 22−k.

Thus,

|F (x)− F (y)| =

√√√√ ∞∑
i=0

(2(1−ϵ)i|fi(x)− fi(x)|)2

=

√√√√ k∑
i=0

(2(1−ϵ)i|fi(x)− fi(x)|)2 +
∞∑

i=k+1

(2(1−ϵ)i|fi(x)− fi(x)|)2

≤

√√√√2
k∑

i=0

22(1−ϵ)i|x− y|2 +
∞∑

i=k+1

242−2iϵ

≤
√

2

22(1−ϵ) − 1
22(k+1)(1−ϵ)|x− y|2 + 24

1− 2−ϵ
2−2(k+1)ϵ

≲ 2−kϵ ≲ |x− y|ϵ.

This gives the upper Lipschitz bound.



Next, we work on the lower bound. The idea is that the k′th term takes care of the points
x, y with distance to each other roughly 2−k.

|F (x)− F (y)| ≥
√

|fk(x)− fk(y)|2

= 2−kϵ
√

| sin(2kx)− sin(2ky)|2 + | cos(2kx)− cos(2ky)|2

= 2−kϵ
√

2− 2 cos(2k(x− y))

≳ |x− y|ϵ,

since 2k(x− y) ∈ [1
2
, 1], and thus cos(2k(x− y)) < cos(1/2) < 1.

The idea of the previous embedding is that each component fk is an embedding for pairs
of points x, y with distance comparable to 2−k. We then simply combine these embeddings
by adding them together. The same proof idea is true for the general Assouad embedding
theorem, which we shall focus on next.

4.2 Metric doubling

The lower bound from biLipschitz embeddings is loosely connected to the problem of packing
balls in Euclidean space. The problem of optimally packing balls is difficult, but we can give
the following very weak bound.

Lemma 4.2. Let r < R and let S ⊂ B(0, R) ⊂ ℓn2 be a set of points for which each s, t ∈ S
with s ̸= t we have d(s, t) ≥ r. We have

|S| ≤ 4nRn

rn
.

On the other hand, there exists a set S ⊂ B(0, R) so that for each s, t ∈ S with s ̸= t we
have d(s, t) ≥ r, and for which

|S| ≥ Rn

rn
.

Proof. For each s ∈ S consider the ball Bs = B(s, r/2). These balls are disjoint. Their
number can be estimated using a volume argument.

ωn2
nRn = |B(0, 2R)| ≥

∣∣∣∣∣⋃
s∈S

Bs

∣∣∣∣∣
≥
∑
s∈S

|Bs| = |S|ωnr
n2−n.

This gives the desired estimate by dividing both sides by the extra constants.



The lower bound can be done in many ways. Let S be a maximal subset of B(0, R) with
the stated property. That is, one can not add any more points to S from B(0, R) without
violating the distance separation condition. Given this, we must have

B(0, R) ⊂
⋃
s∈S

Bs. (5)

Indeed, if this subset relation were to fail, we could find some t ∈ B(0, R) with t ̸∈ Bs for
any s ∈ S. Thus, by definition of balls, d(s, t) ≥ r for all s ∈ S. Consequently, S∪{t} would
be a larger set, which contradicts maximality.

A minor point to address is the existence of such a maximal set. In this case, we can
argue it algorithmically. Let S0 = ∅. Proceed recursively and set i = 0. While the set Si is
not maximal, we add a point t so that d(t, s) ≥ r for all s ∈ Si. That is, Si+1 = Si ∪ {t},
and we increment i. We can only repeat this for finitely many steps, since each time the set
becomes bigger and the first part of the proof states a size bound for such sets.

Now, given the maximal set S which is output by this algorithm, we compute volumes
again. By (5) and sub-additivity of volumes, we get

ωnR
n = |B(0, R)| ≤

∑
s∈S

|Bs| ≤ |S|ωnr
n.

This yields the lower bound for the size of S.

We can use this to derive a distortion bound for embedding some graphs in Euclidean
space. Let Kn be the complete graph equipped with the path metric. That is, d(v, w) = 1
for each distinct v, w ∈ Kn.

Lemma 4.3. We have D(f) ≥ n
1
d4−1 for all biLipschitz mappings f : Kn → Rd. Also,

D(f) = 1 if d ≥ n− 1.

Proof. Suppose that f is distance expanding, and that f(v0) = 0 for some v0 ∈ Kn. Then,
let S = {f(x) : x ∈ Kn}. If L is the Lipschitz constant of f , then S ⊂ B(0, L), and by
Lemma 4.2 applied with r = 1 and R = L, we get

n = |S| ≤ 4dLd.

Thus, L ≥ n
1
d4−1. This yields the lower bound for the distortion.

When d ≥ n− 1, there exists an isometric embedding. Indeed, enumerate the vertices of
Kn as v1, . . . , vn. let first g : Kn → Rn be given by g(vi) =

1√
2
ei. The image of g is contained

in an affine subspace of dimension n− 1, and the isometric embedding into Rn−1 is obtained
by mapping that subspace isometrically to Rn−1.

Problem 4.4. Show that the bound for distortion is essentially sharp by giving a comparable
upper bound.



Definition 4.5. A metric space (X, d) is said to be N-metric doubling, if for every x ∈ X
and every r > 0, there exist points x1, . . . , xN ∈ X for which

B(x, r) ⊂
N⋃
i=1

B(xi, r/2).

The constant D = ⌈log2N⌉ is called the doubling dimension of the metric space.

Problem 4.6. Show, using the proof of Lemma 4.2, that Rn is 8n-doubling.

Problem 4.7. Show, that if X is metric N -doubling, then for every x ∈ X, and r > 0, and
any k ∈ N, there exist Nk many points x1, . . . , xNk ∈ X for which

B(x, r) ⊂
Nk⋃
i=1

B(xi, r/2
k).

Lemma 4.8. Let f : X → Rn has distortion D(f). Then X is D-doubling with D ≤
D(f)n32n.

Proof. Assume that f is normalized so that

d(x, y) ≤ |f(x)− f(y)| ≤ D(f)d(x, y)

for all x, y ∈ X.
Let B(x,R) ⊂ X be any ball. Consider the image

f(B(x,R)) ⊂ B(f(x), D(f)R).

Cover B(f(x), D(f)R) by the smallest number of balls of radius R/4, B(yi, R/8), i ∈ I. We
have |I| ≤ D(f)n32n. Let J ⊂ I be the set of i ∈ I so that B(yi, R/8) ∩ f(B(x,R)) ̸= ∅.
For each j ∈ J choose zj ∈ B(yj, R/8) ∩ f(B(x,R)). Since zj ∈ f(B(x,R)), there exists an
xj ∈ B(x,R) so that f(xj) = zj.

Now, we have
f−1(B(zj, R/4)) ⊂ B(xj, R/2).

Indeed, if d(y, xj) ≥ R/2, then d(f(y), d(xj)) > R/2, and thus

d(f(y), f(zj)) > d(f(y), d(xj))− d(f(z − j), d(xj)) ≥
R

4
.

Since
f(B(x,R)) ⊂ B(f(x), D(f)R) ⊂

⋃
i∈I

B(yi, R/8) ⊂
⋃
i∈I

B(zi, R/4),

we get

B(x,R) ⊂
⋃
i∈J

f−1(B(zi, R/4)) ⊂
⋃
i∈J

B(xj, R/2).

Since |J | ≤ |I| ≤ D(f)n32n we obtain the desired doubling bound.



4.3 Embedding result

Theorem 4.9. If X is metric D doubling and diam(X) < 1, then (X, dϵ) biLipschitz embeds
to ℓ2 for all ϵ ∈ (0, 1).

Remark 4.10. We shall see that Assouad embedding is a sharp statement. Indeed, we
will construct a sequence of metric spaces Xn which are all D-doubling, but for which
c2(Xn) → ∞.

Question 4.11. A very famous open problem of Lang and Plaut asks the following. If
X is metric doubling, and if c2(X) < ∞, then does there exist a dimension N so that X
biLipschitz embededs into ℓN2 and N is controlled by the doubling constant D.

Proof of Theorem 4.9. We shall construct mappings fk : X → Rn which satisfy the following,
for some constants δ, C.

1. If d(x, y) ∈ [2−k−1, 2k], then |fk(x)− fk(y)| ≥ δd(x, y).

2. supx∈X |fk(x)| ≤ C2−k.

3. The mapping fk is C-Lipschitz.

These will be constructed in Lemma 4.19 after the proof.
If we succeed, then the Theorem is shown with the embedding

F (x) = (f0, 2
(1−ϵ)f1, 2

2(1−ϵ)f2, 2
3(1−ϵ)f3, . . . ).

The upper Lipschitz bound is computed exactly the same as before in our example:

|F (x)− F (y)| =

√√√√ ∞∑
i=0

(2(1−ϵ)i|fi(x)− fi(x)|)2

=

√√√√ k∑
i=0

(2(1−ϵ)i|fi(x)− fi(x)|)2 +
∞∑

i=k+1

(2(1−ϵ)i|fi(x)− fi(x)|)2

≤

√√√√C2

k∑
i=0

22(1−ϵ)i|x− y|2 +
∞∑

i=k+1

C22−2iϵ

≤ C

√
2

22(1−ϵ) − 1
22(k+1)(1−ϵ)|x− y|2 + 24

1− 2−ϵ
2−2(k+1)ϵ

≲ 2−kϵ ≲ |x− y|ϵ.

The lower bound follows also quite directly. If x, y ∈ X, we have d(x, y) ∈ [2−k−1, 2−k]
for some k ∈ N and

|F (x)− F (y)| ≥ 2k(1−ϵ)|fk(x)− fk(y)| ≥ δ2−kϵ ∼ δd(x, y)ϵ.



The mapping F : X → ℓ2 is a biLipschitz embedding of the snowflaked metric space
(X, dϵ). In the original metric, it is a biHölder embedding. We say that F is ϵ-Hölder, if
there is a constant C > 0 for which

|F (x)− F (y)| ≤ Cd(x, y)ϵ.

We say We say that F is ϵ-biHölder, if there exist constants, 0 < b < C for which

bd(x, y)ϵ ≤ |F (x)− F (y)| ≤ Cd(x, y)ϵ.

Remark 4.12. We constructed an embedding with infinitely many coordinates. It is only
a bit more technical to construct an embedding to a finite dimensional space RN . This can
be obtained as follows. Choose k0 ∈ N and define

G(x) = (f0 + 2(1−ϵ)k0fk0 · · · , f1 + 2(1−ϵ)(k0+1)fk0+1, · · · , fk0−1 + 2(1−ϵ)(2k0−1)fk0+k0−1)

= (
∞∑
i=0

2(1−ϵ)(0+k0i)f0+ik0 ,
∞∑
i=0

2(1−ϵ)(1+k0i)f1+ik0 ,

∞∑
i=0

2(1−ϵ)(2+k0i)f2+ik0 , · · · ,
∞∑
i=0

2(1−ϵ)(k0−1+k0i)fk0−1+ik0).

Here, the idea is to “recycle” coordinates. That is, instead of bringing a new coordinate for
every fk, we cycle through coordinates with a period of k0. This gives a mapping to RNk0 .
The upper Lipschitz bound is proven in the same way as before. The lower Lipschitz bound
is where things are a bit more technical. Indeed, for every x, y ∈ X, you choose k so that
d(x, y) ∈ [2−k−1, 2k], and then let m = 0, . . . , k0 = −1, n ∈ N be such that k = m+ nk0. We



then get

|G(x)−G(y)| ≥

∣∣∣∣∣
∞∑
i=0

2(1−ϵ)(m+k0i)fm+ik0(x)− fm+ik0(y)

∣∣∣∣∣
≥

∣∣∣∣∣2(1−ϵ)k(fk(x)− fk(y)) +
n−1∑
i=0

2(1−ϵ)(m+k0i)fm+ik0(x)− fm+ik0(y)

+
∞∑

i=n+1

2(1−ϵ)(m+k0i)fm+ik0(x)− fm+ik0(y)

∣∣∣∣∣
≥ |2(1−ϵ)k(fk(x)− fk(y))| −

n−1∑
i=0

2(1−ϵ)(m+k0i)|fm+ik0(x)− fm+ik0(y)|

−
∞∑

i=n+1

2(1−ϵ)(m+k0i)|fm+ik0(x)− fm+ik0(y)|

≥ δ

2
d(x, y)ϵ − C

n−1∑
i=0

2(1−ϵ)(m+k0i)2−k − C
∞∑

i=n+1

2(1−ϵ)(m+k0i)2−(m+k0i)

≥ δ

2
d(x, y)ϵ − C

21−ϵ − 1
2(1−ϵ)(k−k0+1)2−k − C

1− 2−ϵ
2−ϵ(k+k0)

≥ δ

2
d(x, y)ϵ −

(
C2−k0(1−ϵ)−2+ϵ

21−ϵ − 1
+

C2−ϵk0−1

1− 2−ϵ

)
d(x, y)ϵ.

By choosing k0 so that the factor of the second term is less than δ/4, we get the desired
lower bound.

We construct the mappings Fk in the next subsection.

Problem 4.13. The proof we gave, if done carefully, yields that for all ϵ ∈ (1/2, 1) we have
that

c2(X, dϵ) = O(ϵ−
1
2 ).

This embedding may need infinitely many coordinates.
There is an open problem to determine if there is a constant M , which is independent of

ϵ, and only depends on the doubling constant, so that X can be embedded already in RM

with distortion comparable to O(ϵ−
1
2 ).

It is known, that one can do O(ϵ−(1+δ)) for any δ > 0. Also, recently Terence Tao showed
that for one of the most difficult examples, the Heisenberg group, the conjecture is correct.
See the following for some interesting work.

1. Tao’s paper on “Embedding the Heisenberg group into a bounded dimensional Eu-
clidean space with optimal distortion”: https://arxiv.org/abs/1811.09223

2. Seung-Yeon Roo’s follow up “Embedding snowflakes of Carnot groups into bounded di-
mensional Euclidean spaces with optimal distortion”: https://arxiv.org/abs/2004.
07441

https://arxiv.org/abs/1811.09223
https://arxiv.org/abs/2004.07441
https://arxiv.org/abs/2004.07441


3. Naor and Neiman “Assouad’s embedding theorem with dimension independent of the
snowflaking”: https://web.math.princeton.edu/~naor/homepage%20files/assouad-N(K)
.pdf

4. Deterministic version of the previous theorem by Guy David and Marie Snipes: A
constructive proof of the Assouad embedding theorem with bounds on the dimension
https://hal.science/hal-00751548/document

It had been considered by Naor and Neiman that this problem could be used to disprove the
Lang-Plaut problem. However, presently this seems (to the lecturer) a bit unlikely to work.
Indeed, Seung-Yeon Roo poses the previous problem in her paper as a conjecture.

4.4 Hierarchical decomposition and mappings Fk

We want to describe a space by behaviors at different scales. This is achieved by using the
notion of an ϵ-net.

Definition 4.14. A set N is ϵ separated if for all x, y ∈ N we have d(x, y) ≤ ϵ.
An ϵ-net Nϵ is a maximal ϵ separated set.

Problem 4.15. If X is N -metric doubling, and if S is a 2−kr separated set in B(x, r), then
|S| ≤ Nk+1. Hint: cover B(x, r) by balls of radius 2−k−1r. Each such ball can contain at
most one point of S – Why?

A maximal set is one that can not be made any bigger.

Lemma 4.16. If Nϵ is an ϵ-net, then

X ⊂
⋃
n∈Nϵ

B(n, ϵ).

Proof. If X \
⋃

n∈Nϵ
B(n, ϵ) ̸= ∅, then choose x ∈ X \

⋃
n∈Nϵ

B(n, ϵ).. We have d(x, n) ≥ ϵ
for all n ∈ Nϵ, and thus N ∪{x} is a larger ϵ separated set. This contradicts the maximality
of Nϵ.

An ϵ-net can be found by appealing to the so called Zorn’s lemma. However, there is
also an algorithmic way. If X is compact, we can find Nϵ by adding points repeatedly to an
ϵ separated set, until the condition in the previous Lemma is satisfied.

Now, if diam(X) ≤ 1, then we can construct, recursively, a sequence of ϵ-nets for ϵ = 2−k.
First, we construct N0 a 1-net for X, and then N1 ⊃ N0, which is a 2−1 net, and recursively,
Nk which is a 2−k net. By doing the procedure recursively, we get the nested relationship:

N0 ⊂ N1 ⊂ N2 · · · .

Further, we have a sequence of covers of X by balls

X ⊂
⋃

n∈Nk

B(n, 2−k).

https://web.math.princeton.edu/~naor/homepage%20files/assouad-N(K).pdf
https://web.math.princeton.edu/~naor/homepage%20files/assouad-N(K).pdf
https://hal.science/hal-00751548/document


We think of these coverings as a hierarchical decomposition of X at the scales 2−k. This
is slightly inaccurate, since the pieces of our decomposition, the balls B(n, 2−k) overlap each
other.

Our idea next is to define fk as a distance embedding, but this requires first doing some
grouping. We will divide Nk into finitely many sets that are well separated.

Lemma 4.17. There is a constant M so that we can divide

Nk = N1
k ∪N2

k · · · ∪NM
k

where each N i
k is 25−k separated.

Proof. Let G be a graph which is constructed as follows. Its vertices are Nk and it has an
edge {n,m} ∈ E if and only if d(n,m) < 162−k.

An M -coloring of G is a mapping χ : V → {1, . . . ,M}, so that no edge {n,m} ∈ E is
monochromatic, i.e. χ(n) ̸= χ(m). If we have such a coloring, we set

N i
k = {n ∈ Nk : χ(n) = i}.

In general, it is hard to decide if an M -coloring exists for a graph G. (For example, it
was a long-standing open problem to decide if all planar graphs were 4-colorable. This was
only shown by Appel and Hanken with a computer assisted proof.) However, a simple bound
exists, which uses the degree of the graph.

The degree of a graph G is the largest number of edges that meet at a vertex, that is

max
n∈V

|{m ∈ V : {n,m} ∈ E}|.

The graph G that we constructed has degree at most N6, where N is the doubling constant
from Definition 4.5. Indeed, by Problem 4.15 we have that any 2−k -separated set within
B(n, 25−k) can have at most N6 many elements. Thus

|{m ∈ V : {n,m} ∈ E}| = |{m ∈ Nk : m ∈ B(n, 25−k}| ≤ N6.

Now, choose M = N5 + 1. Thus, G has degree at most M . We claim that G is
M−colorable. This can be achieved with the following iterative algorithm, where we simply
assign an available color to each added vertex.

1. List elements of V in any order.

2. While there are uncolored vertices, take the next vertex V in our list.

3. Choose χ(v) to be a color distinct from all of its neighbors whose color has already
been assigned.

4. Repeat until all vertices colored.



The choice of χ(v) is possible since every v has at most M − 1 neighbors. Thus, these
have at most M − 1 distinct colors. There is thus at least one color always left for the added
vertex.

Problem 4.18. Show that the algorithm in the previous proof is not optimal. That is, find
some graph G with say degree M , but which can be colored by 2 colors. (Or, just less than
M + 1 colors.)

Using these, we can construct the local embeddings looking for.

Lemma 4.19. If X is doubling and diam(X) ≤ 1, then for every k ∈ N there exist mappings
fk : X → Rn which satisfy the following, for some constants δ, C.

1. If d(x, y) ∈ [2−k−1, 2k], then |fk(x)− fk(y)| ≥ δd(x, y).

2. supx∈X |fk(x)| ≤ C2−k.

3. The mapping fk is C-Lipschitz.

Proof. Let Nk+3 be the 2−k−3 net, and let

Nk+1 =
M⋃
i=1

N i
k+3

be the decomposition from Lemma 4.17. Let

fk(x) = (min(d(x,N1
k+3), 2

−k),min(d(x,N2
k+3), 2

−k), · · · ,min(d(x,NM
k+3), 2

−k).

Then, fk is
√
M -Lipschitz, and supx∈X |fk(x)| ≤

√
M2−k. We are left to show the first

property of the Lemma.
Let x, y ∈ X with d(x, y) ∈ [2−k−1, 2k]. Choose nx ∈ Nk+3 with d(nk, x) < 2−k−3. We

have nx ∈ N i
k+3 for some i. We also get

d(y, nx) ≥ d(y, x)− d(x, nx) ≥ 2−k−1 − 2−k−3 ≥ 2−k−2,

d(y, nx) ≤ d(y, x) + d(x, nx) ≤ 2−k + 2−k−3 ≤ 21−k,

We now show that nx is the closest point in N i
k+3 to both x and y. For everym ∈ N i

k+2, we
have d(nx,m) ≥ 252−k−3 = 22−k. We get the following estimates from the triangle inequality:

d(m,x) ≥ d(m,nx)− d(nx, x) ≥ 22−k − 2−k−3 ≥ d(nx, x),

and
d(m, y) ≥ d(m,nx)− d(nx, y) ≥ 22−k − 21−k ≥ 21−k ≥ d(y, nx).

These imply that d(x,N i
k+2) = d(x, nx) and d(y,N i

k+2) = d(y, nx). Thus,

|fk(x)− fk(y)| ≥ |d(x,N i
k+2)− d(y,N i

k+2)|
= |d(y, nx)− d(x, nx)|
≥ d(y, nk)− d(x, nk)

≥ 2−k−2 − 2−k−3 ≥ 2−2d(x, y).



4.5 Assouad dimension

Related to the previous discussion there is the notion of Assouad dimension.

Definition 4.20. A metric space (X, d) is said to have Assouad dimension at most α if
there exists a constant C so that for all R > r > 0 every ball B(x,R) can be covered by at
most CRαr−α balls of radius r. That is, there exist x1, . . . , xN ∈ X, with N ≤ CRαr−α for
which

B(x,R) ⊂
N⋃
i=1

B(xi, r).

The infimum of such α is called the Assouad dimension of X, and is denoted dimA(X).

Problem 4.21. Show that Rd has Assouad dimension d. Hint: Use the volume argument
from Lemma 4.2. Also, choose S to be a maximal set in B(x,R) where each pair of points
in S has distance at least r. Then B(x,R) ⊂

⋃N
i=1 B(xi, r), since otherwise one could add

another point.

Doubling and Assouad dimension are some of the simplest ways of measuring dimension.

5 Why? - Lecture 3

We have seen now some answers to what metric embeddings are, and seen some examples of
how to construct them. What remains is to understand why we would care. Besides a deep
connection between the geometry of the metric space and the embeddability of the space,
there are many algorithmic questions, which embeddings help to answer. An important role
is played by embeddings into ℓ1.

5.1 Problem of interest

We consider a graph G = (V,E). A set S ⊂ V is called a cut, since it is thought of as cutting
the points inside S from the points outside of it. Let ∂S ⊂ E be the set of edges connecting
S to its complement: ∂S = {{x, y} ∈ E : x ∈ S, y ̸∈ S}. We consider the sparsest cut
problem:

min{ |∂S|
min{|S|, |V \ S|}

: S ⊂ V }.

This problem is NP complete to solve. However, we can see the problem as an optimiza-
tion problem on semi-metrics. Let X be a set, and let S ⊂ X be any set. A cut semi-metric
is given by

dS(x, y) = |1S(x)− 1S(y)|.

This is called a semi-metric, since it satisfies all properties of the distance function except
that dS(x, y) = 0 whenever x, y lie on the same side of the cut.



When X is finite, the collection of all subsets E of X will be called Cut (X) and is
thought of as the space of cuts of X. Now, we can express the sparsest cut problem by
observing the following two facts. First

|∂S| =
∑

{x,y}∈E

dS(x, y)

and second, since either |S| ≥ n/2 or |V \ S| ≥ n/2, we get

|S||V \ S|
|V |

≤ min(|S|, |V \ S|) ≤ 2|S||V \ S|
|V |

.

We also have
|S||V \ S| =

∑
x,y∈V

dS(x, y).

This latter expression is much easier to work with, and gives a constant approximation for
the minimum of the sparsest cut problem. We thus focus on it next.

Now, the problem has been reduced to the following problem:

min{
∑

{x,y}∈E dS(x, y)∑
x,y∈V dS(x, y)

: S ⊂ V }.

This problem is a difficult integer linear optimization problem.
An equivalent way to write this as a linear program is introducing a parameter λ > 0

and writing this as

inf
∑

{x,y}∈E

λdS(x, y)

subject to ∑
x,y∈V

λdS(x, y) ≤ 1.

A linear relaxation is obtained by replacing λdS(x, y) by any (semi-)metric d(x, y):

inf
∑

{x,y}∈E

d(x, y)

subject to ∑
x,y∈V

d(x, y) = 1,

d(x, y) ≥ 0, d(x, z) ≤ d(x, y) + d(y, z).

Let D(X) be the space of metrics on X. Since any semimetric can be approximated by
a metric, we will not belabour this small difference between semi and true metrics. The
relaxed problem gives the same optimum when optimized over either spaces.

We have thus relaxed to the linear optimization problem on the convex cone D(X), which
is defined by a polynomial number of linear constraints. Our question is.



Question 5.1. How much do we lose in this approximation.

Further, as we will see, we may consider the problem for any subset of semimetrics
D′(X) ⊂ D(X), as long as D′(X) includes all cut semi-metrics. We shall consider three
classes of metrics:

1. ℓ1-metrics D1(X), for which the relaxed problem has the same optimum as the non-
relaxed problem. This will be Theorem 5.8.

2. All metrics D(X). We get a log(n) approximation via Bourgain’s embedding theorem.
This will be Theorem 5.10.

3. Briefly we will consider metrics of negative type D1/2(X). This will yield a (log(n))1+δ-
approximation for any δ > 0. This will be Theorem 5.14.

While the relaxation to D1(X) preserves the optimal value, the relaxations into D(X) and
D1/2(X) lose something. How much do they lose? Since D1(X) metrics can be described by
embeddings, the loss will be seen to be precisely the distortion of an embedding.

Why would we accept this loss? The optimization over D1(X) is infeasible – indeed NP
complete. However, the optimization over the cones D(X) and D1/2(X) is feasible. In the
first case it can be done with linear programming, and in the second case it can be done
with so called semi-definite programming. For this reason, these are also called the linear-
and semi-definite relaxations of the sparsest cut problems.

5.2 Cut metrics and ℓ1

The first class D1(X) of ℓ1 metrics, which we shall define next. While a cut metric dE is not
a distance, certain metrics, namely ℓ1 metrics, can be expressed as linear combinations of
such metrics.

Definition 5.2. A metric d on a set X is called an ℓm1 -metric, if there exists an isometry
f : X → ℓm1 so that d(x, y) = ∥f(x)− f(y)∥.

The collection of ℓ1-metrics on X is denoted D1(X).

If a < b, then we can write

|a− b| =
∫
R
|1At(a)− 1At(b)|dt,

where At = {y : y > t}, and 1At(x) is the characteristic function of At, that is 1At(x) =
1 if x ∈ At and 0 otherwise. This “trivial” observation underlies the following cut-cone
decomposition.

Lemma 5.3. If d is an ℓm1 -metric on a finite set X, then there exists an isometry g : X →
ℓ2

|X|
1 , and we can write

d(x, y) =
∑

E∈ Cut (X)

cEdE(x, y).



Proof. Let f : X → ℓm1 be the isometry given by the definition. For each (i, t), with
i = 1, . . . ,m and t ∈ R, let

E(i,t) = {x ∈ X : f(x)i > t}.
These are cuts in X. Now, let

cE =
m∑
i=1

|{t ∈ R : E(i,t) = E}|.

Let At = {z ∈ R : z > t}. By the observation stated before the lemma, we get

∥f(x)− f(y)∥ =
m∑
i=1

|f(x)i − f(y)i|

=
m∑
i=1

∫
R
|1At(f(x)i)− 1At(f(y)i)|dt.

Now, 1At(f(x)i) = 1E(i,t)
(x), and thus we get

∥f(x)− f(y)∥ =
m∑
i=1

∫
R
|1E(i,t)

(x)− 1E(i,t)
(y)|dt.

Now, E(i,t) is always some element in the (finite) collection of cuts Cut (X). The integral
in R can be split into pieces where E(i,t) = E for any E ∈ Cut (X). The measure of the set
of t where the cut E is used is given by |{t ∈ R : E(i,t) = E}|. Using this, we get

∥f(x)− f(y)∥ =
m∑
i=1

∫
R
|1E(i,t)

(x)− 1E(i,t)
(y)|dt

=
m∑
i=1

∑
E∈ Cut (X)

|{t ∈ R : E(i,t) = E}||1E(x)− 1E(y)|

=
∑

E∈ Cut (X)

cE|1E(x)− 1E(y)|.

Next, let g : X → ℓ1(2
|X|) be constructed as follows. We index the coordinates of R2|X|

by the cuts E ∈ Cut (X), and we set

g(x)E = cE1E(x).

Then, for all x, y ∈ X,

∥g(x)− g(y)∥ =
∑

E∈ Cut (X)

cE|1E(x)− 1E(y)| = d(x, y).



The same proof works if X embeds into L1(Ω) for some probability space (Ω,Σ,¶).

Lemma 5.4. If (X, d) be a finite set which embeds isometrically to L1(Ω), then there exists

an isometry g : X → ℓ2
|X|

1 , and we can write

d(x, y) =
∑

E∈ Cut (X)

cEdE(x, y).

Proof. Let f : X → L1(Ω) be the isometry given by the definition. For each (ω, t), ω ∈ Ω,
with ω ∈ Sn−1 and t ∈ R, let

E(ω,t) = {x ∈ X : f [x](ω) > t}.

These are cuts in X. Now, let

cE =

∫
|{t ∈ R : E(ω,t) = E}|dPω

Let At = {z ∈ R : z > t}. By the observation stated before the lemma, we get

∥f(x)− f(y)∥ =

∫
|f [x](ω)− f [y](ω)|dPω

=

∫ ∫
R
|1At(f [x](ω))− 1At(f [y](ω)|dtdPω.

Now, 1At(f [x](ω)) = 1E(ω,t)
(x), and thus we get

∥f(x)− f(y)∥ =

∫ ∫
R
|1E(ω,t)

(x)− 1E(ω,t)
(y)|dtdPω

Now, E(ω,t) is always some element in the (finite) collection of cuts Cut (X). The integral
in R can be split into pieces where E(ω,t) = E for any E ∈ Cut (X). The measure of the set
of t where the cut E is used is given by |{t ∈ R : E(ω,t) = E}|. Using this, we get

∥f(x)− f(y)∥ =

∫ ∫
R
|1E(ω,t)

(x)− 1E(ω,t)
(y)|dtdPω∫ ∑

E∈ Cut (X)

|{t ∈ R : E(ω,t) = E}||1E(x)− 1E(y)|d¶ω

=
∑

E∈ Cut (X)

cE|1E(x)− 1E(y)|.

The rest of the proof is identical.

Corollary 5.5. If (X, d) is an isometric subset of ℓn2 , then d is an ℓ1 metric.



Proof. Consider m i.i.d. normal random variables Xi, i = 1, . . . ,m with distribution N(0, 1).
Let Ω be the probability space of Xi (which can be taken as Rm), and let P be the corre-
sponding probability measure. Now, we map

F : ℓn2 → L1(Ω)

with

F (v1, . . . , vn) =
1√
2π

n∑
i=1

viXi.

We have

∥F (v1, . . . , vn)∥L1 =
1√
2π

∫
∥

n∑
i=1

Xi∥dP =
1√
2π

E(|
n∑

i=1

Xi|).

We have that
∑n

i=1Xi is a normal random variable with mean 0 and variance
∑n

i=1 v
2
i . Thus,

the standard deviation of it is
√∑n

i=1 v
2
i . The expectation of the absolute value of such a

random variable is
√
2π times the standard deviation. Thus

∥F (v1, . . . , vn)∥L1 =
1√
2π

E(|
n∑

i=1

Xi|) =

√√√√ n∑
i=1

v2i .

Thus, F is an isometry of ℓm2 to L1(Ω). Consequently, X is also isometric to a subset of
L1(Ω).

Remark 5.6. In the previous lemma, we can also take n → ∞ and embed ℓ2 to L1(Ω). This
involves the Kolmogorov three series theorem. Indeed, if v = (v1, v2, . . . , ) ∈ ℓ2, then

lim
n→∞

n∑
i=1

viXi =
∞∑
i=1

viXi

converges almost surely to a Gaussian normal variable with mean 0 and variance
∑∞

i=1 v
2
i .

The rest of the proof is identical.
This implies that

c1(X) ≤ c2(X),

since whenever X embeds into ℓ2 with distortion D, then we can compose this with the
previous isometry to obtain an embedding in ℓ1 with distortion D.

Next, we need a simple inequality for real numbers.

Lemma 5.7. Let a1, . . . , an > 0 and b1, . . . , bn > 0. Then∑n
i=1 ai∑n
i=1 bi

≥ min
i=1

ai
bi
.



Proof. Let i0 be such that
ai0
bi0

= min
i=1

ai
bi
.

Then for all i = 1, . . . , n we have

ai0
bi0

bi ≤
ai
bi
bi ≤ ai.

Summing these estimates over i, we get

(
n∑

i=1

bi)min
i=1

ai
bi

≤
n∑

i=1

ai.

From these the claim follows.

Recall that D1(X) is the space of ℓ1-metrics on X.

Theorem 5.8. The following two optimization problems have the same minimum:

inf
∑

{x,y}∈E

λdS(x, y)

subject to ∑
x,y∈V

λdS(x, y) = 1,

and
inf

∑
{x,y}∈E

d(x, y)

subject to d ∈ D1(X) ∑
x,y∈V

d(x, y) = 1,

Proof. Let M Cut (X),Mℓ1 be the minima of the first and second problems.
For every λ > 0 and any S ∈ Cut (X), we have λdS ∈ D1(X). Thus

Mℓ1 ≤ M Cut (X).

Now, let d ∈ D1(X) be such that
∑

x,y∈V d(x, y) = 1. Choose the metric d so that∑
{x,y}∈E

dS(x, y) = Mℓ1 .

(This minimization problem has a true minimum by an argument using compactness. How-
ever, if you don’t like that, you can always add an ϵ > 0 to the right hand side.)



Then, by Lemma 5.3, there are numbers cS for S ∈ Cut (X), for which

d(x, y) =
∑

S∈ Cut (X)

cSdS(x, y).

Let λS =
∑

x,y∈V cSdS(x, y). We have∑
S∈ Cut (S)

λS = 1.

Thus,

Mℓ1 =
∑

{x,y}∈E

d(x, y) =

∑
S∈ Cut (S)

∑
{x,y}∈E cSdS(x, y)∑

S∈ Cut (S) λS

.

Let now aS =
∑

{x,y}∈E cSdS(x, y) and bS = λS. By Lemma 5.7, we have some S ∈ Cut (S)
for which ∑

{x,y}∈E cSdS(x, y)

λS

≤ Mℓ1 .

Now, let λ = cSλ
−1
S . Then, we get ∑

x,y∈V

λdS(x, y) = 1,

and ∑
{x,y}∈E

λdS(x, y) =

∑
{x,y}∈E cSdS(x, y)∑

S∈ Cut (S) λS

≤ Mℓ1 .

Thus, we found a cut which we can plug into the first optimization problem. Thus, we get

M Cut (X) ≤ Mℓ1 .

5.3 General metrics

Theorem 5.9. Let Ds be some cone of metrics on X, so that

D1(X) ⊂ Ds(X).

Then, let M Cut (X) be the optimum of the sparsest cut problem in Theorem 5.8, and let
MDs be the optimum of the following problem

inf
∑

{x,y}∈E

d(x, y)



subject to d ∈ Ds ∑
x,y∈V

d(x, y) = 1,

Then, we have for
Ds = sup

d∈Ds

c1(X, d)

that
MDs ≤ M Cut (X) ≤ DsM Cut (X).

Proof. First, since D1(X) ⊂ Ds, we get from Theorem 5.8 that M Cut (X) = Mℓ1 ≥ MDs .
Next, suppose that d ∈ Ds is the metric for which

MDs = inf
∑

{x,y}∈E

d(x, y)

and ∑
x,y∈V

d(x, y) = 1.

Now, by the definition of the distortion, each metric d ∈ Ds admits an f : X → ℓ1 for
which

d(x, y) ≤ ∥f(x)− f(y)∥ ≤ Dsd(x, y).

Let df (x, y) = ∥f(x)− f(y)∥. This is an ℓ1-metric. And∑
{x,y}∈E

df (x, y) ≤
∑

{x,y}∈E

Dsd(x, y) = MD∫ .

with ∑
x,y∈V

df (x, y) ≥
∑
x,y∈V

d(x, y) = 1,

Let λ =
∑

x,y∈V df (x, y) ≥ 1. Then dnew = λ−1df is still a ℓ1-metric, for which∑
{x,y}∈E

dnew(x, y) ≤ DsMD∫ .

with ∑
x,y∈V

dnew(x, y) = 1.

Thus,

Mℓ1 ≤
∑

{x,y}∈E

dnew(x, y) ≤ MD∫ ,

as desired, since Mℓ1 is the optimum for the ℓ1-metric problem.

Now, using this we get the following.



Theorem 5.10. Let D(X) be the class of all metrics and let MD(X) be the solution of the
relaxed problem

inf
∑

{x,y}∈E

d(x, y)

subject to d ∈ D(X) ∑
x,y∈V

d(x, y) = 1.

Then
MD(X) ≤ M Cut (X) ≤ O(log(|X|)MD(X).

Proof. This follows from Theorem 5.9 together with Bourgain, which states that if d ∈
D(X), then (X, d) embeds with distortion O(log(|X|)) into ℓm1 for some m. This means,
supd∈D(X) c1(X, d) ≤ O(log(|X|)), and the claim follows.

The main simplicity here is that D(X) is actually a convex cone defined by the following
linear constraints:

d(x, y) ≥ 0, d(x, z) ≤ d(x, y) + d(y, z).

(This defines the cone of semi-metrics, but as stated earlier, this does not alter the minima.)

5.4 Goemans-Linial relaxation

While D(X) is convenient, a slightly more complicated class of metrics can be considered.

Definition 5.11. A metric (X, d) is said to be of negative type, if (X,
√
d) embeds isomet-

rically to ℓ2. The collection of metrics of negative type are denoted D1/2(X).

In other words, d is a metric of negative type, if

d(x, y) = ∥f(x)− f(y)∥2

for some map f : X → ℓn2 . Given such a mapping f , we can write our previous optimization
problem as

inf
∑

{x,y}∈E

∥f(x)− f(y)∥2

subject to d ∈ Ds ∑
x,y∈V

∥f(x)− f(y)∥2 = 1.

This problem is tractable since it is expressed as a so called semidefinite programming prob-
lem. Explaining this in detail would take us too far on a side track. However, what suffices for
our present purposes is to note that semidefinite programming problems are a subset of con-
vex optimization problems which contains all linear problems. Further, they can be solved
quite efficiently computationally. In fact, theoretically, they can be solved in polynomial
time.

To apply Theorem 5.9 to these metrics, we need two facts.



Lemma 5.12. D1(X) ⊂ D1/2(X).

Proof. By the cut-cone decomposition, Lemma 5.3, we have that all metrics d ∈ D1(X) can
be expressed as

d(x, y) =
∑

S∈ Cut (X)

cSdS(x, y).

Now, if S ∈ Cut (X), then we set fS(x) =
√
cS if x ∈ S and fS(x) = 0 if x ̸∈ X. Then,

cSdS(x, y) = |fS(x)− fS(y)|2.

Next, let F (x) be a mapping to R Cut (X), where F (x)S = fS(x).
1 Then

d(x, y) =
∑

S∈ Cut (X)

cSdS(x, y)

=
∑

S∈ Cut (X)

|fS(x)− fS(y)|2

=

√ ∑
S∈ Cut (X)

|fS(x)− fS(y)|2
2

= ∥F (x)− F (y)∥2.

Thus, d ∈ D(X).

We also need an embedding result for negative type metrics. This is much more re-
cent than Bourgain, and quite involved. We do not have the chance to cover it here,
but see Arora, Lee and Naor’s paper, https://www.ams.org/journals/jams/2008-21-01/
S0894-0347-07-00573-5/S0894-0347-07-00573-5.pdf, for a proof. The proof uses a dis-
tance embedding, but the proof, analysis and argument are more delicate.

Theorem 5.13. If (X, d) is a metric space with d a metric of negative type, then

c1(X, d) ≤ c2(X, d) ≤ O(
√

log(|X|) log(log(|X|))).

In fact, by a seminal result of Cheeger, Kleiner and Naor2, which was later sharpened by
Naor and Young3, that c1(X, d) ≥ O(

√
log(|X|) for some metric spaces X. This shows that

the bound given above is essentially optimal. This involved a lot of heavy geometric measure
theory, and the study of Carnot groups. It was one of the big reasons that Analysis on Metric
spaces, Subriemannian geometry and embedding problems got increasing attention in the
past decade. It was also a beautiful example of how pure math and geometry met a problem
in thoeretical computer science.

1Here R Cut (X) denotes the Euclidean space of dimension | Cut (X)|, where the components are identified
with S ∈ Cut (X). The components of x ∈ R Cut (X) is denoted xS , for S ∈ Cut (X). Note that in general,
AB is the collection of all functions f : B → A, and this convention here corresponds to this usage.

2See https://arxiv.org/abs/0910.2026.
3See https://arxiv.org/abs/1701.00620.

https://www.ams.org/journals/jams/2008-21-01/S0894-0347-07-00573-5/S0894-0347-07-00573-5.pdf
https://www.ams.org/journals/jams/2008-21-01/S0894-0347-07-00573-5/S0894-0347-07-00573-5.pdf
https://arxiv.org/abs/0910.2026
https://arxiv.org/abs/1701.00620


Theorem 5.14. Let D1/2(X) be the class of all metrics of negative type and let MD1/2(X) be
the solution of the relaxed problem

inf
∑

{x,y}∈E

d(x, y)

subject to d ∈ D1/2(X) ∑
x,y∈V

d(x, y) = 1.

Then
MD1/2(X) ≤ M Cut (X) ≤ O(

√
log(|X|) log log(|X|)MD1/2(X).

Proof. This follows from Theorem 5.9 together with Theorem 5.13, which states that if
d ∈ D1/2(X), then (X, d) embeds with distortion O(

√
log(|X|) log log(|X|)) into ℓm1 for some

m. This means, supd∈D1/2(X) c1(X, d) ≤ O(
√
log(|X|) log log(|X|)), and the claim follows.

These results answered negatively and fully (or, at least up to a log log) factor the
Goemans-Linial conjecture from theoretical computer science. This conjectured that the
ratio of MD1/2(X) and M Cut (X) could be taken to be O(1).

6 Important examples

We will end, with as much time as is permitted, with analysing a few specific graphs of par-
ticular interest. These often serve as examples or counter examples for embedding problems.

6.1 Laakso diamond graph

A great reference for the topics of this subsection is the paper by Lang and Plaut, “Bilipschitz
Embeddings of Metric Spaces into Space Forms”4.

Let G0 = (V0, E0) be the graph with two vertices V0 = {0, 1} and one edge E0. We
construct a new graph G1 = (V1, E0) from this, with vertices by adding four vertices for each
edge in G0:

V1 = V0 ∪ {e1, e2, e3, e4 : e ∈ E0}

Then, we set,

E1 = {{x, e1}, {e1, e2}, {e1, e3}, {e3, e4}, {e3, e4}, {e4, y} : e = {x, y} ∈ E0}.

We can repeat this process:

Vn = Vn−1 ∪ {e1, e2, e3, e4 : e ∈ En−1}
4See https://link.springer.com/article/10.1023/A:1012093209450.

https://link.springer.com/article/10.1023/A:1012093209450


Then, we set, Ie = {x, e1}, {e1, e2}, {e1, e3}, {e3, e4}, {e3, e4}, {e4, y} and

En =
⋃

e∈En−1

Ie = {{x, e1}, {e1, e2}, {e1, e3}, {e3, e4}, {e3, e4}, {e4, y} : e = {x, y} ∈ En−1}.

We also define a mappings: F : Vn ∪ En → Vn−1 ∪ En−1 by sentting

F (v) = v, for v ∈ Vn−1

F (v) = e, for v = ei for some e ∈ En−1

and
F (f) = e, for f ∈ Ie for some e ∈ En−1.

Let also, F ◦ · · ·F = Fm, where we have composed F m times.
This constructs a sequence of graphs Gn. Equip Gn with the path metric d.

Theorem 6.1. There are constants δ, C,D so that for all n ∈ N the graphs Gn are all
D-doubling, and

δ
√
n ≤ c2(Gn, d) ≤ C

√
n.

Proof. First, we take care of some preliminaries. It will be useful to rescale the metrics.
Let dn = 4−nd. By induction, one shows that if v, w ∈ Vm, then for all n > m we have
dn(v, w) = dm(v, w). Further, it is clear that dm(v, w) ≥ 4−m, with equality only if v, w are
connected by a single edge in Gm. We also have that the diameter of Gn in the metric dn is
at most 1 for all n ∈ N.

Doubling bound: Let n > m ∈ N. For each e ∈ Gm, let In,m(e) ⊂ Vn be the set of
v ∈ Vn for which F n−m(v) = e or F n−m(v) ∈ e. By induction, each set In,m has diameter
equal to 4−m. Now, let v ∈ Vn and r > 0. If r ≥ 2, then B(v, r) = B(v, r/2) and we need a
single ball of half the radius to cover the ball.

Fix m ∈ N so that 24−m−1 < r ≤ 24−m. Let

I = {e ∈ Em+1 : In,m(e) ∩B(v, r) ̸= ∅}.

First, we establish a size bound for I. For each e ∈ I choose an end point of e, say ve.
Also, choose an end point v0 for F

n−m(v) (unless, F n−m(v) is already a vertex, in which case
F n−m(v) = v0). Then,

dm(v0, ve) = dn(v0, ve) ≤ 24−m + r ≤ 164−m−1.

The graphs Gn, by induction, have degree at most 3, and thus there are at most 216 possible
values of ve. Further, each ve can come from at most 3 edges. Thus

|I| ≤ 3 · 216.

Now,

B(x, r) ⊂
⋃
e∈I

In,m(e) ⊂
⋃

ve,e∈I

B(ve, 4
−m−1) ⊂

⋃
ve,e∈I

B(ve, r/2).



Embedding upper bound: Since Gn is doubling, we can use Lemma 4.19 to find
mappings f0, . . . , f2k as in that lemma. We claim that

F (x) = (f0(x), f1(x), f2(x), · · · , f2n(x))

is our desired embedding. For every x, y ∈ Vn we have d(x, y) > 2−2n−1 or that d(x, y) = 0
and x = y. Thus, if we choose k ∈ [1, 2n] so that

2−2n−1 < d(x, y) ≤ 2−2n,

then we have
|F (x)− F (y)| ≥ δ|fk(x)− fk(x)| ≥ δd(x, y).

We also have the upper bound:

|F (x)− F (y)| ≤

√√√√ 2n∑
k=0

|fk(x)− fk(y)|2

≤

√√√√ 2n∑
k=0

C2d(x, y)2

≤ C
√
2nd(x, y).

Lower bound: The lower bound uses the parallelogram inequality. The idea is to exploit
the mid-point relationship between e2, e3 for each e ∈ E.

Let fn : Vn → ℓ2 be an expanding (1, Ln) bi-Lipschitz map. Let fm = fn|Vm . We claim
that for some constant c > 0 we have

D(fn+1)
2 ≥ D(fn)

2 +
1

2
.

The metric onGn is a path metric, so the worst possible stretching always occurs on edges.
That is, for all n there always exists a pair of vertices x1, x3 ∈ Vn so that {x0, x2} ∈ En and
for which

D(fn) =
|fn(x0)− fn(x2)|

dn(x0, x3)
.

Now, let x1, x3 be the two midpoints of x0, x2 in Vn+1. We get from the Parallellogram
inequality that

∥fn+1(x1)− fn+1(x3)∥2 + ∥fn+1(x0)− fn+1(x2)∥2 ≤ ∥fn+1(x0)− fn+1(x1)∥2 + ∥fn+1(x1)− fn+1(x2)∥2

+ ∥fn+1(x2)− fn+1(x3)∥2 + ∥fn+1(x3)− f0(x0)∥2.

We get

4−2n/4 +D2
n4

−2n ≤ ∥fn+1(x1)− fn+1(x3)∥2 + ∥fn+1(x0)− fn+1(x2)∥2

≤ ∥fn+1(x0)− fn+1(x1)∥2 + ∥fn+1(x1)− fn+1(x2)∥2

+ ∥fn+1(x2)− fn+1(x3)∥2 + ∥fn+1(x3)− f0(x0)∥2

≤ 4D2
n+14

−2n−1 = D2
n+14

−2n.



Dividing both sides by 4−2n we get

D(fn+1)
2 ≥ D(fn)

2 +
1

4
.

Now, from iteraring this, we get

D(fn+1)
2 ≥ D(f0)

2 +
n

4
,

and thus D(fn+1) ≥
√

n/4.

6.2 Trees

Some good references for this section are:

1. Bourgain, The metrical interpretation of superreflexivity in banach spaces, https:

//link.springer.com/article/10.1007/BF02766125.

2. Matoušek, Jǐŕı, On embedding trees into uniformly convex Banach spaces, https:

//link.springer.com/article/10.1007/BF02785579.

3. David, Eriksson-Bique and Vellis, Bi-Lipschitz embeddings of quasiconformal trees,
https://arxiv.org/abs/2106.13007.

4. A. Gupta, R. Krauthgamer and J. R. Lee, Bounded geometries, fractals, and low-
distortion embeddings, https://ieeexplore.ieee.org/document/1238226.

Another case, where can say more about embeddability is the case of trees.

Definition 6.2. A Graph G is a tree, if it is connected and it does not contain any cycles.
Equivalently, there is a unique non-repeating edge path e1, . . . , en between x and y.

A metric space X is a geodesic tree, if for every x, y there exists a unique path γ : [0, 1] →
X which is parametrized by constant speed, and γ(0) = x, γ(1) = y.

A leaf of a tree G is a vertex v whose removal leaves the tree with one component.

In both cases, there is a unique arc, whose image is denoted [x, y]. (In the graph case, it
is helpful to think of the arc as a collection of edges and vertices.)

The principal reason trees are easier to embed is the following simple fact.

Lemma 6.3. If p ∈ V is a vertex of a tree, then removal of p, and all the edges associated
to it results in a graph Gp which is a union of finitely many disjoint trees. The number of
components is equal to the degree of p.

Proof. Let qi be the neighbors of p. Once we remove p, there is no path connecting qi to
each other. Thus, they lie in different components. On the other hand, every point t can
be connected to p with a unique path, and this must go through one of the pi. Thus, the
number of components is exactly the degree, and each pi lies in a corresponding component.
The removal of edges and points did not result in the creation of any cycles, and thus the
components are still trees (since they are also connected).

https://link.springer.com/article/10.1007/BF02766125
https://link.springer.com/article/10.1007/BF02766125
https://link.springer.com/article/10.1007/BF02785579
https://link.springer.com/article/10.1007/BF02785579
https://arxiv.org/abs/2106.13007
https://ieeexplore.ieee.org/document/1238226


This simple structure of trees means they are very amenable to divide and conquer ap-
proaches to embeddings. Much more so than general metric spaces, where dividing the space
into smaller pieces may require using complex, and usually higher dimensional, separating
sets.

A standard lemma is the following.

Lemma 6.4. If G is a tree with at most n leaves, then G can be covered by at most n2 simple
paths.

Proof. If we take the union of all arcs between two leaves we obtain all of the graph.

The significance of this is the following.

Lemma 6.5. If X is a metric space which is a union of two sets X = A∪B, and if f : X →
Rn is a Lipschitz mapping for which f |A is a biLipchitz embedding and g : X → Rm is a
Lipschitz mapping for which g|B is a biLipschitz embedding, then F : (f, g, d(A, ·)) : X → Rn

is a biLipschitz embedding of X. Here, we im

This lemma allows us to effectively embed trees by dividing into paths. I only give a
sketch of the following proof.

Theorem 6.6. If T is a doubling and geodesic tree, then it bi-Lipschitz embeds into ℓ2.

Proof. We give a simple sketch of an embedding. Let diam(G) ≤ 1 for simplicity, and let
N 1

2
be a 2−1-net in V . Let T2−1 be a unique smallest subtree which contains N2−1 . The tree

T2−1 has at most
First, there is an embedding f̃1 : T1/2 → RN which is biLipschitz, since by doubling N1/2

is finite. Next, consider G \ T2−1 , where we also remove all the edges adjacent to points in
T 2−1

. Each component is a doubling tree with fewer vertices. Extend f̃1 to be constant on
all the edges in these components, and get f1 : G → RN . Now, for each components repeat
the process, but with 2−2 replacing 2−1. This gives f2 for each subtree. But here is the
beauty: Each subtree attaches to T1/2 by a single point. By choosing these mappings so that
the f2(x) = 0 for all these points, and mapping each component (of which there are finitely
many) we can combine all the mappings f2 into a single mapping f2 : X → RNM , where
M is the number of components. This process is repeated, and we get mappings fk. The
desired mapping is

F (x) = (f1, f2, f3, f4, f5, f6, · · · ).

Now,

∥F (x)− F (y)∥ =

√√√√ ∞∑
i=1

(fi(x)− fi(y))2,

and we can analyse the differences in the sum as follows. If [x, y] is the unique arc between
[x, y], then fi(x) − fi(y) = 0 unless the arc [x, y] intersects some tree constructed at the
i’th stage. For each i, the arc can intersect at most two such trees, and we can see that



|fi(x) − fi(y)| is comparable to the length within that tree, and is bounded by O(2−i).
Summing the differences, we get that ∥F (x) − F (y)∥ ≤ O(d(x, y)). The lower bound is
obtained by finding near-by net points, and using finitely many components to see that the
majority of the arc [x, y] is covered by finitely many of the edges, and all edges are mapped
perpendicularly.

6.3 Open problem on trees

Definition 6.7. A metric tree T is one where for each x, y can be connected by a unique
compact connected set [x, y], which is homeomoprhic to [0, 1]. Denote

A metric tree is said to be bounded turning, if there is a constant C ≥ 1 for which
diam([x, y]) ≤ Cd(x, y) for all x, y ∈ T .

In our work with David and Vellis, we showed that a doubling and bounded turning tree
T biLipschitz embeds. However, the following version was left open.

Problem 6.8. Assume that T is a bounded turning tree, and K ⊂ T is a compact subset,
where K is doubling. Then does K embed biLipschitz to a Euclidean space?

If T is geodesic, then the problem is true, and it follows from a “filling algorithm”,
whereby we can find another tree Td which is doubling, geodesic and to which K embeds
biLipschitz. Similarly, one could ask the following.

Problem 6.9. Assume that T is a bounded turning tree, and K ⊂ T is a compact subset,
where K is doubling. Then does K embed biLipschitz to a bounded turning tree Td, which
is doubling.

The algorithm for this filling construction is found in the following paper: Anupam
Gupta and Kunal Talwar, Making doubling metrics geodesic, https://link.springer.

com/article/10.1007/s00453-010-9397-x. Unfortunately, the divide-and-conquer analy-
sis that they perform doesn’t seem to directly work for bounded turning trees. We made
some attempts at generalizing this algorithm, but were not able to prove that it works. I
think this is a nice problem, so feel free to contact me, if you want to work on it – or let me
know, if you solve it!

https://link.springer.com/article/10.1007/s00453-010-9397-x
https://link.springer.com/article/10.1007/s00453-010-9397-x
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