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1 Exact WKB analysis for differential equations

(Voros, Pham-Delabaere, Aoki-Kawai-T.; 1980~)
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(1 —Q@ ) v =0 o (2 —nQw)v=0

(h : Planck constant, n = Ai—! > 0 : large parameter)

Yy = exp(Ens(z)) » n~ Ty, o (x) : WKB solution

n=0

(where s(x) = / VvV Q(x) dx, ¥4 »(x) are recursively determined)



We give an analytic meaning to WKB solutions through the
Borel-Laplace method w.r.t. the large parameter 7:

Borel resummation

Y4 . B(T,y) = ’ +s(x2))*1/2 . Borel transform
a(@y) = 3 po T (@)
v, (x,n) :/ e ""YyY4 p(x,y) dy : Borel sum
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Most important is the Borel transform ¢4 g(x,vy) :

» ¢4 p(x,y) has singularities at y = £s(x) = & /w\/Q(w) dx.

(Here a is a zero of Q(x), i.e., “turning point”.)

» Singularities of the Borel transform induce Stokes phenomena.
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Thia enables us to analyze the global behavior of solutions.



2 Stokes phenomena for (alt-d P;)

(joint work with N. Joshi, 2018)
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where A\ (or A )= A
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» Appears through the Backlund transformation of

d? )\
(PII) n_2ﬁ = 2)\3 -I— t\ —|— C.

» Describes the compatibility condition of the following associated
system (L) of linear differential-difference equations.
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Transseries solution of (alt-dFP;)

A=A 4 =20 A 4 (n71/20)2 0@ 4 ...
where
A =Xo+n" A +00, 2X] +tAo+ ¢ =0,

A =eXp/ wde, w=nw_1+wo+n wi+---
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C
© @)
o = g a;e?™""¢  (a;: free parameters)
[=0

Applying the results of §1 to (Ly;) and computing its Stokes
multipliers, we obtain the following connection formulas:
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(Stokes curves of (alt-dFPy))

We want to generalize this result to other discrete Painlevé eq’'ns.



3 WKB analysis for the difference equation for

Bessel functions

(joint work with Shun Ito, 2022)

Bessel functions
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> 22"+’ + (22 —a?)Yp =0

» Contiguity relation
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Introduce a large parameter 1 through

r—nzr, a+lw—ny, osf(y)=fC+n"
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Want to discuss the 2nd equation (A) mainly.

Basic idea

View o, as an oo-order differential operator via

—N

o) =p(y+nt) = i nn! (d(i)nwﬁ)

n=0



WKB solution

Y = exp (n /7 () dv) gwm)n—“
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where e2? — —76¢ + 1 =0, thatis,
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¢ = ¢+ () = log (% I \/(%)2 B 1) ~ Cosh—l(%)

Turning point & Stokes curve
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Stokes curves of (A) for x =1

Cf. BNR equation : """ 4 302y’ + 2ixn3yp = 0.

Stokes curves are similar and a new Stokes curve appears from a
crossing point of Stokes curves.



Prop. 1 oo number of new Stokes curves appear for (A).
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This proposition is verified by using

xIr

Y = /eXP(nf(% u))du, f(v,u) = E(u — %) — vlogu

2
» saddle point : ©u = uy = J T \/(7) —1
T T

» ~ lies on a (new) Stokes curve if and only if saddle points w4

are connected by a steepest descent path.



4 Alternative approach to WKB analysis for

difference equations

(work in progress with Yumiko Takei)

Idea Use of the Laplace transform.

Eample 1 (Hermite-Weber)

o { ((n7102)? —2(n~18.) + )¢ = 0,

O'A()\?,b) - (—77_18:13 + w)wv




Apply the Laplace transform w.r.t. A :

v= /e’”‘u],{p\ dp, @/b\ — ?,/b\(w, ©)-
Then
A— —n '8, M 'O\ <+— p, ox<+—eM,

and (1) is transformed to
/ o~
((1710:)? —2(n™18.) — (n™18,) ) = 0,

(2) <
\ ((n_lc‘?w) —x — e“’(n_lc‘?,,,))zz = 0.

WKB solution

= exp(nS(z, 1)) > Pn(, p)n™"

n=0



Prop. 2 4 12 — expn (—%6_2“ -+ :I:e_“)

: WKB solution of (2) consisting of finite terms.

Corollary By using a change of variables e ™" = ¢, we obtain

Y = / eMHen(—ze™tze™) g,

:/en(—étz—l—wt—)\logt) (_dt>
t

This is the well-known integral representation for Hermite-Weber
functions.



Eample 2 (Kummer)

F(a,c;x) = Z

L F(C) . xtya—1 c—a—1
= F@Tc—a) J, © t*1(1 —t) dt

: Kummer’s confluent hypergeometric functions

r—nxr, atr->nvy, Cr—= 17,
M=a, X=v—a, ojif=ox,f=Ff(Aj+n")

[ (207102) + (M + A2 — @) (1718) — A1) =0,
(53(77_18:3)0'2 + A1o2 — )\10'1)¢ = 0,
| (1 4 A2)(07102) — (M1 + A2) + a0z )9 = 0.
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Apply the 2-dimensional Laplace transform :

P = // eMrbatXab2) s dyy s dprs.

Then we find there exists a WKB solution of the Laplace
transformed system consisting of finite terms, and obtain

W = // —n(A1logti+A2 10gt2)+77wt1 ttzz - dt,dt;
(t1 — t2)?

(where we used a change of variables e #i = t;).

Furthermore, we make a change of unknown functions

L'(ny) -
L(na)T'(n(y — a))

Q_p:



[ (2(7182)2 + (1 + Ao —2)(1718) — M ) =0,
(w(n_lf?w)az + A0z — >\20'1)90 = 0,
\ ((77_18:13) + 02 — 1)90 = 0.

Finally we apply the Laplace transform, then we obtain

J

AN

p = el 5{w1 +w2=1}

and
dt

t(1—t)

p = /877()\1 log t+ A2 log(1—t)+xt)

(e’ = wj, t = wy)

The final formula is the well-known integral representation for
Kummer’s confluent hypergeometric functions.



5 Future problems

» To develop the exact WKB analysis for difference equations
via the Laplace transform.

(~ exact WKB by using integral representations of solutions)

» To clarify the relationship with the “exact steepest descent
method”.

» To analyze the Voros coefficients through difference equations.

» To generalize the results for discrete Painlevé equations.



