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Modified Bessel Function of Order Zero

The modified Bessel function of order zero, denoted by Ko(z), is a
particular solution of the second order linear ordinary differential
equation

d*w(z)  1dw(z)
dz? z dz

= w(z).
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Modified Bessel Function of Order Zero

The modified Bessel function of order zero, denoted by Ko(z), is a
particular solution of the second order linear ordinary differential
equation

d*w(z)  1dw(z) _ (2)
dz2  z dz '
It is uniquely determined by the property that

T _
Ko(z) ~ 1/£e z

as z — o in the sector |argz| < 3 — § (< ). It can be written in
the form

Ko(z) = F(z)logz + G(z),

where F(z) and G(z) are (even) entire functions of z. Thus, Ko(z) is
an analytic function on the Riemann surface C associated with the
logarithm.
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Kummer’s Asymptotic Expansion

It was shown by E. KUMMER in 1837 that

ooan

_n/
n=0 z

7T
KO(Z) ~ Ze

4

as z — o0 in the sector | argz| < 37” —0(< 37”), with

def (zn)!z
=D
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Kummer’s Asymptotic Expansion

It was shown by E. KUMMER in 1837 that

o0
T o, an

K()(Z) ~ Z Oz_n/
n=

as z — o0 in the sector | argz| < 37” —0(< 37”), with
2
def n (271)!
= () g
The series is divergent for any finite z. It is interpreted as follows.

If we define for any non-negative integer N the remainder Ry(z)
after N terms by

T N—1a_n
Ko(z) = \/ge (n;() o +RN(Z)> ,

then Ry(z) = Ons(z7N) as z — oo in the sector |argz| < 3 —
(< 2Z). Empty sums are taken to be zero.
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Connection Formula

Since Ko(z), Ko(ze™) and Ky(ze™ ™) are all solutions of the same
second order linear ordinary differential equation, there exist
constants ¢; and ¢; such that

Ko (Zefm) = C1K0(Z) + CzKo(Zem).
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second order linear ordinary differential equation, there exist
constants ¢; and ¢; such that

Ko (Zefm) = C1K0(Z) + CzKo(Zem).

By the leading order asymptotics, we have

LT, T, . T,
iy —e® ~ 1/ —e “ —icyy/ —e
2z 2z 2z

as z — +oo, which implies that c; = —1. So ¢1Ko(z) = Ko(ze™) +
Ko(ze™™). The exact form involving the logarithm then yields ¢; =
2, leading to the connection formula

2K (z) = Ko(ze™) + Ko(ze™ ™).
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Stokes Phenomenon

Substituting the asymptotic expansion into this connection formula
yields

T > a T, ap
Ko(z) ~ y/5e 2 Y = +2iy /e Y (-1)'=
o(z) 22° =z a0 ;J( ) zt’

as z — oo in the sector Z + 6 < argz < 3% — 4.
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Stokes Phenomenon

Substituting the asymptotic expansion into this connection formula
yields

T &y . T e
Ko(z) ~([7ze ® ) — 42/ —e" ) (—1)" =,
2z = 2z = z¢
as z — oo in the sector T + 6 < argz < 57" — 6. Thus, in the sector

Z + 6 < argz < 32 — § both this and the original expansion

(o)
T ay
eZ

Ko(z) ~ % /o
n=

hold true.
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Stokes Phenomenon

Substituting the asymptotic expansion into this connection formula

yields
T 2 a T, a
Ko(z) ~ 1/ —e* Y 2 42i, /e Y (—1)'2L
0(z) 22¢ ,;)z" ta 22¢ e‘;‘)( ) zt’

as z — oo in the sector T + 6 < argz < 57" — 6. Thus, in the sector
Z + 6 < argz < 32 — § both this and the original expansion

oo
Ko(z) ~ |/ e a—Z
2z =z

hold true. Note, however, that the difference

21\/> Z( 1) Nf

is exponentially small in the common sector of validity.
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Stokes Phenomenon

F. W. J. OLVER showed that from the numerical point of view the
best asymptotic approximation to Ky(z) is as follows:

T _, oy T, - a4
Ko(z) ~ ¢ ngz—n—FS(argz)\/ZeZg(—l) Y
as z — oo, where

0 if —m<argz<m,
S(argz) D T argz = 7,
2i if m<argz <2m,

is the so-called Stokes multiplier.
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Stokes Phenomenon

F. W. J. OLVER showed that from the numerical point of view the
best asymptotic approximation to Ky(z) is as follows:

T _, oy T, - a4
Ko(z) ~ ¢ ngz—n—FS(argz)\/ZeZg(—l) Y
as z — oo, where

0 if —m<argz<m,
def

S(argz) i if argz=rr,

2i if m<argz <2m,

is the so-called Stokes multiplier. The discontinuous change in the
form of the asymptotic expansion through the ray argz = 7 is an
example of the Stokes phenomenon. The ray argz = 7 is called a
Stokes line. A similar phenomenon happens when argz = —7r.
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Laplace-Type Integrals

We consider integrals of the form
10(z) = / ~2£(1) — |yl
(2) ) e g(t)dt, z=z[e",

where ©(¥)(0) is the doubly infinite path of steepest descent
passing through the simple saddle point t*) of f(t) (i.e., f'(t®)) =
0 but f”(t%)) £ 0). The functions f(t) and g(t) are assumed to
be analytic in a neighbourhood of the contour ) (0). We also
assume that f(t) has several other simple saddle points in the
complex t-plane situated at t = +(P) and indexed by p € Z.
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Laplace-Type Integrals

We consider integrals of the form
10(z) = / ~2£(1) — |yl
(2) ) e g(t)dt, z=z[e",

where ©(¥)(0) is the doubly infinite path of steepest descent
passing through the simple saddle point t*) of f(t) (i.e., f'(t®)) =
0 but f”(t%)) £ 0). The functions f(t) and g(t) are assumed to
be analytic in a neighbourhood of the contour ) (0). We also
assume that f(t) has several other simple saddle points in the
complex t-plane situated at t = +(P) and indexed by p € Z.

The asymptotic expansion of I¥)(z) for large z follows from an
application of the method of steepest descents.

A hyperasymptotic theory for such integrals was developed by SIR
M. V. BERRY and C. J. HOWLS in the early 1990’s.

8/33
e



Picture Gallery

Figure 2: Christopher ]. Howls

Figure 3: Robert B. Dingle Figure 4: Frank W. . Olver
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Example: The Function Ky(z)

The modified Bessel function Ky(z) has the integral representation
Lofte ht
Ko(z) = 5 / e #eosidt,

provided z > 0.
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Example: The Function Ky(z)

The modified Bessel function Ky(z) has the integral representation
1 [t
Ko (Z) — E / e % coshtdt,

provided z > 0. With our notation f(t) = cosht, g(t) = 1 and the
contour () (0) is the real axis running from —oo to +oco through
the saddle point t°) = 0 of f(t). The function cosh t has infinitely
many other saddles at t(P) = rip, p € Z.

For complex z we write

1
K _ = —zcosh td_t,
0(z) 5 [g(o) © €

where €0 (6) is the doubly infinite path of steepest descent through
the saddle point t(*) = 0, on which

arg(z(cosh t — cosh(t(?)))) = arg(e!’ (cosh t — 1)) = 0.
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Example: The Function Ky(z)

(iii)

(i)

Figure 5: The steepest descent contour €%) (8) associated with the modified
Bessel function through the saddle point t©) = 0 when (i) § = 0, (i) 0 =
— T and (iii) § = —°F.

11/33



Example: The Function Ky(z)

We re-write our representation in the form

z(cosh t— 1)dt

2 (9
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Example: The Function Ky(z)

We re-write our representation in the form

z(cosht— 1)dt

2

By the definition of the steepest descent path, the function z(cosh t —
1) decreases strictly monotonically from +co to 0 as ¢ runs into the

saddle +(®) = 0 and then increases strictly monotonically from 0 to

+0c0 as t moves away from the saddle t) = 0. Thus, the equation

s = z(cosht — 1) has two solutions t+ = t4(s/z) for each positive

s. Hence, we may write

Ko(z):eT_z<Loo ds—I—/ _sdt+d>

TEopte o /dtp dfo
s BT E—
/0 e < 15 15 )ds.
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Example: The Function Ky(z)
Since s = z(cosh t+ — 1), we have that
a1
ds  zsinhti’
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Thus,

K()—eiz/ﬂoe_s ! _ 1 ds
0= 0 zsinht, zsinht_ :
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This works if (%) (§) does not go through any of the other saddles =i,
+27i, 37, .. .. We assume this to be the case. The apparent singularity
at t(0) = 0 s of a removable type. Now,

1 _ 1 z(coshu — 1)
zsinhfy 4 (z(coshu — 1) —s) y ti

_1 vz (coshu—l Vz(coshu —1)
2 Res }1{
27‘[1 t:t+

u=tx z(coshu — 1) z(coshu —1) —

Thus,

=5

Here, v/coshu — 1 = 2" 2u + O(u?) as u — 0.
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Example: The Function Ky(z)

Therefore,
1 e Vz(coshu —1)
zsinht, z smh f 27'[1 z(coshu — 1) —

%j{ z(coshu —1)
27’[1 t +

coshu—l) —s

?{ Vz(coshu —1)
27{1

z(coshu — 1) —

where I'(%)(9) is an infinite contour encircling the steepest descent
contour €(%)(0) in the positive sense.
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+o00
Ko(z) = S [ emss f
(z) 2 /0 ¢ 27‘[1 )(6) z(coshu — 1) —

e /+°° JRE 1 }{ Vcoshu —1
) ()

duds.

= — 2 —
27172 27t Jrog) coshu —1—s/z
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Example: The Function Ky(z)

Figure 6: The infinite “sausage”contour I'©) (0) encircling the steepest
descent path €0 ().
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Example: The Function Ky(z)
We now expand the inner integral using the formula (N > 0)

Vcoshu —1 1 1
coshu—1—t/z  \/coshu —11—t/z(coshu —1)
N-1 tn i’N 1

+ 7
n=0 z”(coshu — 1)n+% ZN(Coshu — 1)N+% 1— t/Z(COShu — 1)

16 /33



Example: The Function Ky(z)
We now expand the inner integral using the formula (N > 0)

Vcoshu —1 1 1
coshu—1—t/z  \/coshu —11—t/z(coshu —1)
N-1 tn i’N 1

+ 7
n=0 z”(coshu — 1)n+% ZN(Coshu — 1)N+% 1— t/Z(COShu — 1)

to obtain
Ko(z) = y/ e Nf”—”ﬂz (2)
0(2) =4/ 5 L N /

16 /33




Example: The Function Ky(z)
We now expand the inner integral using the formula (N > 0)

Vcoshu —1 1 1
coshu—1—t/z  \/coshu —11—t/z(coshu —1)
N-1 tn i’N 1

+ 7
n=0 z”(coshu — 1)n+% ZN(Coshu — 1)N+% 1— t/Z(COShu — 1)

to obtain
Ko(z) = y/ e Nf”—”ﬂz (2)
0(2) =4/ 5 L N /

I’(n+%)i7§ du
V2r 27 Jroe) (coshu — 1)tz

with

ay =

16 /33




Example: The Function Ky(z)
We now expand the inner integral using the formula (N > 0)

Vcoshu —1 1 1
coshu—1—t/z  \/coshu —11—t/z(coshu —1)
N-1 tn i’N 1

+ 7
n=0 z”(coshu — 1)n+% ZN(Coshu — 1)N+% 1— t/Z(COShu — 1)

to obtain
Ko(z) = y/ e Nf”—"ﬂz (2)
0(2) =4/ 5 L N /

F(’”%)L}{ du _T(”+%)Lf du
V2r 27 Jr06) (coshu — 1)z V2r 27 J(0+) (coshu — 1)+ 2

with

ay =

16 /33




Example: The Function Ky(z)
We now expand the inner integral using the formula (N > 0)

Veoshu —1 1 1
coshu—1—t/z  /coshu—11—1t/z(coshu —1)
N-1 p (N 1
- 20 z"(coshu — 1)1+2 * zN(coshu — 1)N+z 1 —t/z(coshu — 1)’
to obtain

N—
Ko(z) =/ 55¢ ( o RN(z)> :

n=0
with
an:F(n+%)ij{ du :T(”+%)Lf I
V2 2mi Jroe (coshu — 1)”+% V2r 27 Jo+) (coshu — 1)”Jrl
and

1 1 N1 1 z 1 1
I il dudt.
Rn(z) = N N/ € 271 Jro) () (coshu—l)N"'% 1—t/z(coshu—1) "
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Example: The Function Ky(z)

¢ (—n) ey
*—>
(iii)
+0) (ii)
(i)
—>
V() t(=1)

Figure 7: The steepest descent contour €% (0) associated with the modified
Bessel function through the saddle point t©) = 0 when (i) 8 = 0, (i) 0 =
— % and (iii) § = —%T”. The paths €V (= 71) and €~V (1) are the adjacent
contours for ). The domain A©) comprises all points between €™V (— )
and €=V (rr).
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Example: The Function Ky(z)

By expanding I'(¥) (8) to the boundary of A(?), we obtain

11 gt N1 1 (coshu —1)~N-2
Ry(2) = —— — EN 2_/ dudt
NE) \/znzN/o ¢ 21 Je (-1 (x) 1 —t/z(coshu — 1) "

1 i/ﬁoeftth%L/ (coshu —1)~N-z dudt
V27 zN Jo 2mi JeW (—m) 1 —t/z(coshu — 1) ’

provided that | argz| < 7.
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Example: The Function Ky(z)

By expanding I'(?) (9) to the boundary of A(?), we obtain
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e On %0 () we have arg(el? (coshu — 1)) =0, i.e.,
arg(coshu —1) = —6.
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By expanding I'(?) (9) to the boundary of A(?), we obtain

1

1 1 gt yo1 1 (coshu —1)~N
Ry(2) = —— — EN 2_/ dudt
N () «/znzN/o € 2mi U(z)1—t/z(coshu —1) "
400 _1y-N-1
L i/ efttN*%—l./ (coshu —1)77 dudt,
V27 zN Jo 2mi JeW (—m) 1 —t/z(coshu — 1)

provided that | argz| < 7.
* The domain A(?) is defined as A(° U|9|<n %) ().

On %% (9) we have arg(e'?(coshu — 1)) =0, i.e,,
arg(coshu —1) = —6.

Also, v/coshu —1=2"2u + O(u?) asu — 0.

* Geometrically, €0 (9) = ¢ (0 + 47r) = ¢V (6 + 87) =

Therefore, we define v/coshu — 1 to be positive when u is positive and
we define it by continuity elsewhere.

18 /33
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Example: The Function Ky(z)

The remainder Ry (z) is given by

R G SV | (coshu—l)fo%
RN(Z) = \/FTZN/O e 't 227-[1//{(71)(71) 1—t/Z(COShM—1)dudt

+o00 _ _N-1
LS / etiN-1 L / (coshu—1)7772 4 4t
V2 zN Jo 27 JeW (—7) 1 —t/z(coshu — 1)

provided that | arg z| < 7.
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Example: The Function Ky(z)

The remainder Ry (z) is given by
I S S SV R | (coshu—l)’N’%
Rn(z) = V271 zN/o et 27 /ng)(n) 1—t/z(coshu — 1)dudt

+o00 _ _N-1
LS / etiN-1 L / (coshu—1)7772 4 4t
V2 zN Jo 27 JeW (—7) 1 —t/z(coshu — 1)

provided that | arg z| < 71. We perform the change of variable from t and
u to s and u by

t = s(coshu — 1)e’™ = s((coshu — cosh(—7ti))e’™ +2)

in the first integral,
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The remainder Ry (z) is given by
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Rn(z) = V271 zN/o et 27 /zghl)(n) 1—t/z(coshu — 1)dudt

+o00 _ _N-1
LS / etiN-1 L / (coshu—1)7772 4 4t
V2 zN Jo 27 JeW (—7) 1 —t/z(coshu — 1)

provided that | arg z| < 71. We perform the change of variable from t and
u to s and u by

t = s(coshu — 1)e’™ = s((coshu — cosh(—7ti))e’™ +2)
in the first integral, and by

t = s(coshu —1)e™™ = s((cosh u — cosh(7ri))e "™ +2)
in the second integral.
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Example: The Function Ky(z)
In this way, we arrive at
1 1 1 [rosN-2e721
R =(-)NZ —— / .
N(Z) ( ) T 27TZN 0 1+s/z 2 ¢V ()

sl L1 et 2l
0 14+s/z 2 Je0(-n)

e—se™ (cosh u—cosh(—ri)) duds

e—se ™ (cosh u—cosh(7i)) duds,

w27 zN

provided that |argz| < 7.
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provided that |argz| < 7. Finally, we shift (=) (7) up by i and () (—7r)
down by i:
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down by i:
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Ry(z) = (-D)N ZN/ 3/ dtds
1 1 1 progN-ze 27 p+o
1 N?ii/ - —s(cosht—l)dtd
(=1 T2 ZN 1+s/z 2 € s

11 j2 g+ sN=2e75 1
N —scosht
_ t
ZN 7 / 1+s/z 2 ¢ dtds
N 11 /2 /+°°s “le “5Ko(s )ds
ZN 7 1+s/z !
provided that |argz| < 7.
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Stokes Phenomenon Again

In summary, for any non-negative integer N, we have

Ko(z) = |/ 3ze ™ (Atlz_ZJFRN( ))

0

N1 1\/‘ +00 sN=365K(s)
Rn(z) = / T35/ — - 7ds

provided |argz| < . Th1s gives an exact resurgence formula for
Ko (Z)

where
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Stokes Phenomenon Again

In summary, for any non-negative integer N, we have

Ko(z) = |/ 3ze ™ (Atlz_ZJFRN( ))

0

—+o0 S
R(z) = (1N 1[/ o fij_g( ) ds
provided |argz| < . Th1s gives an exact resurgence formula for
Ko (Z ) .
As arg z increases beyond 7, the pole arising from the denominator

is entrapped: consequently, the analytic continuation of Ry (z) to
the sector 7t < argz < 37t is given by the formula

1 1 /2 +00 sN=367Ky(s) |2z i
_ N 0 z i
Rn(z) = / T/ ——————~ds+2 —e Ko(ze ™).

21/33
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The First Hyperterminant

Let p > 0 be a real number and let o be an element on C. The first
hyperterminant is defined by

0 —1,—0t
W (.. P d;fL/* e
GRS YA e

provided |arg(cw)| < 71, and by analytic continuation elsewhere.
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The First Hyperterminant

Let p > 0 be a real number and let o be an element on C. The first
hyperterminant is defined by

0 —1,—0t
W (g P d;fL/* e
F (w, 0) I'(p) Jo 1—|—t/wcuL

provided |arg(cw)| < 71, and by analytic continuation elsewhere.
It can also be represented in terms of the incomplete gamma
function as

F) <w; Z; ) =wPe™TI'(1—p,ow).

It admits the asymptotic power series

as w — oo in the sector |argw| < 37” —5(< 37”).
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Alternative Formula for the Remainder Term

A straightforward manipulation yields

Rn(z) = (-1) ds

n L sN”2e*Ko(s)
NV o

7 1+s/z
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1 1 +o0 gN=70=5 1 [+oo
N 7scoshtdtd
Nra\ / 1+s/z 2 ¢ °
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11 oo sN=36=5K(s)
— ()N /2 o(s
Rn(z) = 2N / 1+s/z Tirsz &
11 /2 p+e sN=2e=51 [+
N —scosht
N7 / 1+s/z 2 ¢ drds

NZL :[ | = /+oo sl +zse/_zs /+ efscoshtdtds
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Alternative Formula for the Remainder Term
A straightforward manipulation yields

11 /2 fFe sN=2e—sK (s)
N o\s
= ————7d
Rn(z) = N7 / 1+s/z °
1 1 +o0 gN=70=5 1 [+oo
N 7scoshtdtd
Nra\ / 1+s/z 2 ¢ °
11 [2 +00 gN=3=s 4o
N 7scoshtdtd
N7 / 1+s/z / € °
400 400 fo =S (14-cosh t)
v 11 /2 / / Sre T gedt
ZN 7 1+s/z
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11 +o0 gN=70=5 1 [+oo
N —scosht
Nra\ / 1+s/z 2 ¢ dids
11 [2 prosN-les o
N —scosht
N7 / 1+s/z / € dds
1 1 400 oo Sfo —s(1+cosht)
N /2
—dsdt
N 7 / / 1+s/z °

N 1 1 +00 400 Z/[Nf%efu
= N / N+l / 150/ ((1 + cosh £)z) L4
A 1+cosht) 2.0 +u/((1+ cosht)z)
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Alternative Formula for the Remainder Term

A straightforward manipulation yields
11 oo sN=3 5K, (s)
— (—1)N /2 ols
Rn(z) = Nr / 1+s/z T i4sz ®
11 /2 p+e sN=2e=s1 [+
N —scosht
N7 / 1+s/z 2 ¢ drds
11 /2 oo gN=3g=5 [+oo
N —scosht
Nr / 1+s/z / ¢ dds
N 11 \/7/+oo /+oo gN—3 g—s(1+cosht) s -ze—s(lreoshd) |
Nr 1+s/z
+00 400 N-1_ —u
— ()N L2 / / Le dudt
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+oo 1 1
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Alternative Formula for the Remainder Term

A straightforward manipulation yields
11 /2 fFe sN=2e—sK (s)
N ols
= ——d
Ry(z) = ZN 7 / 1+s/z °
11 [2 +oo gN=3e=s1 [+oo
N —scosht
- drd
N7 / 1+5s/z 2 ¢ s
11 [2 preosN-zes re
N —scosht
- did
ZN 7 / 1+s/z / € °
N 1 1 /+oo /+oo SN*— —s(14-cosh t) s -ze—s(lreoshd) |
Nra\ 1+s/z
+00 400 N-1_ —u
— ()N L2 / / vore dudt
ZzN 7 1+cosht)N+2 0 1+4u/((1+cosht)z)

+oo 1 1
=(-1)N L 1\/ / +3) F()((1+cosht)z; N+ >dt.
i 1+cosht)N+2 1

By analytic continuation, this formula is valid in the larger sector
largz| < 3%
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Error Bounds

The simple observation ay = zN(Ry(z) — Ryy1(z)) and the
definition of the first hyperterminant leads to the formula

—+o0
L
1+cosht)N 2

for any N > 0.
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o1
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|Z >0
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Error Bounds

The simple observation ay = zN(Ry(z) — Ryy1(z)) and the
definition of the first hyperterminant leads to the formula

—+o0
L
1+c0sht)N 2

for any N > 0. Consequently,
(1 )(Teiargz. N+% ) ’
o1

provided |argz| < 2. We need some simple estimates for the first
hyperterminant to make this result useful.

Ra(z)] < 1 gup |
|Z >0

24 /33



Bounds for the First Hyperterminant

Proposition (G. N., 2016)

If p > 0and |argw| < 3, then

! if |argw| < 7,
‘F(l) <w; r{ )‘ < { min(|esc(argw)|, x(p) + 1) if § < |argw| < 7,
2 .
W"’X(P)-Fl if < |argw| <3,
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Bounds for the First Hyperterminant

Proposition (G. N., 2016)

If p > 0and |argw| < 3, then
1 if |argw| < 7,
50 (w; § )| < { min( csclarg )l alp) +1) i § < Jargu] <1,
%—i—x(p)—kl if7'c<|argw|<37",
with
x(p) & M
rG+D |

We remark that G. N. WATSON showed that

Fp+3) <x(p)<\3(p+32),

for any p > 0.
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Error Bounds

For any non-negative integer N and for |argz| < 37”, we have

where the remainder Ry (z) satisfies the estimates

1 if |argz| < 7,

Ry(2)] < 1] Jmin(| esc(argz)|, (N + 7) +1) if § <[argz| <71,

|Z| 27{(N+%)
)|N+%j

+x(N+3)+1  if m<|argz| < 3.

|cos(arg z
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Error Bounds

<37r

For any non-negative integer N and for | argz| < =ff, we have

where the remainder Ry (z) satisfies the estimates

1 if |argz| < 7,

Ry(2)] < 1] Jmin(| esc(argz)|, (N + 7) +1) if § <[argz| <71,

|| 21 (N+3
Lz)l-l-x(N—F%)—i-l if < |argz| < 3.
|cos(arg z)|N T2

We may compare this result with that of F. W. J. OLVER (N > 1):

2exp(gf7) if |argz| < %,
IRn(2)] < 'lf' < 4 20N exp () T < Jargz] <
4x(N)

7T : 3r
cos(org 2" exp(MZCOS(argz)‘) if < |argz| < 3.
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Exponentially Improved Asymptotic Expansion

We have shown that for any non-negative integer N, it holds that

N-1
Ko(z) = |/ 7€ ( N +RN<z>)

n=0

11 [2 [+ sNTeKy(s)
N ols
Rn(z) = 2N / 1+s/z sz

provided |argz| < 7.

where
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Exponentially Improved Asymptotic Expansion

We have shown that for any non-negative integer N, it holds that

N-1
Koz) = 1/ 30e ( N +RN(Z))

n=0

11 [2 [+ sN-2eKy(s)
R N / 0
n(z) = ZN 7 1+s/z TTisz O

provided |argz| < 7. Re-lteratmg this formula once, we find that

where

1 1 +o0 SN -1 —2s
R N /
n(z) = ZN 7 Z’ C1+s/z
b (N L 1 1 [t sN=le=2R; (s)
ZN 7 Jo 1+s/z
11 N-—¢
= ()N = Y aI(N-0)FD <z; )
ZN 7T = 2
VL 11 pte sN_le_ZSRL(s)dS
2N o 1+s/z

for0 < L < Nand |argz| < .
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Exponentially Improved Asymptotic Expansion

The numerically least term in Kummer’s asymptotic expansion occurs
when N ~ 2|z|.
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Exponentially Improved Asymptotic Expansion
The numerically least term in Kummer’s asymptotic expansion occurs
when N = 2|z|. It can be shown that if L is fixed, N ~ 2|z|, and z — oo,

then
1 1 _ N—-¢
Ry(z) = ()N 2 sr(N=OF (5 V)
72|z
if |argz| <,
e2Re(z )
if < |argz| <3 —6(< 2f).
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then

Rue) = (01 Tar (v N5 1)

elez‘
(@] | T if |argz| <,
z

e2Re(z)
(@] T if < |argz| <3 —6(< 2f).
z

This is called an exponentially improved asymptotic expansion.
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Exponentially Improved Asymptotic Expansion

The numerically least term in Kummer’s asymptotic expansion occurs
when N = 2|z|. It can be shown that if L is fixed, N ~ 2|z|, and z — oo,
then

Rue) = (01 Tar (v N5 1)

efz‘z‘
(@] W if |argz| <,
z
e2Re(z)
(@] W if < |argz| <3 —6(< 2f).

This is called an exponentially improved asymptotic expansion. This can
be further approximated by

Ryn(z) ~ Die?? Z (_1)€Z_§ X %erfc((?'c — argz)\/E)
(=0

provided argz = 7 + O(|z|~1/2). Here erfc is the complementary error

function.
28 /33




The Formula of Berry and Howls
In general, we have

N-1 (k)
—zf(t) — b a—zf(t0) an (k)
ﬁm(e)e glt)dt =z "2e (Z o TRy (Z)>

n=0
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The Formula of Berry and Howls
In general, we have

N-1 (k)
—zf(t) — b a—zf(t0) an (k)
ﬁm(e)e glt)dt =z "2e (Z o TRy (Z)>

n=0
with ( 1)
(k) et T(1 F 2 8(t) dr
VT o (F(6) = F())r3
and

R (7) % 11 Z 1) /+°°s’\’—§e|ffkm|s
N _2 ZN & N+2 o Jo 1 —s/zei%m

x ﬂf(m)(—ok ) e_se_iak’” (f(t)_f(t(m)))g(t)dtds-
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The Formula of Berry and Howls
In general, we have

N-1 (k)
—zf(t) — b a—zf(t0) an (k)
[m(e)e glt)dt =z "2e (Z o TRy ()

n=0
with .
(0 e Tt 3) / (O
Varm S (£(1) - f(#0))r
and

’Vkm /+°° SN_%eflfkmb
0

(k) () o Li s~ ze TP
Ry (z 27 zN ; 1 — s/zel%m

lo'km
. lm)( Oin) e MU g 1) s,
km
The so-called singulants are defined by
Fien = f(tM) = £(1W),  arg Fep = jon,

and the sum runs over all the saddles that are adjacent to ¢(*).
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Exponentially Improved Asymptotic Expansion

For the remainder term Rg]{) (z) in

N-—1 (k)
~2f() o ()dt = 2202 (1?) In” g ,
L T st ==t L o +RG)
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Exponentially Improved Asymptotic Expansion
For the remainder term Rg]{) (z) in

/ e Wg()dt = z~2e 2 (1" Nzl ”'gk) ¥ (z)
&®)(9) n=0 z"

we have the re—expansion

m—1
0y = CDY L s 5 Lyt (N - 0F (; N
Ry (z) = 2m ZNZ e;) D'a " T(N=OF|z 2

+ ZRN,L,,, (2).
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Exponentially Improved Asymptotic Expansion
For the remainder term Rg]{) (z) in

/ e g(t)dt = ez (tH) NZ:l a,({f) (z)
©®)(0) z"

n=0

we have the re—expansion

N nsl -
RO () = -Hr 1 2 1) e e;) (—1)al™ (N — £)F) <z,' ]-“Nkmeﬁi)

27r1
+) RN,L,,, (2)-
m
The least term truncation is

~ |]:km*| |Z|'

where | Fi+ | = ming, | Fp|-
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Exponentially Improved Asymptotic Expansion
For the remainder term Rg]{) (z) in

/ e—zf(t)g(t)dt — Z—%e—zf(t(k)) I\]Zl ﬂ,(,lk) (Z)
(K(k)(e) zh

n=0

we have the re—expansion

® >N1 o 8 (1) v oE® (5 N=L
Ry (z) = 27'(1 2 k e;) 1)fa,'T(N = )FV | z; Fo et
+ZRN,L,,,(Z)-
m

The least term truncation is
~ |]: km*l |Z| ’
where | Fi,«| = miny, |Fi,,|. With this choice,

ZRNL O(e” Ifkm*l\Z\)

for large z.
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-
Late Coefficients

As a consequence, we have

)
27'(1 Z

—4)

m
(m) 2 (m)
) (m) }—kmul ‘Fk 4y
'Ym m
27112( o™ %+ (n—1) +(n—1)( _2)+

asn— +oo.
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Late Coefficients
As a consequence, we have

)
27112( 1)7e Z

-1

(m) 2 (m)
) (m) . Fkmy Fients
'Ym m
27'[12( ‘ %+ (n—1) + (n—1)(n—2)

as n— +o0. This formula links the late coefficients of an asymptotic
expansion of the integral to the early coefficients of the asymptotic
expansion of integrals over the adjacent saddles.

km
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-
Late Coefficients

As a consequence, we have

)
27112( 1)7e Z

—4)

km

(m) 2 (m)
(n) (m) Fiemtq Fients
'Ym m
mz( k Oy T yn—2)

km

as n — +o0. This formula links the late coefficients of an asymptotic
expansion of the integral to the early coefficients of the asymptotic
expansion of integrals over the adjacent saddles.

If there is a value m* for which | Fy,,- | is less than the corresponding
quantities for all the other adjacent saddles, then at leading order

® . 1y 8E) T()

an
/zn—f//(t m* ) ]:km*

as 1 — oo (with the extra assumption that g (")) # 0).
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Concluding Remarks

® An exact formula for the remainder can be found for the
asymptotic expansion of an integral with simple saddles.
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Concluding Remarks

® An exact formula for the remainder can be found for the
asymptotic expansion of an integral with simple saddles.

® The exact remainder incorporates the Stokes phenomenon.
® The remainder can be estimated in a sharp and realistic manner.

® An exponentially improved expansion can be obtained for an
integral with simple saddles.

¢ Late coefficients diverge like a “factorial divided by power”.

¢ The method extends to integrals with finite endpoints and with
arbitrary order saddles.
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Thank you for your attention!
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