
In nature, many complex systems show the unexpected 
emergence of rare and extreme events that can have a 
huge impact on their surrounding environment. A well- 
​known example comes from oceanography, in which 
large-​amplitude rogue waves have been associated  
with many maritime disasters. The difficulty in under-
standing the physical origin of these waves has made  
them as much a part of folklore as of science1–4. However, 
research into rogue waves has developed considerably 
since 2007, following the introduction of an analogy 
between the generation of large ocean waves and the 
propagation of light fields in optical fibres5. This analogy  
was made based on the observation of long-tailed 
statistics in experiments that studied noise in fibre 
supercontinuum generation, and it attracted intense inter-
est in both optics and hydrodynamics. Many subsequent 
studies have explored the analogous characteristics of 
the two systems in more detail, with the view of clar-
ifying the potential role of nonlinear focusing effects 
during wave propagation6–12.

In optics, however, the term optical rogue wave has 
become widely applied to instabilities in a range of opti-
cal systems exhibiting long-​tailed statistics, irrespective 
of the existence of a hydrodynamic analogy. In addition, 
the terminology rogue wave has become common, in a 
purely mathematical sense, to describe strongly localized 
solutions of certain nonlinear partial differential equa-
tions. Although nonlinear focusing has received most 
attention in hydrodynamic studies, the relative impor-
tance of linear and nonlinear effects in actually dri
ving ocean rogue wave generation remains a subject of  

debate. A related discussion concerns the limitations 
of 1D models when applied to the complex oceanic 
environment.

In this Review, we provide an accessible overview of 
rogue waves in optics and hydrodynamics, the analogy  
between which was initially based on the suggested 
importance of nonlinear focusing in both domains. 
First, we introduce the main regime in which optical 
and hydrodynamic nonlinear wave propagation can 
be described by a common formalism. We then review 
results obtained in different optical and hydrodynamic 
systems, including results considered to have purely lin-
ear origins for rogue waves. Next, after reviewing opti-
cal phenomena that are potentially analogous to ocean 
wave propagation, we discuss particular cases (such as 
dissipative rogue waves in lasers) for which no such  
analogy is currently known. When considering water 
waves, we review studies of real-​world ocean wave data and  
of wave-​tank experiments in controlled environments.

Nonlinear focusing
Propagation models. In optics and hydrodynamics, the 
equations of wave propagation are simplified forms 
derived from Maxwell’s equations and the Euler equa-
tions, respectively. In both cases, for unidirectional prop-
agation and assuming that the underlying carrier waves 
are modulated by a slowly varying narrowband envelope, 
it is possible to derive a common mathematical formal-
ism in the form of a nonlinear Schrödinger equation 
(NLSE) describing the evolution of the envelope in space 
and time13–15. In optics, the NLSE applies to an envelope 

Rogue waves
Large-​amplitude waves 
satisfying the common 
definition that their height from 
trough to crest exceeds twice 
the significant wave height.  
In optics, the definition is the 
same, but expressed in terms 
of optical intensity.

Rogue waves and analogies in optics 
and oceanography
John M. Dudley   1*, Goëry Genty2, Arnaud Mussot3, Amin Chabchoub4 and 
Frédéric Dias   5

Abstract | Over a decade ago, an analogy was drawn between the generation of large ocean waves 
and the propagation of light fields in optical fibres. This analogy drove numerous experimental 
studies in both systems, which we review here. In optics, we focus on results arising from the use of 
real-​time measurement techniques, whereas in oceanography we consider insights obtained from 
analysis of real-​world ocean wave data and controlled experiments in wave tanks. This Review of 
the work in hydrodynamics includes results that support both nonlinear and linear interpretations 
of rogue wave formation in the ocean, and in optics, we also provide an overview of the emerging 
area of research applying the measurement techniques developed for the study of rogue waves to 
dissipative soliton systems. We discuss the insights gained from the analogy between the two 
systems and its limitations in modelling real-​world ocean wave scenarios that include physical 
effects that go beyond a one-​dimensional propagation model.

1Institut FEMTO-​ST, Université 
Bourgogne Franche-​Comté 
CNRS UMR 6174, Besançon, 
France.
2Tampere University, 
Photonics Laboratory, 
Tampere, Finland.
3Université Lille, CNRS, UMR 
8523, PhLAM — Physique 
des Lasers Atomes et 
Molécules, Lille, France.
4Centre for Wind, Waves  
and Water, School of Civil 
Engineering, The University  
of Sydney, Sydney,  
New South Wales, Australia.
5School of Mathematics and 
Statistics, University College 
Dublin, Belfield, Dublin, 
Ireland.

*e-​mail: john.dudley@ 
univ-​fcomte.fr

https://doi.org/10.1038/ 
s42254-019-0100-0

REvIEWS

NATuRe RevIeWS | PhySiCS	  volume 1 | NOVEMBER 2019 | 675

http://orcid.org/0000-0001-9520-9699
http://orcid.org/0000-0002-5123-4929
mailto:john.dudley@
univ- fcomte.fr
mailto:john.dudley@
univ- fcomte.fr
https://doi.org/10.1038/s42254-019-0100-0
https://doi.org/10.1038/s42254-019-0100-0


modulating electromagnetic carrier waves, whereas in 
hydrodynamics, it applies to an envelope that modulates 
long-​crested surface gravity waves on deep water (and 
even on water of intermediate depth14).

A complete understanding of the origins of dispersion 
and nonlinearity in optics and hydrodynamics, and the 
derivations of the associated NLSEs, requires a detailed  
analysis of the physics specific to each system13–18. That 
said, a general physical understanding of why optical 
and water waves are described by the same NLSE model 
can be obtained by considering how the wave proper-
ties depend on the corresponding linear and nonlinear 
dispersion relations. For example, both systems exhibit 
frequency dependence of the wave speed — linear group 
velocity dispersion — and a nonlinear response at high 
amplitude that introduces a nonlinear phase on the 
wave envelope. The mathematical forms of these linear 
and nonlinear terms in the corresponding propagation 
equations are identical for the two systems (see Box 1 
and refs13–18 for details). The NLSE models the effect 
of group velocity dispersion and nonlinearity on a wave 
envelope, and, since we are interested in the mecha-
nisms that can potentially lead to large envelope ampli-
tudes, the equations are written for the regime in which 
dispersion and nonlinearity act together to support  
‘nonlinear focusing’.

Although the NLSE is a simplified model, it has 
proven very successful in describing wave evolution in a 
number of specific regimes in optics and hydrodynamics 
when the spectrum of the wave envelopes remains rela-
tively narrow. However, the narrowband approximation 
of the NLSE is not valid for all scenarios, and more gen-
eral equations have been derived to describe broadband 
propagation more accurately. In fibre optics, the most 
widely used is the ‘generalized NLSE’19, which includes 
the effect of higher-​order fibre dispersion, Raman scat-
tering and the frequency dependence of the nonlinear 
response associated with envelope steepening. This 
generalized NLSE model has been highly effective in 
modelling broadband propagation in optical fibre, even 
in the extreme case of supercontinuum generation20.  

In hydrodynamics, truncations of the full Euler equations 
to describe broadband propagation in deep water include 
the Zakharov Hamiltonian dynamical equations21,  
and the higher-​order spectral method formulation22,23. 
These approaches have been shown to be equivalent, at 
least for weak nonlinearities24. An additional compact 
form of the Zakharov equation has also been reported25.

Extensions of the NLSE have been derived to model 
higher-​order effects in hydrodynamics, most notably the 
Dysthe equation, sometimes referred to as the ‘modi-
fied NLSE’26,27. In the context of optics–hydrodynamics  
analogies, the modified NLSE is particularly successful in  
identifying a soliton fission-​like regime in hydrodynam-
ics, equivalent to the onset dynamics of supercontinuum 
generation in optics28.

Notwithstanding the need to use broadband prop-
agation models for the most general comparison with 
experiments, the basic form of NLSE has remained 
attractive for many analytic and numerical studies 
because it clearly isolates the dispersive and nonlinear  
contributions to the dynamics, often in regimes beyond 
the apparent mathematical limits of its validity. Such 
cases include, for example, the use of the basic NLSE 
to qualitatively describe the propagation of pulse  
envelopes that are not strictly ‘slowly varying’ relative to  
the carrier oscillations13. Moreover, the integrability of the  
NLSE yields a number of analytic solutions that can be 
used to determine experimental initial conditions to 
generate prototype rogue waves in the laboratory29.

Mechanisms and measurements. The nonlinear focusing 
mechanism that has received most attention in the study 
of rogue waves is the modulation (or Benjamin–Feir)  
instability. This refers to the exponential growth of a 
small modulation (or noise) on a continuous-wave 
input to the NLSE21,30–34. Plotting in terms of the nor-
malized NLSE (Box 1), we illustrate two scenarios of 
modulation instability corresponding to narrowband input 
spectra (Fig. 1a,b). The first one (Fig. 1a) is the evolution of 
an ‘Akhmediev breather’, a structure periodic in time τ that 
develops from an initial coherent sinusoidal modulation 
on a continuous wave35. Owing to non-​ideal initial condi-
tions (that is, a pure intensity modulation), its evolution 
is also periodic with propagation distance ξ, a manifes-
tation of the Fermi–Pasta–Ulam–Tsingou recurrence 
phenomenon36,37. In contrast to this regular behaviour, 
the second scenario (Fig. 1b) shows the random evolution 
observed when the initial continuous wave is perturbed 
by low-​amplitude noise. In this case, we see an approx-
imate τ-​periodicity at the reciprocal of the frequency of 
maximum amplification for the instability29 and random 
breathing along ξ.

By contrast, we see qualitatively different evolu-
tion when the initial conditions consist of an incoher-
ent field with near 100% amplitude noise, rather than 
a weakly perturbed continuous wave (Fig. 1c). We still 
see the emergence of strongly localized peaks, but 
with more erratic trajectories compared with Fig. 1b. 
Indeed, the evolution in this case is not strictly speak-
ing a modulation instability, but is better described in 
terms of turbulence and the propagation of higher-​
order background-​free solitons38,39. As we shall describe 

Key points

•	An analogy between wave propagation on the ocean and in optical fibres has 
provided new insights into the physical mechanisms and dynamical features that 
underpin the occurrence of rogue waves.

•	Real-​time measurement techniques studying instabilities in fibre optics have 
highlighted the emergence of localized breather structures associated with nonlinear 
focusing, a scenario confirmed in wave-​tank experiments.

•	The experimental techniques developed for rogue wave measurement in optics have 
also yielded improved understanding of transient dynamics and dissipative soliton 
structures in lasers.

•	Advanced analysis and hindcasting of real-​world ocean wave data have revealed the 
central role of directionality and the superposition of random wave trains in the 
formation of ocean rogue waves.

•	The emergence of oceanic rogue waves in the general case is likely to arise from both 
linear and nonlinear mechanisms to different degrees depending on the prevalent 
wind and sea state conditions.

•	Machine learning could play a key role in future efforts to forecast and predict ocean 
rogue waves and to identify new areas of physical analogy and overlap between 
optics and hydrodynamics.

Supercontinuum
A broadband optical spectrum 
typically spanning from the 
visible to the infrared that is 
generated by a number of 
different nonlinear spectral 
broadening processes.

Envelope
A slowly varying function that 
modulates the amplitude of 
optical or water carrier waves.

Deep water
In hydrodynamics, deep water 
waves are those that propagate 
in water of depth d that is 
much greater than half their 
wavelength λ; that is, λ≫d ∕2.

Soliton fission
The break-​up of a higher-​order 
background-​free soliton into 
constituent fundamental 
soliton components due to 
perturbations going beyond 
the strict nonlinear Schrödinger 
equation description.

Carrier oscillations
Individual cycles of a 
propagating wave underneath 
a group or pulse envelope.

Modulation instability
Exponential growth of a weak 
perturbation on a continuous-​
wave excitation in any 
nonlinear system.

Akhmediev breather
A soliton on a finite 
background solution to the 
nonlinear Schrödinger equation 
that describes a single cycle of 
growth and decay along the 
propagation direction ξ with 
periodic behaviour along the 
time axis τ.
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below, all three scenarios in Fig. 1 have been studied in 
experiments.

Although the form of the NLSE in optics and hydro-
dynamics is the same, there are important differences in 
what the equation describes in each system. In optics, 
the underlying carrier wave is considered sinusoidal 
at frequency ω, whereas in hydrodynamics, the NLSE 
envelope modulates the Stokes wave, which (to second-​
order) contains contributions at both ω and the second 
harmonic 2ω40. In addition, even though the terminol-
ogy optical wave breaking is used in an NLSE context 
to describe the steepening of an optical envelope from 
nonlinear focusing41, optical carrier waves themselves do 
not ‘break’ or plunge as they do in hydrodynamics42,43.

There are also important differences in measurements 
in each domain. Experiments in optical fibres generally 
measure only the time-​domain envelope intensity, and 
information about carrier oscillations is not recorded. 
By contrast, measurements in hydrodynamics directly 
record the individual carrier wave amplitudes (although 
envelope information can be reconstructed straightfor-
wardly44). Particular care must therefore be taken when 
comparing statistics between optics and hydrodynam-
ics, because the statistics in fibre optics experiments are 
determined from the intensity envelope peaks, whereas 
the statistics of water waves are usually determined  
from the trough-​to-crest heights (or crest heights or ampli-
tudes) of individual waves. This is of special relevance  

Continuous wave
Also known as plane wave, this 
is a wave of constant amplitude 
or intensity.

Solitons
Coherent structures in a 
nonlinear dispersive system 
that display either stationary 
or recurrent behaviour with 
propagation, including 
stationary background-​free 
sech-​solitons and solitons on 
finite background that are also 
known as breathers.

Stokes wave
The surface elevation of water 
waves including ‘bound’ 
harmonic components, which 
to second order is written  
η(t, z) = a cos(θ) + 1/2ka2 cos(2θ) 
where θ = kz − ωt and k is the 
wavenumber given here for 
deep water.

Box 1 | NLSE models and typical parameters for optical and hydrodynamic rogue waves

In fibre optics, the dimensional form of the focusing nonlinear Schrödinger equation (NLSE) is

β
γ∂

∂
+ ∂

∂
+ =∣ ∣i

A
z

A

T
A A

2
0 (1)2

2

2
2

where A = A(z, T) is the amplitude of the envelope of the wave (with SI units W1/2), z is the spatial coordinate, T is time, β2 is 
the group velocity dispersion and γ is the nonlinearity parameter.

In hydrodynamics, the corresponding equation is
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where u = u(z, t) (with SI units m) is the amplitude of the envelope of a group of deep water waves, t is time, g = 9.81 m s−2 is 
the acceleration due to gravity, k0 = 2π/λ is the wavevector and λ is the wavelength.

These equations can be reduced to the normalized form
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where for fibre optics ψ = ∕ ∕A P0
1 2, τ = T/T0 and ξ = z/LNL, T0 = (|β2|LNL)
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−1; P0 has SI units W. For hydrodynamics, 
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3

0
2 1; u0 has SI units m. Note that the carrier wavelength does not 

appear explicitly in the optical NLSE but is nonetheless an important parameter, determining whether the NLSE is focusing 
or defocusing in a particular material. In particular, focusing NLSE behaviour is observed for λ0 > 1.3 μm in standard silica 
fibre and can be observed at shorter wavelengths using specialty photonic crystal fibres13.

In the Table, we summarize typical parameters and characteristics of rogue waves.

Fibre optics Wave tank Ocean

Typical parameters and 
physical dimensions

β2 < 0 with 
|β2| ≈ 0.1–20 ps2 km−1; γ > 0 
with γ ≈ 1–100 W−1 km−1

k0 ≈ 1–25 m−1; 
λ0 ≈ 6.25–0.25 m; 
ω0 ≈ 3.1–16 rad s−1

k0 ≈ 0.004–4 m−1; 
λ0 ≈ 1,600–1.6 m; 
ω0 ≈ 0.2–6.3 rad s−1

Driven (coherent) initial 
conditions

Temporally modulated 
continuous-​wave laser, 
shaped frequency comb, 
ultrashort pulses

Driving unidirectional or 
directional waveform sent 
in the time or frequency 
domain to paddles in a 
wavemaker

NA

Possible noise sources in 
initial conditions

Quantum noise, amplified 
spontaneous emission, 
technical laser noise

Random initial conditions 
sent to wavemaker

Wind, random crossing 
sea interactions

Typical rogue wave 
characteristics

Peak power P ≈ 1 W to 10 kW, 
duration Δτ ≈ 1–10 ps

Wave height (trough-​
to-crest) Hmax ≈ 5 cm for 
period ~0.6 s and λ0 ≈ 0.5 m, 
Hmax ≈ 16 cm for period ~1 s 
and λ0 ≈ 1.6 m

Wave height (trough-​
to-crest) Hmax ≈ 25 m 
for period ~10 s and 
λ0 ≈ 150 m

Measurement resolution Real time (time lens) ~220 fs; 
time-​averaged (for instance, 
frequency-​resolved optical 
gating (FROG)) <5 fs

Wave gauges: 0.002 s Lasers: 0.1 s; buoys: 0.5 s
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to the criterion that, in oceanography, identifies a rogue 
wave as one whose trough-​to-crest height exceeds 
twice the ‘significant wave height’ (the mean height of 
the highest third of waves in a measured population).  
In optics, although the criterion is the same, it is expres
sed in terms of envelope peak intensities. There are some 
other key differences between the two systems relating 
to typical design of controlled experiments, possible 
noise sources, measurement resolution in experiments 
and typical characteristics of rogue waves that have been 
observed. These are summarized in Box 1.

Finally, although renewed interest in the link between 
optics and hydrodynamics was stimulated by the possi-
bility of better understanding rogue waves, analogous 
nonlinear propagation effects had in fact been inde-
pendently observed in both fields over many years. This 
is to be expected, given the centrality of the NLSE in 
describing nonlinear focusing in both environments, 
and the parallel development is illustrated through a 
timeline (Fig. 2). Some of these results will be discussed 
in more detail below, and more exhaustive historical 
treatments appear in refs2,11–13,45,46.

Rogue waves in optics
Overview. The 2007 proposal that an optical system 
could display properties mimicking oceanic rogue 
waves was based on noise measurements of an opti-
cal supercontinuum5. Specifically, a relatively new 
experimental technique at the time, known as the 
dispersive Fourier transform (DFT), was used to measure 
pulse-​to-pulse (‘shot-​to-shot’) fluctuations in the shape 
of supercontinuum spectra generated from high-​power 
picosecond pulses injected in an optical fibre. Although 
it was well known that stable supercontinuum generation 

was possible by using femtosecond pulse pumping, the 
DFT measurements of a picosecond supercontinuum 
revealed great variations in the structure of the spectra 
generated from sequential pulses. Moreover, when fil-
tering the supercontinuum spectra at long wavelengths 
in which (background-​free) optical solitons were 
expected to form, the corresponding time series showed 
a highly asymmetric ‘L-​shaped’ probability distribu-
tion, with a long tail containing a small population of  
high-​intensity peaks.

A link between these spectral instabilities and ocean 
rogue waves was proposed, based mostly on the simi-
larity of these long-​tailed statistics to those of extreme 
events47 but also on the common NLSE model for deep 
water waves and optical fibre propagation discussed in 
the previous section. The supercontinuum results imme-
diately attracted interest and stimulated many other 
experiments in optics. However, the description optical 
rogue wave was rapidly generalized to refer to any opti
cal system displaying long-​tailed statistics, even when 
there was no obvious correspondence with analogous 
oceanic dynamics.

Although this broader usage in optics is now well 
established, to avoid confusion it is essential to specify 
when a particular experiment in optics has a potential 
analogy with a hydrodynamic or oceanographic system. 
Next, we first focus on describing one-​dimensional and 
two-​dimensional propagation experiments for which 
there is a potential hydrodynamic analogy. We then 
review the rapidly emerging field of real-​time char-
acterization of dissipative soliton instabilities in lasers. 
Although these laser dynamics are likely to be without 
a natural oceanographic equivalent, the field has devel-
oped directly from applying the real-​time measurement 
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Fig. 1 | Localization properties of nonlinear focusing dynamics in the nonlinear Schrödinger equation for three 
different cases. a | ‘Breathing’ with propagation distance ξ of a train of localized pulses periodic in time τ. Such a train of 
Akhmediev breathers is generated from an initial coherent modulation on a continuous wave at ξ = 0, with modulation 
frequency at the peak of the instability gain such that the period is τ =∆ π2 . b | The complex noisy field of peaks that 
emerge when the continuous-​wave initial condition at ξ = 0 is perturbed by low-​amplitude broadband random noise. In 
this case, we see approximate periodicity with mean period τ ≈∆ π2 , and random breathing along ξ. c | The qualitatively 
different behaviour when the initial conditions consist of an incoherent broadband pulse rather than a continuous wave. 
Here we see turbulent evolution and the emergence of random higher-​order background-​free solitons. All plots show the 
space–time evolution of the intensity |ψ|2 plotted above the corresponding two-​dimensional projection.

Significant wave height
Mean wave height from trough 
to crest of the upper third of all 
events in a recorded time series 
of surface elevation. In optics, 
the equivalent quantity is 
‘significant intensity’, the mean 
intensity (from zero) of the 
upper third of all events in a 
recorded intensity time series.

Dispersive Fourier 
transform
Also known as time stretch and 
used for real-​time spectroscopy, 
this technique temporally 
stretches an ultrashort pulse 
through linear dispersion such 
that its temporal intensity 
assumes the form of its 
spectrum.

Dissipative soliton
Stable localized structure  
that is localized as a result of 
balance between nonlinearity, 
dispersion and energy 
exchange (gain or loss) with  
an environment.
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techniques used for the study of rogue waves in optics, 
and it may stimulate studies of other classes of nonlinear 
dissipative structures in hydrodynamics.

One-​dimensional propagation. Following the initial 
experiments5 from 2007, numerical simulations were 
used to study the statistics and dynamics of supercon-
tinuum rogue waves in more detail48. These simulations 
showed that the distinct solitons observed in the pico-
second supercontinuum emerged from an initial phase 
of noise-​driven modulation instability, and the shifts to 
longer wavelengths of the small number of ‘rogue soli-
tons’ in the filtered tail of the DFT histogram arose from 
inelastic collisions mediated by the Raman effect48,49. 
However, although leading to long-​tailed statistics, these 
Raman soliton dynamics appeared to be very specific 
to supercontinuum generation and therefore of primary 
relevance to the optical domain46.

By contrast, the initial propagation phase of the modu
lation instability had earlier been proposed as a mecha

nism for hydrodynamic rogue wave generation50–54, and 
attention in optics therefore quickly focused on this 
regime. The modulation instability and solitons in fibre 
optics had been studied since the 1980s, but had been 
characterized using only time-​averaged measurements 
of the optical spectrum and/or the temporal intensity 
autocorrelation function13,55–57. These were the state-​
of-the-​art characterization techniques at the time, but 
the development of real-​time techniques such as the 
DFT, and the possibility of an analogy with rogue waves, 
motivated new experimental studies in optics.

It was particularly interesting to use optics to study 
nonlinearly localized analytic NLSE ‘breather’ structures 
that emerged from the modulation instability, as it had 
been suggested that their nonlinear growth and decay 
were typical characteristics of ocean rogue waves6,58,59. 
Moreover, there was additional evidence from the shape 
of time-​averaged spectra (specifically the slope of the 
spectral wings) that breather structures were present in 
noise-​driven modulation instability60.

The first studies of nonlinear breathers in the con-
text of rogue waves used coherently modulated fields 
injected into optical fibre to excite specific analytic 

solutions (Fig. 1a). Because of the coherent seeding, the 
excited breathers were stable, and did not require real-​
time characterization. Rather, it was possible to use 
averaging techniques such as frequency-​resolved opti-
cal gating61 or optical sampling62 to record the breather 
profiles. These experiments characterized a range of 
nonlinear structures, including the Akhmediev breather, 
the Peregrine soliton and the Kuznetsov–Ma soliton63–65, and 
were important in motivating studies in hydrodynamic 
wave tanks as described below66.

The comparison of these measurements with analytic 
predictions was particularly important in showing that 
an optical fibre system, before the onset of supercontin-
uum generation, could be considered as a close-​to-ideal 
NLSE environment. Additional experiments coher-
ently exciting higher-​order breather solutions of the 
NLSE further supported this interpretation67–69. Related 
experiments extended the study of hydrodynamic  
analogies in optics even further, reporting controlled 
shock dynamics70 and dam-​breaking phenomena71,72.

Although impressive in showing the ability of an 
NLSE system to support nonlinear localization, the 
direct relevance of optical experiments using coherent 
initial conditions to noise-​driven rogue waves on the 
ocean remained unclear. Certainly, numerical studies of 
noise-​driven modulation instability show the emergence 
of random localized structures (Fig. 1b), and a detailed 
study of the intensity profiles showed that they clus-
ter around the analytic breather solutions of the NLSE 
(ref.73). The key question, however, was whether these 
could be measured. Such experiments appeared chal-
lenging, requiring the measurement of real-​time tempo-
ral profiles with subpicosecond resolution, much shorter 
than the response time of available photodetectors.

To this end, new experimental techniques were devel-
oped38,74. The idea is to transpose the action of an opti-
cal lens that magnifies an object in space, to temporally 
stretch noisy picosecond structures from the modulation 
instability to nanosecond duration replicas that could be 
measured (in real time) using high-​speed photodetec-
tors (Fig. 3A). Such a ‘time lens’ exploits the mathematical 
equivalence of paraxial diffraction in space and linear 
group velocity dispersion in time75, and combines two 
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wave tank33,168
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transients77,126
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Fig. 2 | Timeline illustrating the parallel developments in fibre optics (top) and hydrodynamics (bottom). 
In hydrodynamics, we focus especially on listing a selection of wave-​tank recreations of the Draupner wave because  
of its central place in the study of rogue waves.

Peregrine soliton
A limiting case of the 
Akhmediev breather and 
Kuznetsov–Ma soliton 
solutions that is doubly 
localized along the propagation 
direction ξ and τ.

Kuznetsov–Ma soliton
A soliton on a finite 
background solution to the 
NLSE describing periodic 
oscillation along the 
propagation direction ξ with 
localization along τ.
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Fig. 3 | Optical rogue wave measurements. A | Schematic for temporal 
magnification of random modulation instability generated by a noisy 
continuous-​wave (CW) laser injected into optical fibre. Pulses from a mode-​
locked laser develop a quadratic temporal phase after dispersive 
propagation Dp before being combined with the dispersed modulation 
instability signal in a nonlinear element (waveguide or crystal). The 
nonlinear element transfers the pump quadratic phase to the modulation 
instability signal such that another dispersive propagation step yields time-​
magnification by a factor M = |Dout/Din

| where Din and Dout are the dispersion 
parameters before and after the nonlinear element. B | Real-​time 
measurements of breather dynamics emerging from noise-​seeded 
modulation instability. Sequential windows of breather intensity profiles 
normalized with respect to the average output background power 〈P〉 and 
rescaled to account for temporal magnification (panel Ba). The 
measurement window Tmeas is determined by the mode-​locked pulses (note 
the broken axis between measurements, each 50 ps long; div, division). 
Superposed experimental breather profiles (grey lines), comparing their 
average (red line) with the analytic Peregrine soliton (black dashed line) 
(panel Bb). Long-​tailed normalized probability density of random modulation 
instability breather peaks, comparing experiments (red) and simulations 
(blue) (panel Bc). The inset uses semi-​logarithmic axes. The calculated  
rogue wave intensity threshold (IRW) is shown as a dashed black line.  

C | Real-​time complex field (intensity and phase) of integrable turbulence 
dynamics generated by nonlinear fibre propagation of a broadband noisy 
input field with near-100% contrast. Two typical measurements (panel Ca, 
Cb) using a time-​lens set-​up with the addition of heterodyne detection for 
phase retrieval. Each subpanel shows typical raw images captured by the 
set-​up (top panels), the retrieved phase (middle panels) and intensity 
(bottom panels). <P> is the output background power. D | Rogue wave 
statistics in a purely linear optical system due to caustic focusing of a spatial 
field with random phase. Measured spatial amplitude (panel Da) of the 
electric field when the initially applied random phase yields a spatial 
spectrum intermediate between that of a partially developed speckle and 
a caustic network. The trough-​to-crest statistics (panel Db) are near-​
Rayleigh distributed (fit shown as the blue solid line) with an extended tail 
including rogue wave (RW) events exceeding the significant wave height 
(HRW). The bright peak A labelled in panel Da is the highest peak observed in 
the distribution. E | Typical caustic networks observed during spatial rogue 
wave generation in a rubidium cell via nonlinear amplification of initial small 
phase fluctuations. Δ, amplitude of the random phase. Panel B is adapted 
from ref.74, CC-​BY-4.0 (https://creativecommons.org/licenses/by/4.0/). 
Panel C is adapted from ref.77, Springer Nature Limited. Panel D is adapted 
from ref.99, CC-​BY-4.0 (https://creativecommons.org/licenses/by/4.0/). 
Panel E is adapted with permission from ref.102, APS.
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segments of dispersive propagation on either side of a 
time lens element that introduces a temporal quadratic 
phase76. The addition of a supplementary heterodyne 
detection stage can also be used to yield intensity and 
phase information77.

Experiments using time-​lens techniques have stud-
ied noise-​seeded NLSE propagation in optical fibre 
(Fig. 3B,C). The use of a narrowband noisy continuous-​
wave input revealed the emergence of random local-
ized structures (Fig. 3Ba), with intensity profiles well 
fitted by analytic NLSE breather solutions74 (Fig. 3Bb). 
The measurement of a large dataset also allowed the 
intensity statistics of the modulation instability peaks 
to be directly characterized (Fig. 3Bc), confirming the 
expected highly asymmetric probability distribution73. 
These results highlighted the role of breather collisions 
(or higher-​order breathers67,68) in generating the largest 
intensity events that satisfied statistical criteria to be 
identified as rogue waves (events above the rogue wave 
intensity IRW).

Using a heterodyne time lens, the intensity and 
phase of spontaneous structures were measured in the 
turbulent regime excited by an incoherent input field 
with near 100% intensity fluctuations77 (Fig. 3C). In this 
case, the dynamics are described in terms of incoher-
ent higher-​order background-​free solitons (Fig. 1c).  
Long-​tailed intensity statistics were also observed in 
the same study77 and were important in confirming that 
spontaneous rogue-​wave like statistical behaviour could 
be observed with large initial fluctuations beyond the 
scenario of modulation instability. Earlier results in a 
similar turbulent regime38 were also notable for showing 
how the temporal compression seen during incoherent 
higher-​order soliton propagation led to the emergence 
of the Peregrine soliton, a remarkable result that was 
later confirmed using coherent initial excitation78. These 
experiments also motivated follow-​up work to tailor the 
incoherent optical input spectrum to match a scaled ver-
sion of the Joint North Sea Wave Project (JONSWAP) 
spectrum for ocean waves79. A quantitative comparison 
between the scaled statistics obtained in optics and those 
from measurements in a 1D wave tank showed good 
agreement80. Experiments have also been performed by 
exciting modulation instability from noise in a regime in 
which the expected ~100 ps timescale of nonlinear local-
ization falls within the bandwidth of direct high-​speed 
detection81. By using a new recirculation loop set-​up,  
it was possible to measure the space–time development 
of modulation instability over an extended propagation 
distance, directly revealing the expected multiple recur-
rence cycles and incoherent evolution dynamics (see also 
Fig. 1b and ref.73).

Two-​dimensional propagation. We have so far described 
optical fibre experiments studying nonlinear focusing 
dynamics in the time domain, analogous to 1D wave 
propagation on deep water. It is important to note, how-
ever, that the first studies of nonlinear focusing in optics 
were carried out in the spatial domain32,82,83, motivated 
by the unexpected damage observed when the first lasers 
were focused into glass84. More systematic experiments 
in controlled 1D geometries reported soliton behaviour 

in free space and waveguide systems85,86, and optical 
spatial solitons in general exhibit a rich landscape of 
nonlinear interactions87.

It is thus unsurprising that early studies of rogue 
waves in optics also considered nonlinear spatial insta-
bilities88–91, but the nonlinear optical systems used in 
these experiments were such that no simple analogy with 
an equivalent hydrodynamic scenario could be drawn. 
However, studies of higher-​dimensional wave propaga-
tion on the ocean (involving short-​crested waves) have 
shown that nonlinearity is not a requirement to see 
rogue-​wave like behaviour. Rogue waves in the ocean 
have also been attributed to the linear superposition 
of random waves propagating in different directions92, 
linear and nonlinear caustic formation93,94, and linear 
directional focusing95,96.

In optics, experiments on linear wave-shaping mecha
nisms in the spatial domain have been performed by 
studying laser speckle. Laser speckle is the granular 
intensity distribution that arises from the spatial inter-
ference of a large number of coherent wavefronts with 
random phases97 and is known to exhibit long-​tailed sta-
tistical properties98. To study the potential link between 
speckle and rogue waves, the experiments in ref.99 
imprinted a random phase pattern on the transverse pro-
file of a laser beam, and the variation in the beam profile  
was then characterized during linear propagation  
(diffraction) in air. With sufficient propagation, the ran-
dom initial phase was converted into amplitude fluctu-
ations across the transverse profile and, by using phase 
retrieval techniques, it was possible to determine the  
statistics of both the spatial amplitude and intensity.  
By controlling the strength of the initial random phase, the 
far-​field intensity pattern could be varied from partially 
developed speckle to a broadband caustic network100.  
In this case, a long-​tailed distribution was observed with a  
considerable fraction of rogue waves. In an intermediate 
range of initial phase fluctuations, it was possible to syn-
thesize an ‘optical sea’ in which the spatial amplitude sta-
tistics followed a Rayleigh distribution but still showed 
the presence of a small fraction of events above the rogue 
wave threshold99 (Fig. 3D). These results were important 
in explicitly confirming the possibility of seeing rogue 
wave statistics from purely linear propagation in an 
optical system, displaying a clear analogy with ocean 
wave superposition. Theoretical work has also shown 
that rogue waves can arise from purely linear super-
position in a 1D environment for a sufficiently large 
number of random interacting data bits in an optical 
communications channel101.

A follow-​up experiment studying optical caustics 
(with random phase fluctuations as initial conditions) 
replaced linear propagation in air with nonlinear propa
gation in a gas cell described by a 2D NLSE model102. 
In this case, experiments showed that nonlinearity 
enhanced the generation of high-​intensity caustics on 
the transverse beam profile (Fig. 3E). Importantly, these 
results showed that nonlinearity could enhance the gen-
eration of high-​intensity events whose initial origin was 
due to a linear propagation effect. This underlines the 
fact that, in the optics domain, both linear and nonlinear 
focusing can combine to generate rogue waves.

Long-​tailed distribution
A characteristic of statistical 
distributions in which the tails 
decrease very slowly and 
contain a subpopulation of 
extreme events.
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Transient instabilities in lasers. In addition to the 
experiments described above for which a close analogy 
exists with ocean waves, research has also developed in 
an area in which no such analogy has yet been found: 
the characterization of ultrafast transient instabilities 
in mode-​locked lasers. Although stable mode-​locked 
lasers are well known to produce highly regular pulse 
trains, they can also show complex behaviour during 
their start-​up dynamics or when detuned from steady 
state103. Moreover, the past few years have seen mode-​
locked laser instabilities described in terms of dissipative 
soliton theory, in which the concept of a localized soliton 
is generalized from solely the balance between disper-
sion and nonlinearity to include dissipation in the form 
of gain and loss104. This led to the description of extreme 
instabilities in such lasers as dissipative rogue waves105.

Following the 2007 optical rogue wave experiments 
in fibre5, experiments using pulse energy measure-
ments showed that mode-​locked lasers could also exhibit 
long-​tailed statistics106,107. The real-​time DFT technique 
was also used to study fibre laser spectral instabili-
ties108, yielding measurements of a new soliton collapse 
and recovery (or ‘explosion’) regime109,110 (Fig.  4A). 
Interestingly, earlier photodiode measurements and 
experiments with frequency-​resolved optical gating111 
or single-​shot spectral characterization112 had reported 
signatures of complex instabilities in mode-​locked lasers, 
but the availability of the DFT and time-​lens techniques 
renewed interest in this field.

Studies were also performed on the soliton build-​
up dynamics in a Kerr-​lens mode-​locked Ti:sapphire 
laser113. Using a modified DFT method for real-​time 
spectral interferometry, soliton bound states can be char-
acterized114 (Fig. 4B). Many other experiments have used 
the DFT technique to study evolving soliton dynamics 
and multi-​pulse states115–122, and intensity and coherence 
measurements in partial and coherent mode-​locking 
regimes123. An example of dissipative soliton formation 
in a polarization rotation mode-​locked fibre laser124 is 
shown in Fig. 4C. A particular advantage of real-​time spec-
tral measurements is that it allows complementary infor-
mation on temporal soliton separation to be determined 
through the associated field autocorrelation (Fig. 4B,C).

Combining real-​time spectral characterization using 
DFT and high-​speed measurements using photodiodes 
enabled the study of a range of multi-​scale dynamics in a 
mode-​locked fibre lasers125. By combining the DFT with 
the time-​lens technique, simultaneous measurement of 
spectral and temporal profiles was possible with sub
nanometre and subpicosecond resolution. These experi-
ments yielded a complete picture of the unstable start-​up 
dynamics of dissipative solitons in a mode-​locked fibre 
laser126, with typical results showing the growth and 
collapse of a temporal multi-​soliton complex (Fig. 4Da). 
Moreover, with the simultaneous measurement of spec-
tral and temporal intensity profiles, the use of phase 
retrieval techniques allowed the reconstruction of the 
full field (in amplitude and phase) of the evolving soli
tons (Fig. 4Db). In addition to studying mode-​locked 
lasers, real-​time techniques have been applied to study 
related soliton dynamics in other dissipative systems 
such as microresonators127,128.

Rogue waves in oceanography
Overview. Although stories of unexpected large ocean 
waves date back to antiquity, it was only in the twenti-
eth century that any comprehensive scientific study of 
their properties began2. Several catalogues of records  
of rogue waves are now providing insights into the 
long history of attempts to record their occurrence as 
distinct oceanic events and to understand their proper-
ties129–133. The description of such events as freak waves 
was apparently first used in the scientific literature in 
1964 (ref.134), although this terminology was found  
in newspaper accounts even earlier135. The alternative 
and now more common name rogue wave first seems 
to have appeared in a 1962 novel by C. S. Forester136. 
Despite being a work of fiction, it gives a remarkably 
clear physical description of “the ‘rogue wave’, generated 
by some unusual combination of wind and water”.

It is generally accepted that the systematic study of 
rogue waves began with the milestone experimental 
measurement, on 1 January 1995, of a wave with trough-​
to-crest height of 25.6 m on the uncrewed Draupner E oil 
platform in the North Sea137. The fact that this Draupner 
(or New Year’s) wave was observed within an extended 
time series at high-​sampling frequency yielded great con-
fidence in the measurement fidelity and stimulated the 
oceanographic community to investigate the physics and 
statistics of ocean rogue waves on a quantitative level.

The environment of the open sea involves multiple 
physical processes such as currents, dissipation, wind 
forcing and wave breaking. Aside from wave breaking, 
which is by nature nonlinear, currents, dissipation and 
wind forcing can be either linear or nonlinear. Despite 
this complexity, however, it has been possible to describe 
many aspects of large-​amplitude ocean wave dynamics in 
regimes in which the physics is dominated by particular 
distinct linear or nonlinear mechanisms. For example,  
the linear processes of random wave superposition92 and 
dispersive focusing138 are both well-​understood mecha-
nisms that can lead to increased wave amplitude, and 
nonlinear focusing from modulation instability has been 
particularly studied because of its driving influence on 
wave localization and decay21,30–34. It is important to note, 
however, that although nonlinear focusing has certainly 
attracted much attention in the context of ocean rogue 
wave formation, determining the relative contribution 
of linear and nonlinear effects in driving rogue wave 
dynamics remains a subject of much study12,139.

Rogue waves in the natural environment. Because 
rogue waves are rare events with sudden growth and 
decay dynamics, their measurement is extremely chal-
lenging, requiring both long time series (over months 
or even years) to capture their rarity, and a sampling 
frequency between 2 Hz and 10 Hz to record the main 
features of wave shapes. The most reliable rogue wave 
measurements are based on the reflection of an optical 
or acoustic signal at the boundary between sea and air2. 
The 1995 Draupner wave, for example, was recorded 
by a laser sensor using a sampling frequency of 2.13 Hz 
during 20 minutes of every hour. A similar technique 
was used to record a second landmark measurement 
of what is known as the Andrea wave. It was measured 

Mode-​locked lasers
Lasers typically emitting 
picosecond-​duration or 
femtosecond-​duration pulses 
as a result of either active or 
passive phase synchronization 
of the longitudinal modes of 
the laser cavity.

Coherence
Phase stability of carrier 
oscillations of a single 
frequency wave, or the stability 
of the phase difference 
between the carrier oscillations 
of two waves.
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on 9 November 2007 in the North Sea with a sam-
pling frequency of 5 Hz during 20 minute intervals by 
four independent lasers mounted on the Ekofisk plat-
form140. Related measurement techniques include using 

a mounted microwave radar141 and acoustic Doppler 
current profilers142.

Other methods for measuring rogue waves have been 
reported, but there has been debate over their fidelity. 
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Fig. 4 | Characterization of transient instabilities in lasers. A | Dissipative 
soliton explosions in an Yb-​doped mode-​locked fibre laser operating in the 
transition regime between stable mode-​locking and noise-​like emission. 
Experimental single-​shot spectra of 100 round trips showing several 
explosion events (panel Aa). A close-​up of the explosion dynamics shows 
that the spectrally broad soliton collapses into a narrower spectrum with 
higher amplitude before recovering to its previous state (panel Ab).  
B | Soliton bound states in a few-​cycle mode-​locked laser. Real-​time 
interferogram (panel Ba) of 15,000 consecutive cavity round trips shows 
soliton bound-​state formation with locked phases. Field autocorrelation 
evolution over the 15,000 round trips (panel Bb) shows reduction of the 
soliton temporal separation to form a stable bound state. C | Formation of 
coherent dissipative soliton structures from unstable noise in nonlinear 
polarization rotation mode-​locked fibre laser. The real-​time spectral 
evolution (panel Ca) of the laser output during dissipative soliton  

build-up is measured with dispersive Fourier transform (DFT). The field 
autocorrelation evolution over 800 round trips (panel Cb) traces the 
evolution of the temporal separation between the dissipative solitons.  
D | Dissipative soliton dynamics during start-​up phase of a passively mode-​
locked Er-​fibre laser. Temporal evolution over 170 round trips (panel Da) 
captured using a time-​lens system shows growth and decay of multiple 
dissipative soliton structures as the laser passes through a transient  
unstable regime before stable mode-​locking. Plots (panel Db) showing the 
full field (intensity in blue-​black and phase in red) reconstructed from 
simultaneous dispersive Fourier transform and time-​lens measurements 
correspond to specific round trips as indicated. Panel A is adapted with 
permission from ref.109, OSA. Panel B is adapted with permission from 
ref.114, AAAS. Panel C is adapted from ref.124., CC-​BY-4.0 (https://
creativecommons.org/licenses/by/4.0/). Panel D is adapted from ref.126, 
Springer Nature Ltd.
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For example, measurements relying on accelerometers 
placed on wave buoys can exhibit distortion due to the 
buoy’s intrinsic moment of inertia2, despite a number 
of rogue wave events have been extracted from buoy 
measurements using appropriate quality control143–146. 
Moreover, most measurements have been limited in the 
information they can yield about rogue wave properties 
because they record time series only at the single point 
where the sensor is located.

Improved approaches to satellite remote sensing 
continue to be explored147. Techniques such as stereo 
video are also promising as they can capture the space–
time evolution of the sea surface over an extended 
region148,149. There has also been considerable interest 
in remote sensing with satellite-​based synthetic aper-
ture radar150, but such imagery is associated with errors 
due to velocity bunching and azimuthal image smear151. 
Nonetheless, there is emerging consensus that recording 
the full spatiotemporal evolution of waves (both long-​
crested and short-​crested waves) on the ocean’s surface is 
essential to fully characterize the statistics of large waves 
in complex sea states, such as hurricanes and storms. 
This is because the maximum height of a group of waves 
propagating in a complex manner over a large area dur-
ing a given time interval is likely to be greater than the 
wave height observed at only one fixed point in space (as 
measured by, for example, a moored buoy). The study of 
such a ‘space–time extreme’ is an important current area 
of research149,152.

Despite the challenges of measurement, appropri-
ate quality control has been applied to many extended 
time series of wave records, and potentially thousands 
of candidate rogue waves have been identified. There 
are several earlier reviews of rogue waves in oceanic 
and coastal environments2,3; a summary of results from 
fixed platforms and an analysis of a large dataset of 
wave buoy data has appeared in ref.146. A particular 
conclusion of these recent summaries was that mech-
anisms for rogue wave formation vary from place to 
place in the ocean.

Hindcasting simulations. The characteristics of several 
large ocean wave events have also been analysed in detail 
using an approach known as hindcasting. Such studies use 
archived meteorological and wave data at the location 
of the event under study to determine initial conditions 
for a forward-​propagating wave model153. The aim is to 
use the model to simulate the wave-​field characteristics 
at later times and compare them quantitatively with a 
measured wave record. By varying the initial condi-
tions and parameters of the model (particularly the 
directional wave energy spectrum), it is possible to draw 
conclusions as to which processes may be responsible for 
the emergence of the observed rogue waves. Studies of 
this type include the analysis of the maritime accidents 
of the fishing boat Suwa-​Maru154, the cruise ship Louis 
Majesty155, the tanker Prestige156, the merchant vessel 
El Faro152, and modelling of the Draupner and Andrea 
waves157,158 and rogue waves generated during Typhoon 
Lupit in 2009 (ref.159). As an example, we illustrate the 
case of the Andrea wave and its modelled profile using 
the hindcasting approach (Fig. 5A).

These studies of individual examples of real-​world 
ocean waves have highlighted the difficulty in identify-
ing a single primary cause for the wave enhancement, 
because different approaches to analysing the same 
event can yield different conclusions. For example, 
motivated in part by the presence of crossing sea states 
at the time of the Draupner wave, the analysis in ref.160 
initially suggested that third-​order nonlinear focusing 
(modulation instability) in crossing seas may be impor-
tant in rogue wave formation. But a further analysis 
and direct numerical modelling of the Draupner wave 
with and without the cubic nonlinear term in simula-
tions showed that such third-​order nonlinear focusing 
was negligible157. In this analysis, the wave shaping was 
found to be dominated by directional superposition, 
with a minor enhancement from the second-​order 
bound (Stokes) nonlinear contribution. A similar con-
clusion can be drawn for the Andrea wave (Fig. 5A) and 
a negligible role for third-​order nonlinear focusing 
was identified from the hindcasting analysis in ref.156 
considering the wave conditions associated with the 
Prestige accident.

Similar results were reported in ref.161 in a study of  
2 million wave groups in which 300 rogue waves were 
identified. Although the nonlinear modulation insta
bility is discussed as a possible effect that can increase  
the wave envelope steepness, the conclusion (based  
on the symmetric shape of the wave groups) was that 
the random superposition of the Stokes waves was suf-
ficient to explain the observations of individual rogue 
waves. On the one hand, results from several other 
groups have independently supported the interpreta-
tion that downplays the role of the modulation instabil-
ity and instead highlights the role of linear interference 
and/or localized dispersive focusing141,149. On the other 
hand, the hindcasting analysis of rogue waves obser
ved during Typhoon Lupit suggested that a focusing  
nonlinearity played a role in some instances of rogue  
wave formation159.

All these various results taken together suggest that 
the complexity of the ocean coupled with the relatively 
limited observational data prevents a definitive conclu-
sion concerning the underlying physics of ocean rogue 
wave formation. And, as we discuss below, in the con-
text of laboratory experiments, both linear and nonlin-
ear processes remain actively investigated as potential 
driving mechanisms for rogue waves. In this regard,  
it is interesting to search for convenient statistical signa-
tures (in both simulation and real-​world wave data sets) 
that may allow us to disentangle the role played by lin-
ear and nonlinear processes. The fourth-​order moment 
(kurtosis) is of particular interest as it has been shown to 
provide a robust measure of the strength of the tails of a 
skewed wave height distribution162–164.

Wave-​tank experiments. Reproducing extreme wave 
propagation in laboratory wave tanks has been impor-
tant in allowing comparisons to be made with theory and 
modelling under controlled conditions. For wave-tank 
experiments to have relevance to ocean wave dyna
mics, the experimental conditions should mimic the 
natural processes as much as possible. State-of-the-art 

Long-​crested and short-​
crested waves
The crest of a wave is 
equivalent to its transverse 
extent, with ocean waves 
classified as long-​crested or 
short-​crested respectively 
depending on whether they 
predominantly propagate in 
one direction or consist of a 
superposition of waves 
propagating in different 
directions.

Space–time extreme
The maximum wave surface 
height observed over a given 
area during a time interval,  
and not just at a given point.

Hindcasting
Also known as backtesting,  
an approach used to test  
a mathematical model by 
predicting wave elevation 
properties based on archival 
inputs such as directional wave 
energy spectra at an earlier 
time and comparing this with 
known results.

Directional wave energy 
spectrum
The distribution of wave energy 
in frequency and direction, 
often used to provide initial 
conditions for multi-​
dimensional linear and 
nonlinear wave modelling.

Crossing seas
A sea state with two 
independent wave systems 
travelling at oblique angles.

Steepness
For water waves only, the 
steepness is given by 
ka = 2πa/λ where k is the 
wavenumber, λ the wavelength 
and a the amplitude.
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wavemakers can be conveniently programmed to gener-
ate a wide range of initial conditions, and, with artifacts 
due to effects such as reflection and viscosity well under-
stood, it is possible to use wave tanks to study many 
different propagation scenarios in deep or shallow water 
of constant or varying depth. Although many experi-
ments on 1D propagation can be performed in narrow 
channels or flumes, the use of wave-​making panels on 
the perimeter of larger wave basins, or the use of cir-
cular wave tanks, is now enabling the study of multi-​
dimensional effects165. Another geometry developed for 

wave-​tank experiments is the annular flume, which can 
allow the study of some wave generation phenomena  
through circular propagation under essentially unlimited 
distance (fetch)166.

The first use of wave tanks to study modulation  
instability actually arose from an experiment that went 
wrong167. Aiming to test the stability of small-amplitude 
water waves experimentally, T. Brooke Benjamin and 
Jim E. Feir unexpectedly observed the exponentially 
growing amplitude modulation of the wave train168. 
Following this pioneering work, other wave-tank 
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Fig. 5 | Ocean and wave-​tank measurements of rogue waves. A | Hindcasting results for the Andrea wave. The 
directional wave energy spectrum S(ω,θ) is used in numerical simulations, where ω is angular frequency and θ is direction 
in degrees (panel Aa). The measured Andrea wave (black) is compared with simulations including up to second-​order 
(blue) and third-​order contributions (red) (panel Ab). The minor differences between the simulations point to a negligible 
role from third-​order nonlinear focusing. B | Controlled breather generation in wave tanks using initial conditions in 
amplitude and phase determined from analytic breather solutions to the nonlinear Schrödinger equation. Experimental 
(blue) Peregrine soliton is compared with the analytic prediction (red) (panel Ba). The evolution of a higher-​order breather 
solution to the nonlinear Schrödinger equation is measured in a wave tank (panel Bb). C | Wind-​generated waves in an 
annular wave tank: schematic of the elements of the experimental set-​up (panel Ca); example of wind-​speed profile used 
for wave generation (panel Cb); example of measured water surface elevation (η/4σ, that is, normalized to 4 times the 
standard deviation σ of the 10 minute record) (panel Cc). The wave record shown includes a rogue wave of height 2.7 times 
as high as the associated significant wave height. D | Recreation of the Draupner wave in a circular wave tank for crossing 
seas with a crossing angle of 120°. Images are shown of the free surface taken at intervals of 100 ms (panel Da–Dd). The 
scaled wave-​tank reproduction (red) is compared with the measurements at the Draupner platform (black) (panel De). 
Panel A is adapted from ref.157, CC-​BY-4.0 (https://creativecommons.org/licenses/by/4.0/). Panel B is adapted from ref.66, 
CC-​BY-3.0 (https://creativecommons.org/licenses/by/3.0/) and with permission from ref.174, APS. Panel C is adapted with 
permission from ref.166, APS. Panel D is adapted from ref.190 CC-​BY-4.0 (https://creativecommons.org/licenses/by/4.0/).

Shallow water
In hydrodynamics, shallow 
water waves are those that 
propagate in water of depth d 
that is much less than half their 
wavelength λ, that is, λ≪d ∕2. 
The intermediate depth regime 
lies between that of shallow 
and deep water.
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experiments investigated related deep-water (focusing  
nonlinearity) propagation effects such as Fermi–Pasta–
Ulam–Tsingou recurrence, the emergence of strongly 
modulated wavepackets and the formation of isolated 
NLSE solitons169–171. Later experiments examined the 
effect of wave breaking, with particular emphasis on 
how breaking influences the long-​time evolution of an 
evolving wave train172,173. Following the first observation 
of the Peregrine soliton in optics, there was renewed 
interest in studying analytic breather solutions to the 
NLSE in wave tanks with suitably tailored initial con-
ditions. This led to a number of experiments reporting 
similar Peregrine soliton dynamics66, and higher-​order 
breathers174 (see Fig. 5Ba,Bb, respectively). An additional 
study even generated a Peregrine soliton and examined 
its interaction with a model of a chemical tanker in a 
seakeeping test175.

An important experiment looked specifically at how 
rogue waves could be triggered randomly, by driving 
a wavemaker with scaled initial conditions replicating 
the experimental JONSWAP spectrum of waves on the 
North Sea79. The experimental results were consistent 
with the emergence of localized NLSE breathers from 
the modulation instability. These results supported 
earlier numerical studies that had predicted that the 
modulation instability would increase the probability of 
rogue waves in random oceanic sea states176, although 
the authors noted the limitation of their work in that it 
considered only 1D dynamics. These wave-​tank exper-
iments have been confirmed by using larger statistical 
data sets in recent experiments in optics, in which the 
optical initial conditions were tailored and scaled to 
match the JONSWAP spectrum parameters used in 
the wave-​tank experiments80. In a related experiment,  
a possible rogue wave triggering effect was demonstrated 
in a wave tank by adding a coherent Peregrine soliton 
state to a random JONSWAP wave spectrum as initial 
conditions to a wavemaker177.

Other works aimed to include processes found in 
the natural environment in wave-​tank experiments. 
For example, studies have shown that the modulation 
instability and Peregrine soliton evolution can per-
sist or even be enhanced in the presence of opposing 
currents178,179. In other experiments, the effect of wind 
on rogue wave dynamics has been studied in specially 
adapted wind–sea wave tanks180. Experiments in a  
1D wave tank have shown that wind can induce fre-
quency downshifting in the spectrum of initial breather 
solutions excited by a wavemaker181,182, whereas other 
experiments in an annular wave tank did not use any 
initial mechanical wave generation but allowed waves 
to develop spontaneously from the action of the wind 
on the water surface166 (Fig. 5C). These results show that 
wind forcing could indeed generate conditions for the 
observation of non-​Gaussian long-​tailed wave height 
statistics. Another work has examined the combination 
of nonlinear focusing with multi-​dimensional effects 
in a wave-​tank experiment using initial conditions that 
generated a coherent modulation envelope propagating 
at an angle to the carrier plane waves. These results have 
shown the generation of slanted solitons and breath-
ers on the water surface, confirming that soliton-​like 

nonlinear localization can be preserved in the presence 
of higher-​dimensional propagation183.

In addition to studies that explicitly set out to exam-
ine the role of the modulation instability and related 
nonlinear focusing on rogue wave dynamics, experi-
ments have shown that linear dispersive focusing can 
also generate large-​amplitude waves. Indeed, the gener-
ation of multi-​frequency initial conditions with phases 
adjusted to lead to a focused wave group at a prescribed 
distance in the wave tank has been used in a number of 
experiments studying wave-​breaking effects from large-​
amplitude waves184–187. In this context, we mention a  
1D wave-​tank experiment that was able to use determini
stic linear superposition of component waves to repro-
duce a scale model of the single-​position wave train of 
the Draupner wave188. Progress has also been made in 
understanding the role of linear and nonlinear focus-
ing in directional seas189, including a recent experiment 
recreating the Draupner wave from a multi-​directional 
superposition190 (Fig. 5D).

Outlook
In the past decade, there have been many examples of 
mutually beneficial studies of rogue waves in optics and 
hydrodynamics.

A particular focus of the latest studies has been the 
relative contributions of linear and nonlinear effects in  
driving the emergence of rogue waves. However, although 
nonlinear focusing has been shown to be a dominant 
mechanism of rogue wave formation in wave tanks, it 
has not been possible to draw the same conclusion in 
the more complex environment of the ocean. As a result, 
our view is that it is not useful to focus on any single 
cause of all rogue waves. Rather, we believe that objec-
tive interpretation of the current literature is that rogue 
waves on the ocean probably arise from several linear 
and nonlinear processes that contribute separately or in  
combination, depending on the ocean conditions at play.

We anticipate that progress in unravelling the com-
plexity of ocean waves will require both more precisely 
targeted studies using wave tanks and improved in situ 
spatiotemporal measurements of ocean waves in their 
natural environment. In particular, we expect that wave 
tank experiments will be vital to continued efforts to 
understand dynamical processes such as dissipation, 
wave breaking and air–sea interaction, and will remain a 
major area of research for decades to come. Concerning 
the role played by nonlinearity, even in addition to 
potential contributions to rogue wave formation, much 
effort is still required to improve our understanding 
of how nonlinear focusing may contribute to other 
phenomena such as wave run-​up191.

Higher-​dimensional effects will also be an impor-
tant area of research, and the development of new spa-
tial propagation systems in optics may lead to further 
analogies and cross-​fertilizing of ideas. In addition to 
analogous experiments, there are potential areas of over-
lap between optics and hydrodynamics from the per-
spective of data analysis. For example, complementing 
efforts that are developing approaches to deterministic 
prediction44,192, an important emerging area of research 
in both optics and oceanography is the application of 
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techniques from machine learning to detect patterns and 
build models based on analysis of large data sets193,194. 
In particular, for complex physical systems, in which 
there is no obvious model linking input and output, a 
machine learning algorithm can be trained using meas-
ured or simulated input and output data to determine 
an effective input–output model that can subsequently 
be used for predictive purposes195. In optics, such tech-
niques have attracted much attention in areas such 
as telecommunications and laser stabilization196–198, 
and have been applied to the analysis of intensity 
peaks in the modulation instability199. There has been 
similar broad interest in oceanography, with recent  
applications including the development of advanced  
statistical analysis of irregular waves200, prediction of 
tidal currents201 and wave forecasts202,203.

Experiments in optics that yield access to the full 
electric field of propagating light pulses have allowed 
the explicit calculation of the corresponding complex 

nonlinear eigenvalue spectrum126. Although well known 
in the mathematical analysis of nonlinear propagation 
and in studies of ocean rogue waves44, the ability to cal-
culate such a nonlinear spectrum from experimental 
data in optics is an advance that has already had appli-
cations in fundamental studies of optical turbulence204. 
Such measurements in optics also fall within a devel-
oping field related to applications of nonlinear Fourier 
transforms as a solution to overcome bandwidth limita-
tions in optical telecommunications205.

Since the first analogy between optical and ocean 
rogue waves was proposed in 2007, there have been 
remarkable developments worldwide, and an active 
field of interdisciplinary rogue wave physics has been 
established. The remaining open questions and evi-
dent areas of common interest lead us to expect further  
fruitful interactions between these two disciplines.

1.	 Kharif, C. & Pelinovsky, E. Physical mechanisms of the 
rogue wave phenomenon. Eur. J. Mech. B 22, 
603–634 (2003).

2.	 Kharif, C., Pelinovsky, E. & Slunyaev, A. Rogue Waves 
in the Ocean (Springer, 2008).

3.	 Dysthe, K., Krogstad, H. E. & Müller, P. Oceanic rogue 
waves. Annu. Rev. Fluid Mech. 40, 287–310 (2008).

4.	 Olagnon, M. Rogue Waves: Anatomy of a Monster 
(Adlard Coles Nautical, 2017).

5.	 Solli, D. R., Ropers, C., Koonath, P. & Jalali, B. Optical 
rogue waves. Nature 450, 1054–1057 (2007).

6.	 Akhmediev, N., Ankiewicz, A. & Taki, M. Waves that 
appear from nowhere and disappear without a trace. 
Phys. Lett. A 373, 675–678 (2009).

7.	 Dudley, J. M., Genty, G. & Eggleton, B. J. Harnessing 
and control of optical rogue waves in supercontinuum 
generation. Opt. Express 16, 3644–3651 (2008).

8.	 Akhmediev, N., Soto-​Crespo, J. M., Ankiewicz, A. & 
Devine, N. Early detection of rogue waves in a chaotic 
wave field. Phys. Lett. A 375, 2999–3001 (2011).

9.	 Akhmediev, N. et al. Roadmap on optical rogue waves 
and extreme events. J. Opt. 18, 063001 (2016).

10.	 Akhmediev, N., Dudley, J. M., Solli, D. R. & Turitsyn, S. K. 
Recent progress in investigating optical rogue waves. 
J. Opt. 15, 060201 (2013).

11.	 Onorato, M., Residori, S., Bortolozzo, U., Montina, A. 
& Arecchi, F. Rogue waves and their generating 
mechanisms in different physical contexts. Phys. Rep. 
528, 47–89 (2013).

12.	 Adcock, T. A. A. & Taylor, P. H. The physics of anomalous 
(‘rogue’) ocean waves. Rep. Prog. Phys. 77, 105901 
(2014).

13.	 Agrawal, G. P. Nonlinear Fiber Optics (Academic, 2012).
14.	 Mei, C. C., Stiassnie, M. & Yue, D. K.-P. Theory and 

Applications of Ocean Surface Waves (World 
Scientific, 2005).

15.	 Ablowitz, M. J. Nonlinear Dispersive Waves: 
Asymptotic Analysis and Solitons (Cambridge Univ. 
Press, 2011).

16.	 Boyd, R. W. Nonlinear Optics (Academic, 2008).
17.	 Debnath, L. Nonlinear Water Waves (Academic, 1994).
18.	 Falkovich, G. Fluid Mechanics (Cambridge Univ. Press, 

2018).
19.	 Blow, K. & Wood, D. Theoretical description of 

transient stimulated Raman scattering in optical fibers. 
IEEE J. Quantum Electron. 25, 2665–2673 (1989).

20.	 Dudley, J. M., Genty, G. & Coen, S. Supercontinuum 
generation in photonic crystal fiber. Rev. Mod. Phys. 
78, 1135–1184 (2006).

21.	 Zakharov, V. E. Stability of periodic waves of finite 
amplitude on the surface of a deep fluid. J. Appl. Mech 
Tech. Phys. 9, 190–194 (1968).

22.	 Dommermuth, D. G. & Yue, D. K. P. A high-​order 
spectral method for the study of nonlinear gravity 
waves. J. Fluid Mech. 184, 267–288 (1987).

23.	 West, B. J., Brueckner, K. A., Janda, R. S., Milder, D. M. 
& Milton, R. L. A new numerical method for surface 
hydrodynamics. J. Geophys. Res. 92, 11803–11824 
(1987).

24.	 Onorato, M., Osborne, A. R. & Serio, M. On  
the relation between two numerical methods for the 

computation of random surface gravity waves.  
Eur. J. Mech. B 26, 43–48 (2007).

25.	 Dyachenko, A. I., Kachulin, D. I. & Zakharov, V. E. Super 
compact equation for water waves. J. Fluid Mech. 828, 
661–679 (2017).

26.	 Dysthe, K. B. Note on a modification to the nonlinear 
Schrödinger equation for application to deep water 
waves. Proc. R. Soc. A 369, 105–114 (1979).

27.	 Trulsen, K. & Dysthe, K. B. A modified nonlinear 
Schrödinger equation for broader bandwidth gravity 
waves on deep water. Wave Motion 24, 281–289 
(1996).

28.	 Chabchoub, A. et al. Hydrodynamic supercontinuum. 
Phys. Rev. Lett. 111, 054104 (2013).

29.	 Akhmediev, N. & Ankiewicz, A. Solitons: Non-​linear 
Pulses and Beams (Chapman & Hall, 1997).

30.	 Lighthill, M. J. Contributions to the theory of waves in 
non-​linear dispersive systems. IMA J. Appl. Math. 1, 
269–306 (1965).

31.	 Whitham, G. B. A general approach to linear and  
non-​linear dispersive waves using a Lagrangian. 
J. Fluid Mech. 22, 273–283 (1965).

32.	 Bespalov, V. I. & Talanov, V. I. Filamentary structure  
of light beams in nonlinear liquids. JETP Lett. 3, 
307–310 (1966).

33.	 Benjamin, T. B. & Feir, J. E. The disintegration of wave 
trains on deep water. Part I. Theory. J. Fluid Mech. 27, 
417–430 (1967).

34.	 Peregrine, D. H. Water waves, nonlinear Schrödinger 
equations and their solutions. J. Aust. Math. Soc.  
Ser. B. 25, 16–43 (1983).

35.	 Akhmediev, N. N. & Korneev, V. I. Modulation 
instability and periodic solutions of the nonlinear 
Schrödinger equation. Theor. Math. Phys. 69, 
1089–1093 (1986).

36.	 Fermi, E., Pasta, J. & Ulam, S. Studies of Nonlinear 
Problems. I. Los Alamos Report LA-1940 (1955), 
reproduced in Nonlinear Wave Motion (ed. Newell, A. C.) 
(AMS, 1974).

37.	 Dauxois, T. Fermi, Pasta, Ulam, and a mysterious lady. 
Phys. Today 61, 55–57 (2008).

38.	 Suret, P. et al. Single-​shot observation of optical rogue 
waves in integrable turbulence using time microscopy. 
Nat. Commun. 7, 13136 (2016).

39.	 Soto-​Crespo, J., Devine, N. & Akhmediev, N. 
Integrable turbulence and rogue waves: breathers or 
solitons? Phys. Rev. Lett. 116, 103901 (2016).

40.	 Chabchoub, A. et al. The nonlinear Schrödinger 
equation and the propagation of weakly nonlinear 
waves in optical fibers and on the water surface. 
Ann. Phys. 361, 490–500 (2015).

41.	 Tomlinson, W. J., Stolen, R. H. & Johnson, A. M. 
Optical wave breaking of pulses in nonlinear optical 
fibers. Opt. Lett. 10, 457–459 (1985).

42.	 Babanin, A. Breaking and Dissipation of Ocean 
Surface Waves (Cambridge Univ. Press, 2011).

43.	 Barthelemy, X. et al. On a unified breaking onset 
threshold for gravity waves in deep and intermediate 
depth water. J. Fluid Mech. 841, 463–488 (2018).

44.	 Osborne, A. R. Nonlinear Ocean Waves and the 
Inverse Scattering Transform (Academic, 2010).

45.	 Zakharov, V. E. & Ostrovsky, L. A. Modulation instability: 
the beginning. Phys. D 238, 540–548 (2009).

46.	 Dudley, J. M., Dias, F., Erkintalo, M. & Genty, G. 
Instabilities, breathers and rogue waves in optics.  
Nat. Photonics 8, 755–764 (2014).

47.	 Kotz, S. & Nadarajah, S. Extreme Value Distributions: 
Theory and Applications (Imperial College Press, 
2000).

48.	 Genty, G., Dudley, J. M. & Eggleton, B. J. Modulation 
control and spectral shaping of optical fiber 
supercontinuum generation in the picosecond regime. 
Appl. Phys. B 94, 187–194 (2008).

49.	 Mussot, A. et al. Observation of extreme temporal 
events in CW-​pumped supercontinuum. Opt. Express 
17, 17010–17015 (2009).

50.	 Trulsen, K. & Dysthe, K. Freak waves — a three 
dimensional wave simulation. Proc.eedings of the 21st 
Symposium on Naval Hydrodynamics (pp., 550–560. 
(National Academy Press, 1997).

51.	 Onorato, M., Osborne, A. R., Serio, M. & Damiani, T. 
in Rogue Waves 2000 (eds. Olagnon, M. & 
Athanassoulis, G. A.) 181–192 (Ifremer, 2001).

52.	 Pelinovsky, E., Kharif, C., Talipova, T. & Slunyaev, A.  
in Rogue Waves 2000 (eds Olagnon, M. & 
Athanassoulis, G.) 193–204 (Ifremer, 2001).

53.	 Dyachenko, A. I. & Zakharov, V. E. Modulation 
instability of Stokes wave → freak wave. J. Exp. Theor. 
Phys. Lett. 81, 255–259 (2005).

54.	 Zakharov, V. E., Dyachenko, A. I. & Prokofiev, A. O. 
Freak waves as nonlinear stage of Stokes wave 
modulation instability. Eur. J. Mech. B 25, 677–692 
(2006).

55.	 Mollenauer, L. F., Stolen, R. H. & Gordon, J. P. 
Experimental observation of picosecond pulse 
narrowing and solitons in optical fibers. Phys. Rev. Lett. 
45, 1095–1098 (1980).

56.	 Tai, K., Hasegawa, A. & Tomita, A. Observation of 
modulational instability in optical fibers. Phys. Rev. Lett. 
56, 135–138 (1986).

57.	 Taylor, J. R. (ed.) Optical Solitons: Theory and 
Experiment (Cambridge Univ. Press, 2005).

58.	 Dold, J. W. & Peregrine, D. H. in Coastal Engineering 
1986: Proc. 20th International Conference on Coastal 
Engineering, 163–175 (American Society of Civil 
Engineers, 1986).

59.	 Dysthe, K. B. & Trulsen, K. Note on breather type 
solutions of the NLS as models for freak-​waves. 
Phys. Scr. T82, 48–52 (1999).

60.	 Dudley, J. M., Genty, G., Dias, F., Kibler, B. & 
Akhmediev, N. Modulation instability, Akhmediev 
breathers and continuous wave supercontinuum 
generation. Opt. Express 17, 21497–21508 
(2009).

61.	 Trebino, R. Frequency-​Resolved Optical Gating:  
The Measurement of Ultrashort Laser Pulses 
(Springer, 2002).

62.	 Andrekson, P. & Westlund, M. Nonlinear optical fiber 
based high resolution all-​optical waveform sampling. 
Laser Photonics Rev. 1, 231–248 (2007).

63.	 Kibler, B. et al. The Peregrine soliton in nonlinear fibre 
optics. Nat. Phys. 6, 790–795 (2010).

Published online 23 September 2019

NATuRe RevIeWS | PhySiCS

R e v i e w s

	  volume 1 | NOVEMBER 2019 | 687



64.	 Hammani, K. et al. Peregrine soliton generation and 
breakup in standard telecommunications fiber.  
Opt. Lett. 36, 112–114 (2011).

65.	 Kibler, B. et al. Observation of Kuznetsov-​Ma soliton 
dynamics in optical fibre. Sci. Rep. 2, 463 (2012).

66.	 Chabchoub, A., Hoffmann, N. P. & Akhmediev, N. 
Rogue wave observation in a water wave tank.  
Phys. Rev. Lett. 106, 204502 (2011).

67.	 Erkintalo, M. et al. Higher-​order modulation instability 
in nonlinear fiber optics. Phys. Rev. Lett. 107, 253901 
(2011).

68.	 Frisquet, B., Kibler, B. & Millot, G. Collision of 
Akhmediev breathers in nonlinear fiber optics.  
Phys. Rev. X 3, 041032 (2013).

69.	 Kibler, B., Chabchoub, A., Gelash, A., Akhmediev, N.  
& Zakharov, V. E. Superregular breathers in optics and 
hydrodynamics: omnipresent modulation instability 
beyond simple periodicity. Phys. Rev. X 5, 041026 
(2015).

70.	 Wetzel, B. et al. Experimental generation of Riemann 
waves in optics: a route to shock wave control.  
Phys. Rev. Lett. 117, 073902 (2016).

71.	 Xu, G., Conforti, M., Kudlinski, A., Mussot, A. &  
Trillo, S. Dispersive dam-​break flow of a photon fluid. 
Phys. Rev. Lett. 118, 254101 (2017).

72.	 Audo, F., Kibler, B., Fatome, J. & Finot, C. Experimental 
observation of the emergence of Peregrine-​like events 
in focusing dam break flows. Opt. Lett. 43, 2864–2867 
(2018).

73.	 Toenger, S. et al. Emergent rogue wave structures  
and statistics in spontaneous modulation instability.  
Sci. Rep. 5, 10380 (2015).

74.	 Närhi, M. et al. Real-​time measurements of 
spontaneous breathers and rogue wave events in 
optical fibre modulation instability. Nat. Commun. 7, 
13675 (2016).

75.	 Kolner, B. H. & Nazarathy, M. Temporal imaging with  
a time lens. Opt. Lett. 14, 630–632 (1989).

76.	 Salem, R., Foster, M. A. & Gaeta, A. L. Application of 
space–time duality to ultrahigh-​speed optical signal 
processing. Adv. Opt. Photonics 5, 274–317 (2013).

77.	 Tikan, A., Bielawski, S., Szwaj, C., Randoux, S. & 
Suret, P. Single-​shot measurement of phase and 
amplitude by using a heterodyne time-​lens system  
and ultrafast digital time-​holography. Nat. Photonics 
12, 228–234 (2018).

78.	 Tikan, A. et al. Universality of the Peregrine soliton  
in the focusing dynamics of the cubic nonlinear 
Schrödinger equation. Phys. Rev. Lett. 119, 033901 
(2017).

79.	 Onorato, M. et al. Extreme waves, modulational 
instability and second order theory: wave flume 
experiments on irregular waves. Eur. J. Mech. B 25, 
586–601 (2006).

80.	 Koussaifi, R. E. et al. Spontaneous emergence of rogue 
waves in partially coherent waves: a quantitative 
experimental comparison between hydrodynamics  
and optics. Phys. Rev. E 97, 012208 (2018).

81.	 Kraych, A., Agafontsev, D., Randoux, S. & Suret, P. 
Statistical properties of the nonlinear stage of 
modulation instability in fiber optics. Phys. Rev. Lett. 
123, 093902 (2019).

82.	 Chiao, R. Y., Garmire, E. & Townes, C. H. Self-​trapping of 
optical beams. Phys. Rev. Lett. 13, 479–482 (1964).

83.	 Garmire, E., Chiao, R. Y. & Townes, C. H. Dynamics  
and characteristics of the self-​trapping of intense light 
beams. Phys. Rev. Lett. 16, 347–349 (1966).

84.	 Hercher, M. Laser-​induced damage in transparent 
media. J. Opt. Soc. Am. 54, 563 (1964).

85.	 Barthelemy, A., Maneuf, S. & Froehly, C. Propagation 
soliton et auto-​confinement de faisceaux laser par non 
linearité optique de Kerr. Opt. Commun. 55, 201–206 
(1985).

86.	 Aitchison, J. S. et al. Observation of spatial optical 
solitons in a nonlinear glass waveguide. Opt. Lett. 15, 
471–473 (1990).

87.	 Stegeman, G. I. & Segev, M. Optical spatial solitons 
and their interactions: universality and diversity. 
Science 286, 1518–1523 (1999).

88.	 Montina, A., Bortolozzo, U., Residori, S. & Arecchi, F. T. 
Non-​Gaussian statistics and extreme waves in a 
nonlinear optical cavity. Phys. Rev. Lett. 103, 173901 
(2009).

89.	 Kasparian, J., Béjot, P., Wolf, J.-P. & Dudley, J. M. 
Optical rogue wave statistics in laser filamentation. 
Opt. Express 17, 12070–12075 (2009).

90.	 Majus, D., Jukna, V., Valiulis, G., Faccio, D. & Dubietis, A. 
Spatiotemporal rogue events in femtosecond 
filamentation. Phys. Rev. A 83, 025802 (2011).

91.	 Birkholz, S. et al. Spatiotemporal rogue events in 
optical multiple filamentation. Phys. Rev. Lett. 111, 
243903 (2013).

92.	 Longuet-​Higgins, M. S. The statistical analysis of a 
random, moving surface. Phil. Trans. R. Soc. A 249, 
321–387 (1957).

93.	 Peregrine, D. H. & Smith, R. Nonlinear effects upon 
waves near caustics. Phil. Trans. R. Soc. A 292, 
341–370 (1979).

94.	 Brown, M. G. Space–time surface gravity wave 
caustics: structurally stable extreme wave events. 
Wave Motion 33, 117–143 (2001).

95.	 Fochesato, C., Grilli, S. & Dias, F. Numerical modeling 
of extreme rogue waves generated by directional 
energy focusing. Wave Motion 44, 395–416 (2007).

96.	 Dudley, J. M., Sarano, V. & Dias, F. On Hokusai’s great 
wave off Kanagawa: localization, linearity and a  
rogue wave in sub-​Antarctic waters. Notes Rec. R. Soc. 
67, 159–164 (2013).

97.	 Goodman, J. W. Some fundamental properties of 
speckle. J. Opt. Soc. Am. 66, 1145–1150 (1976).

98.	 Bromberg, Y. & Cao, H. Generating non-​Rayleigh 
speckles with tailored intensity statistics. Phys. Rev. Lett. 
112, 213904 (2014).

99.	 Mathis, A. et al. Caustics and rogue waves in an 
optical sea. Sci. Rep. 5, 12822 (2015).

100.	Nye, J. Natural Focusing and Fine Structure of Light: 
Caustics and Wave Dislocations (Institute of Physics, 
1999).

101.	Vergeles, S. & Turitsyn, S. K. Optical rogue waves in 
telecommunication data streams. Phys. Rev. A 83, 
061801 (2011).

102.	Safari, A., Fickler, R., Padgett, M. J. & Boyd, R. W. 
Generation of caustics and rogue waves from nonlinear 
instability. Phys. Rev. Lett. 119, 203901 (2017).

103.	Haken, H. Laser Light Dynamics Vol. II (North Holland, 
1986).

104.	Grelu, P. & Akhmediev, N. Dissipative solitons for 
mode-​locked lasers. Nat. Photonics 6, 84–92 (2012).

105.	Soto-​Crespo, J. M., Grelu, P. & Akhmediev, N. Dissipative 
rogue waves: extreme pulses generated by passively 
mode-​locked lasers. Phys. Rev. E 84, 016604 (2011).

106.	Kovalsky, M. G., Hnilo, A. A. & Tredicce, J. R.  
Extreme events in the Ti:sapphire laser. Opt. Lett.  
36, 4449–4451 (2011).

107.	Lecaplain, C., Grelu, P., Soto-​Crespo, J. M. & 
Akhmediev, N. Dissipative rogue waves generated  
by chaotic pulse bunching in a mode-​locked laser. 
Phys. Rev. Lett. 108, 233901 (2012).

108.	Runge, A. F. J., Aguergaray, C., Broderick, N. G. R.  
& Erkintalo, M. Coherence and shot-​to-shot spectral 
fluctuations in noise-​like ultrafast fiber lasers.  
Opt. Lett. 38, 4327–4330 (2013).

109.	Runge, A. F. J., Broderick, N. G. R. & Erkintalo, M. 
Observation of soliton explosions in a passively  
mode-​locked fiber laser. Optica 2, 36–39 (2015).

110.	 Liu, M. et al. Successive soliton explosions in an 
ultrafast fiber laser. Opt. Lett. 41, 1181–1184 (2016).

111.	 Dudley, J. M., Boussen, S. M., Cameron, D. M. J.  
& Harvey, J. D. Complete characterization of a self-​
mode-locked ti:sapphire laser in the vicinity of zero 
group-​delay dispersion by frequency-​resolved optical 
gating. Appl. Opt. 38, 3308–3315 (1999).

112.	Cundiff, S. T., Soto-​Crespo, J. M. & Akhmediev, N. 
Experimental evidence for soliton explosions.  
Phys. Rev. Lett. 88, 073903 (2002).

113.	Herink, G., Jalali, B., Ropers, C. & Solli, D. R. 
Resolving the build-​up of femtosecond mode-​locking 
with single-​shot spectroscopy at 90 MHz frame rate. 
Nat. Photonics 10, 321–326 (2016).

114.	Herink, G., Kurtz, F., Jalali, B., Solli, D. R. & Ropers, C. 
Real-​time spectral interferometry probes the internal 
dynamics of femtosecond soliton molecules. Science 
356, 50–54 (2017).

115.	Yu, Y. et al. Spectral-​temporal dynamics of multipulse 
mode-​locking. Appl. Phys. Lett. 110, 201107 (2017).

116.	Liu, X., Yao, X. & Cui, Y. Real-​time observation of the 
buildup of soliton molecules. Phys. Rev. Lett. 121, 
023905 (2018).

117.	Sun, S., Lin, Z., Li, W., Zhu, N. & Li, M. Time-​stretch 
probing of ultra-​fast soliton dynamics related to  
q-​switched instabilities in mode-​locked fiber laser.  
Opt. Express 26, 20888–20901 (2018).

118.	Hamdi, S., Coillet, A. & Grelu, P. Real-​time 
characterization of optical soliton molecule dynamics 
in an ultrafast thulium fiber laser. Opt. Lett. 43, 
4965–4968 (2018).

119.	Du, Y., Xu, Z. & Shu, X. Spatio-​spectral dynamics of the 
pulsating dissipative solitons in a normal-​dispersion 
fiber laser. Opt. Lett. 43, 3602–3605 (2018).

120.	Wei, Z.-W. et al. Pulsating soliton with chaotic behavior 
in a fiber laser. Opt. Lett. 43, 5965–5968 (2018).

121.	Wang, G., Chen, G., Li, W., Zeng, C. & Yang, H. 
Decaying evolution dynamics of double-​pulse 
mode-locking. Photonics Res. 6, 825–829 (2018).

122.	Suzuki, M. et al. Spectral periodicity in soliton 
explosions on a broadband mode-​locked Yb fiber 
laser using time-​stretch spectroscopy. Opt. Lett. 43, 
1862–1865 (2018).

123.	Xu, Y., Wei, X., Ren, Z., Wong, K. K. Y. & Tsia, K. K. 
Ultrafast measurements of optical spectral coherence 
by single-​shot time-​stretch interferometry. Sci. Rep. 6, 
27937 (2016).

124.	Peng, J. et al. Real-​time observation of dissipative 
soliton formation in nonlinear polarization rotation 
mode-​locked fibre lasers. Commun. Phys. 1, 20 
(2018).

125.	Wei, X. et al. Unveiling multi-​scale laser dynamics 
through time-​stretch and time-​lens spectroscopies. 
Opt. Express 25, 29098–29120 (2017).

126.	Ryczkowski, P. et al. Real-​time full-​field 
characterization of transient dissipative soliton 
dynamics in a mode-​locked laser. Nat. Photonics 12, 
221–227 (2018).

127.	Li, B., Huang, S.-W., Li, Y., Wong, C. W. & Wong, K. K. Y. 
Panoramic-​reconstruction temporal imaging for 
seamless measurements of slowly-​evolved femtosecond 
pulse dynamics. Nat. Commun. 8, 61 (2017).

128.	Anderson, M. et al. Coexistence of multiple nonlinear 
states in a tristable passive Kerr resonator. Phys. Rev. 
X 7, 031031 (2017).

129.	Liu, P. C. A chronology of freaque wave encounters. 
Geofizika 24, 57–70 (2007).

130.	Nikolkina, I. & Didenkulova, I. Rogue waves in 
2006–2010. Nat. Hazards Earth Syst. Sci. 11, 
2913–2924 (2011).

131.	Nikolkina, I. & Didenkulova, I. Catalogue of rogue 
waves reported in media in 2006–2010. Nat. Hazards 
61, 989–1006 (2011).

132.	O’Brien, L., Dudley, J. M. & Dias, F. Extreme wave 
events in Ireland: 14 680 bp−2012. Nat. Hazards 
Earth Syst. Sci. 13, 625–648 (2013).

133.	O’Brien, L., Renzi, E., Dudley, J. M., Clancy, C. & Dias, F. 
Catalogue of extreme wave events in Ireland: revised 
and updated for 14 680 bp to 2017. Nat. Hazards 
Earth Syst. Sci. 18, 729–758 (2018).

134.	Draper, L. ‘Freak’ ocean waves. Weather 21, 2–4 
(1966).

135.	Husband washed overboard from trawler. Aberdeen 
Evening Express, 7 (23 October 1951).

136.	Forester, C. S. Hornblower and the Hotspur (A Horatio 
Hornblower Tale of the Sea) Ch. 11 (Michael Joseph, 
1962).

137.	Haver, S. in Proc. Rogue Waves 2004, additional 
papers (eds Prevosto, M. & Olagnon, M.) (Ifremer, 
2004); http://www.ifremer.fr/web-​com/stw2004/rw/
fullpapers/walk_on_haver.pdf

138.	Longuet-​Higgins, M. S. in Proc. 10th Conference on 
Naval Hydrodynamics, 597–605 (Office of Naval 
Research, 1974).

139.	Onorato, M. & Suret, P. Twenty years of progresses  
in oceanic rogue waves: the role played by weakly 
nonlinear models. Nat. Hazards 84, 541–548 (2016).

140.	Magnusson, A. K. & Donelan, M. A. The Andrea wave 
characteristics of a measured North Sea rogue wave. 
J. Offshore Mech. Arct. Eng. 135, 031108 (2013).

141.	Christou, M. & Ewans, K. Field measurements of rogue 
water waves. J. Phys. Oceanogr. 44, 2317–2335 
(2014).

142.	Flanagan, J. D., Dias, F., Terray, E., Strong, B. & 
Dudley, J. M. in 26th International Ocean and Polar 
Engineering Conference, ISOPE–I–16–589 
(International Society of Offshore and Polar Engineers, 
2016).

143.	de Pinho, U. F., Liu, P. C. & Parente Ribeiro, C. E. 
Freak waves at Campos Basin, Brazil. Geofizika 21, 
53–67 (2004).

144.	Casas-​Prat, M. & Holthuijsen, L. H. Short-​term statistics 
of waves observed in deep water. J. Geophys. Res. 
115, C09024 (2010).

145.	Baschek, B. & Imai, J. Rogue wave observations off 
the US west coast. Oceanography 24, 158–165 
(2011).

146.	Cattrell, A. D., Srokosz, M., Moat, B. I. & Marsh, R. 
Can rogue waves be predicted using characteristic 
wave parameters? J. Geophys. Res.: Ocean. 123, 
5624–5636 (2018).

147.	Ardhuin, F. et al. Measuring currents, ice drift, and 
waves from space: the Sea surface KInematics 
Multiscale monitoring (SKIM) concept. Ocean. Sci.  
14, 337–354 (2018).

148.	Gallego, G., Yezzi, A., Fedele, F. & Benetazzo, A. A 
variational stereo method for the three-​dimensional 
reconstruction of ocean waves. IEEE Trans. Geosci. 
Remote. Sens. 49, 4445–4457 (2011).

149.	Benetazzo, A. et al. On the shape and likelihood  
of oceanic rogue waves. Sci. Rep. 7, 8276 (2017).

www.nature.com/natrevphys

R e v i e w s

688 | NOVEMBER 2019 | volume 1	

http://www.ifremer.fr/web-com/stw2004/rw/fullpapers/walk_on_haver.pdf
http://www.ifremer.fr/web-com/stw2004/rw/fullpapers/walk_on_haver.pdf


150.	Lehner, S., Gunther, H. & Rosenthal, W. in 
International Geoscience and Remote Sensing 
Symposium, 2004, 1880–1883 (IEEE, 2004).

151.	Janssen, P. & Alpers, W. Why SAR wave mode data of 
ERS and ENVISAT are inadequate for giving the 
probability of occurrence of freak waves. Proc. SEASAR 
2006, ESA SP-613 (2006).

152.	Fedele, F., Lugni, C. & Chawla, A. The sinking of the El 
Faro: predicting real world rogue waves during 
Hurricane Joaquin. Sci. Rep. 7, 11188 (2017).

153.	Cardone, V., Pierson, W. & Ward, E. Hindcasting the 
directional spectra of hurricane-​generated waves.  
J. Petrol. Technol. 28, 385–394 (1976).

154.	Tamura, H., Waseda, T. & Miyazawa, Y. Freakish sea 
state and swell–windsea coupling: numerical study  
of the Suwa-​Maru incident. Geophys. Res. Lett. 36, 
L01607 (2009).

155.	Cavaleri, L. et al. Rogue waves in crossing seas:  
the Louis Majesty accident. J. Geophys. Res. Ocean. 
117, C00J10 (2012).

156.	Trulsen, K., Borge, J. C. N., Gramstad, O., Aouf, L.  
& Lefèvre, J.-M. Crossing sea state and rogue wave 
probability during the Prestige accident. J. Geophys. 
Res. Ocean. 120, 7113–7136 (2015).

157.	Fedele, F., Brennan, J., de León, S. P., Dudley, J.  
& Dias, F. Real world ocean rogue waves explained 
without the modulational instability. Sci. Rep. 6, 
27715 (2016).

158.	Cavaleri, L., Benetazzo, A., Barbariol, F., Bidlot, J.-R. 
& Janssen, P. A. E. M. The Draupner event: the large 
wave and the emerging view. Bull. Am. Meteorol. Soc. 
98, 729–735 (2017).

159.	Fujimoto, W., Waseda, T. & Webb, A. Impact of the 
four-​wave quasi-​resonance on freak wave shapes in the 
ocean. Ocean. Dyn. 69, 101–121 (2019).

160.	Onorato, M., Osborne, A. R. & Serio, M. Modulational 
instability in crossing sea states: a possible mechanism 
for the formation of freak waves. Phys. Rev. Lett. 96, 
014503 (2006).

161.	Gemmrich, J. & Thomson, J. Observations of the 
shape and group dynamics of rogue waves. Geophys. 
Res. Lett. 44, 1823–1830 (2017).

162.	Janssen, P. A. E. M. Nonlinear four-​wave interactions 
and freak waves. J. Phys. Oceanogr. 33, 863–884 
(2003).

163.	Annenkov, S. Y. & Shrira, V. I. Evolution of kurtosis for 
wind waves. Geophys. Res. Lett. 36, L13603 (2009).

164.	Fedele, F. On the kurtosis of deep-​water gravity waves. 
J. Fluid Mech. 782, 25–36 (2015).

165.	Gyongy, I., Bruce, T. & Bryden, I. Numerical  
analysis of force-​feedback control in a circular tank. 
Appl. Ocean. Res. 47, 329–343 (2014).

166.	Toffoli, A. et al. Wind generated rogue waves in an 
annular wave flume. Phys. Rev. Lett. 118, 144503 
(2017).

167.	Hunt, J. Nonlinear and wave theory contributions  
of T. Brooke Benjamin (1929–1995). Annu. Rev. 
Fluid Mech. 38, 1–25 (2006).

168.	Benjamin, T. B. Instability of periodic wavetrains in 
nonlinear dispersive systems. Proc. R. Soc. A 299, 
59–75 (1967).

169.	Yuen, H. C. & Lake, B. M. Nonlinear deep water waves: 
theory and experiment. Phys. Fluids 18, 956–960 
(1975).

170.	Lake, B. M. & Yuen, H. C. A note on some nonlinear 
water-​wave experiments and the comparison of data 
with theory. J. Fluid Mech. 83, 75–81 (1977).

171.	Yuen, H. C. & Lake, B. M. Nonlinear dynamics of deep-​
water gravity waves. Adv. Appl. Mech. 22, 67–229 
(1982).

172.	Rapp, R. J. & Melville, W. K. Laboratory measurements 
of deep-​water breaking waves. Phil. Trans. R. Soc. A 
331, 735–800 (1990).

173.	Tulin, M. P. & Waseda, T. Laboratory observations  
of wave group evolution, including breaking effects.  
J. Fluid Mech. 378, 197–232 (1999).

174.	Chabchoub, A., Hoffmann, N., Onorato, M. & 
Akhmediev, N. Super rogue waves: observation of a 
higher-​order breather in water waves. Phys. Rev. X 2, 
011015 (2012).

175.	Onorato, M., Proment, D., Clauss, G. & Klein, M. 
Rogue waves: from nonlinear Schrödinger breather 
solutions to sea-​keeping test. PLoS ONE 8, e54629 
(2013).

176.	Onorato, M., Osborne, A. R., Serio, M. & Bertone, S. 
Freak waves in random oceanic sea states. Phys. Rev. 
Lett. 86, 5831–5834 (2001).

177.	Chabchoub, A. Tracking breather dynamics in irregular 
sea state conditions. Phys. Rev. Lett. 117, 144103 
(2016).

178.	Toffoli, A. et al. Excitation of rogue waves in a variable 
medium: an experimental study on the interaction of 
water waves and currents. Phys. Rev. E 87, 051201(R) 
(2013).

179.	Liao, B., Ma, Y., Ma, X. & Dong, G. Experimental study 
on the evolution of Peregrine breather with uniform-​
depth adverse currents. Phys. Rev. E 97, 053102 
(2018).

180.	Kharif, C., Giovanangeli, J.-P., Touboul, J., Grare, L.  
& Pelinovsky, E. Influence of wind on extreme wave 
events: experimental and numerical approaches.  
J. Fluid Mech. 594, 209–247 (2007).

181.	Waseda, T. & Tulin, M. P. Experimental study of the 
stability of deep-​water wave trains including wind 
effects. J. Fluid Mech. 401, 55–84 (1999).

182.	Eeltink, D. et al. Spectral up- and downshifting of 
Akhmediev breathers under wind forcing. Phys. Fluids 
29, 107103 (2017).

183.	Chabchoub, A. et al. Directional soliton and breather 
beams. Proc. Natl Acad. Sci. USA 116, 9759–9763 
(2019).

184.	Greenhow, M., Vinje, T., Brevig, P. & Taylor, J. A 
theoretical and experimental study of the capsize of 
Salter’s duck in extreme waves. J. Fluid Mech. 118, 
221–239 (1982).

185.	Dommermuth, D. G. et al. Deep-​water plunging 
breakers: a comparison between potential theory  
and experiments. J. Fluid Mech. 189, 423–442 
(1988).

186.	Baldock, T. E., Swan, C. & Taylor, P. H. A laboratory 
study of nonlinear surface waves on water. Phil. Trans. 
R. Soc. A 354, 649–676 (1996).

187.	Alberello, A. et al. An experimental comparison  
of velocities underneath focussed breaking waves. 
Ocean. Eng. 155, 201–210 (2018).

188.	Clauss, G. & Klein, M. The New Year Wave in a 
seakeeping basin: generation, propagation, kinematics 
and dynamics. Ocean. Eng. 38, 1624–1639 (2011).

189.	Onorato, M. et al. Statistical properties of directional 
ocean waves: the role of the modulational instability in 
the formation of extreme events. Phys. Rev. Lett. 102, 
114502 (2009).

190.	McAllister, M. L., Draycott, S., Adcock, T. A. A.,  
Taylor, P. H. & van den Bremer, T. S. Laboratory 
recreation of the Draupner wave and the role of 
breaking in crossing seas. J. Fluid Mech. 860, 
767–786 (2019).

191.	Carbone, F., Dutykh, D., Dudley, J. M. & Dias, F. 
Extreme wave runup on a vertical cliff. Geophys. Res. 
Lett. 40, 3138–3143 (2013).

192.	Cousins, W. & Sapsis, T. P. Reduced-​order precursors 
of rare events in unidirectional nonlinear water waves. 
J. Fluid Mech. 790, 368–388 (2016).

193.	Jordan, M. I. & Mitchell, T. M. Machine learning: 
trends, perspectives, and prospects. Science 349, 
255–260 (2015).

194.	LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. 
Nature 521, 436–444 (2015).

195.	James, G., Witten, D., Hastie, T. & Tibshirani, R.  
An Introduction to Statistical Learning with 
Applications in R. (Springer, New York, 2013).

196.	Woodward, R. I. & Kelleher, E. J. R. Towards ‘smart 
lasers’: self-​optimisation of an ultrafast pulse  
source using a genetic algorithm. Sci. Rep. 6, 37616 
(2016).

197.	Zibar, D., Wymeersch, H. & Lyubomirsky, I. Machine 
learning under the spotlight. Nat. Photonics 11, 
749–751 (2017).

198.	Baumeister, T., Brunton, S. L. & Kutz, J. N. Deep 
learning and model predictive control for self-​tuning 
mode-​locked lasers. J. Opt. Soc. Am. B 35, 617–626 
(2018).

199.	Närhi, M. et al. Machine learning analysis of extreme 
events in optical fibre modulation instability.  
Nat. Commun. 9, 4923 (2018).

200.	Mohamad, M. A. & Sapsis, T. P. Sequential sampling 
strategy for extreme event statistics in nonlinear 
dynamical systems. Proc. Natl Acad. Sci. USA 115, 
11138–11143 (2018).

201.	Sarkar, D., Osborne, M. A. & Adcock, T. A. Prediction 
of tidal currents using Bayesian machine learning. 
Ocean. Eng. 158, 221–231 (2018).

202.	O’Donncha, F., Zhang, Y., Chen, B. & James, S. C.  
An integrated framework that combines machine 
learning and numerical models to improve wave-​
condition forecasts. J. Mar. Syst. 186, 29–36 
(2018).

203.	James, S. C., Zhang, Y. & O’Donncha, F. A machine 
learning framework to forecast wave conditions.  
Coast. Eng. 137, 1–10 (2018).

204.	Randoux, S., Walczak, P., Onorato, M. & Suret, P. 
Nonlinear random optical waves: integrable 
turbulence, rogue waves and intermittency. Phys. D 
333, 323–335 (2016).

205.	Turitsyn, S. K. et al. Nonlinear Fourier transform for 
optical data processing and transmission: advances 
and perspectives. Optica 4, 307–322 (2017).

Acknowledgements
J.M.D. acknowledges support from the French Investis
sements d’Avenir programme, project ISITE-​BFC (contract 
ANR-15-IDEX-0003). G.G. acknowledges support from  
the Academy of Finland (grants 298463 and 318082).  
A.M. acknowledges support from the Fonds Européen de 
Développement Economique Régional (project HEAFISY),  
the Labex CEMPI (ANR-11-LABX-0007) and Equipex FLUX  
(ANR-11-EQPX-0017) and the French Investissements  
d’Avenir programme. F.D. acknowledges support from  
Science Foundation Ireland (SFI) under the research project 
‘Understanding extreme nearshore wave events through  
studies of coastal boulder transport’ (14/US/E3111). Earlier 
but critical financial support to J.M.D. and F.D. was provided  
by the European Research Council (ERC-2011-AdG 
290562-MULTIWAVE). The authors' understanding of the 
physics and applications of rogue waves in many different 
physical systems has benefited from collaboration and  
discussion with numerous colleagues and friends whom the 
authors thank. The authors also thank C. Billet for assistance 
in figure preparation.

Author contributions
All authors contributed to the preparation of this manuscript.

Competing interests
The authors declare no competing interests.

Publisher’s note
Springer Nature remains neutral with regard to jurisdictional 
claims in published maps and institutional affiliations.

NATuRe RevIeWS | PhySiCS

R e v i e w s

	  volume 1 | NOVEMBER 2019 | 689


	Rogue waves and analogies in optics and oceanography

	Nonlinear focusing

	Propagation models. 
	NLSE models and typical parameters for optical and hydrodynamic rogue waves

	Mechanisms and measurements. 

	Rogue waves in optics

	Overview. 
	One-​dimensional propagation. 
	Two-​dimensional propagation. 
	Transient instabilities in lasers. 

	Rogue waves in oceanography

	Overview. 
	Rogue waves in the natural environment. 
	Hindcasting simulations. 
	Wave-​tank experiments. 

	Outlook

	Acknowledgements

	Fig. 1 Localization properties of nonlinear focusing dynamics in the nonlinear Schrödinger equation for three different cases.
	Fig. 2 Timeline illustrating the parallel developments in fibre optics (top) and hydrodynamics (bottom).
	Fig. 3 Optical rogue wave measurements.
	Fig. 4 Characterization of transient instabilities in lasers.
	Fig. 5 Ocean and wave-​tank measurements of rogue waves.




