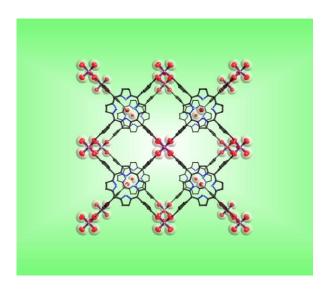


OIST SEMINAR


Date: June 1st, 2015 (Mon) Time: 10:00 am – 11:00 am

Venue: B503, seminar room (Lab 1)

Speaker: Prof. Sahraoui Chaieb

[King Abdullah University of Science and Technology (KAUST), Saudi Arabia]

Buckling of macroscopic metal-organic-framework nanofilms

Abstract

MOFs(metal organic frameworks) are new types of porous crystalline materials that are composed of inorganic metal ions or ion-clusters coordinated to organic linkers to form one-, two-, or three-dimensional structures. MOFs have highly regular pores and cavities that provide an extremely high surface area/volume ratio making them very suitable candidates for applications in selective separation, filtration and storage of gases. We report the largest-area metal-organic framework (MOF) film to date, fabricated at the air-water interface (or iMOF). We used a Brewster Angle Microscope (BAM) to image the iMOF morphology transformation in-situ. To prove that the film is as large as the whole trough, we submitted it to a symmetric uniaxial compression, directly monitored with BAM and surface pressure measurement. BAM pictures during iMOF compression show stripes of buckling or fracture at a critical compression which shows that the film span the whole interface. The surface pressure is rugged showing the effect of the friction of the film on the water surface.

Contact information: Fluid Mechanics Unit

Kaori Egashira: (Tel) 098-966-8683 (e-mail) e-kaori@oist.jp