B30
Course Coordinator: 
Yabing Qi
Surface Sciences
Description: 

Surface science is a discipline devoted to elucidating fundamental properties of physics and chemistry occurring at surfaces and interfaces. Surface science contributes to many areas of science and technology, for example, physical chemistry, electronic devices, catalysis, semiconductor processing, new materials development, biomaterials, biotechnology and biomedicine, nanotechnology, and so on. This course is intended as an introduction to surface science basic concepts and instrumentation for graduate students. The objectives are twofold: (i) provide students with comprehensive lectures of basic concepts and operation principles of major analytical techniques in surface science and (ii) discussion of the applications of these concepts and instruments in various research fields.

Aim: 
Course Content: 

The following topics will be covered via lectures and projects: the basic concepts, operation principles, instrumentation and applications of scanning tunneling microscopy (STM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), ultraviolet photoemission spectroscopy (UPS), Inverse Photoemission Spectroscopy (IPES), etc.

Course Type: 
Elective
Credits: 
2
Assessment: 

Homework assignments 50% (2 hours per week), 2 projects x 25% (8 hours / project)

Text Book: 

Modern Techniques of Surface Science, 3 edn, D. Phil Woodruff (2016) Cambridge University Press
Concepts in Surface Physics, 2 edn, M.-C. Desjonquères and D. Spanjaard (1998) Springer-Verlag Berlin Heidelberg
Surface Science – An Introduction, K. Oura, V.G. Lifshits, A.A. Saranin, A.V. Zotov, M. Katayama (2003) Springer-Verlag

Reference Book: 

Introduction to Scanning Tunneling Microscopy, C.J. Chen (1993) Oxford University Press
Photoelectron Spectroscopy – Principles and Applications, 3 edn, S. Hüfner (2003) Springer-Verlag

Prior Knowledge: 
General knowledge in physics and chemistry.
Notes: