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1 Grassmann variables
Observation: We used the ezterior algebra A* to define the differential forms
ANR"=T'R"/{e; ®e;j+e;@e;, Vi,j=1l.n}, (1.1)
with 7™ being tensor algebra
T*R" =T"R(e;) =R®R(e;) R(e; ®e;) PR(e; ®e; Qep) @ ... (1.2)

There is another commonly used name for the same algebra - Grassmann algebra, because

we can describe the same algebra as algebra of polynomials of Grassmann variables
AR = R[] = R & R(s) © R{; 1) & . @ Ry .. - 1), (1.3)

There are several other commonly used names for Grassmann variables - fermionic variables
in physics literature and Grassmann-odd variables in math literature. Grassmann variables

1" obey exterior algebra relations
{47} = ' gt = 0. (1.4)
The functions on Grassmann variables v are finite polynomials since
Yt = 0. (1.5)

We can introduce Grassmann version of the n-dimensional Euclidean space, denoted by R°™



and identify
A'R" = R[¢)'] = C=(R™). (1.6)

Definition: Parity |A| of the monomial A is an integer mod 2. Monomials with zero parity
are denoted as Grassmann-even while the ones with parity 1 as Grassmann-odd. Sometimes
the notation is simplified to odd and even variables. The generators of Grassmann algebra

have parities
W] = 1. (L.7)

Parity of the product is the sum of parities
|A- Bl = |A[ + B, (1.8)
so the parity of the individual monomials is the total number of Grassmann variables mod 2
W =0, [t =1, ... (1.9)

The parity 0 expressions behave as usual variables i.e. commute among themselves. For

example
['?, '] = 0, (1.10)

while expressions with odd parity anti-commute between themselves
{p'yF ™} = 0. (1.11)

More generally for pair of expressions A and B with parities |A| and | B| the following relation
holds
[A,Bl: = {A,B] = AB — (—1)"11BIBA = 0. (1.12)

The {-, -] is physics notation, while [-,-]+ is math notation for the graded commutator, or
supercommutator in physics literature. The graded commutator obey the graded version of

the commutator properties

e Graded symmetry
{A,B] = —(-1)"1PYB, A] (1.13)

e Graded Leibnitz
{A,BC) = {A, B|C + (-1)IPIB{A, C] (1.14)



e Graded Jacobi

{A{B,C]] + (—=)ABHCI B {C Al + (-1)IBIUCHIAD IO LA Bl = 0. (1.15)

Example: The functions of single odd varible ¢ are polynomials of degree 1

f@) = fo+ fiv + fo0® + ... = fo+ fib, fo, fr €R. (1.16)

Remark: Taylor series for functions on Grassmann spaces are always finite and we do not

need to worry about the convergence issues.

Example: The exponent function of four odd variables
DAty ot - y i kil
e =1+ g At + 5 E A j A" Ity (1.17)

1.1 Derivatives

We can define derivatives on monomials

9p(1) =0, Oy(y) =1, (1.18)

so the derivative of arbitrary function

Opf () = Oy(fo + frh) = foOy(1) + f10y () = fi. (1.19)

For multivariable case

9

50 (W' PRt ) = (—1)Fp PRt yn (1.20)

the way to determine the overall sign is to move the relevant variable to the very front, take
into account sign, from graded commutators and take a 1d derivative. The functions on
Grassmann variables are identical to their Taylor series, so we can extend the derivatives
on monomials to derivatives on functions. The derivative obey graded version of the usual

derivative properties:

e Linearity

Oy(acf + Bg) = adyf + posg, a.B R, (1.21)



e Graded Leibnitz
Oy(A-B)=0,A-B+ (-1)"A.9,B.

e For a single Grassmann variable v-derivative and multiplication by 1) obey
{0y, ¥} = Oyt + 40y = 1.

e For multiple Grassmann variables 1* the derivative and multiplications obey
{0;,0;3 =0, {0;,¢'} =10,

1.2 Integration

The integration over Grassmann variables is performed using the Berezin rules

/d91:o, /d99:1.

The Berezin integral for function of singe odd variable

/d&f(&):/de(foJrfl@):fl/deezflz%.

Let us list some properties of Berezin integration

e Integral of total derivative vanishes

/d@c‘?gf(e):/dﬁfozo

e Delta-function is the linear function

Indeed an explicit check
10 = [ do 5(6)16) = 1o = [ a0 610

e Change of variables .
d(af) = —df, d(f+ €)= db,
a

(1.22)

(1.23)

(1.24)

(1.25)

(1.26)

(1.27)

(1.28)

(1.29)

(1.30)



what follows from

1= /d@’@’ = /d(ae) af :/éd@ af = /d@ 0 (1.31)

and
fi= [0 0= [ato+0 10+ = [ao+o (104 s+ i) = [ o o, (132)

The multiple variable case integration picks up the top degree monomial form the function

1.e.

/d”&f(ez-) = /del...den £(0) = /d”& Fir1101. 00 = fri1 = %, (1.33)

while the sign is determined by order of #’s, in a way similar to the derivative definition.

Example: The Berezin integral over RO"

There is an additional convention that we need is the integral of the form
ROIn
for o being monomial of Grassmann variables that does not depend on #°.

Example: The Grassmann-odd Fourier transform of 1 is

/ d29 67]191—“}202 = / d29 77191’[7292 == —/ d20 7]177261‘92 = —1ne. (136)
ROI2 ROI2

RO[2
1.3 Change of variables

In previous section we observed that change of variables differ for Grassmann-even and

Grassmann-odd variables. Single variable case

d(ar) = adx, d(ab) = %d@ (1.37)



The multivariable generalization for linear variable change

2t = ZA;xj, d"z' = det A d"z,
’ . (1.38)
dme.

det D

0 =Y D50", d"0' =
B

with A and D being real matrices A € Mat, x,(R) and D € Mat,,».m(R). We can generalize

the linear change of variables to include mixed terms.

Definition The linear operator W : R®™ — R"™™ can be written in block form

(20)
W = , (1.39)
C D

with A and D being Grassmann-even while B and C' being Grassmann-odd. We can use W

to describe the mixed linear change of variables

Tt = 2": Azxz + zm: Bg@ﬁ,
j=1 p=1

" " (1.40)
0" => Dgo’ +> Coal.
p=1 j=1
The change of mixed integration measure
d"z'd™0" = Ber(W) d"xd™0, (1.41)

with Ber(W) is the Berezian, or superdeterminant in physics literature, defined to be

_ det(A—BD'C)
N det D '

Ber(W) = sdet(V) (1.42)

The formula for Berezian fcan be derived using the multiplicativity under the composition
l.e.

Ber(W; - Wy) = Ber(W;) - Ber(Ws) (1.43)



and factorization

W:(A B>:<A—BD‘1C B>< 1 0)7 144
C D 0 D D'C 1

We can define a graded generalization of trace also known as the supertrace
A B
Str W = Str =TrA—-"TrD (1.45)
C D

The supertrace and superdeterminant are related is the same way as the trace and determi-

nant

sdet(e") = exp (Str V) (1.46)

We can generalize the linear transformations to arbitrary smooth maps f : R®™ — R™™
with coordinate transformation of the integration measure being expressed through super-

Jacobian J of coordinate transformation

d"0'd"x’ = Jd"0d"z, (1.47)
with
J = Ber(J3) (1.48)
The Jacobian matrix ‘ .
(% %
JB = 89/04 ag/a . (1.49)
ori  00P

1.4 Gaussian integrals

In later sections we are going to use Gaussian integrals a lot, so let us summarize some

properties of the Gaussian integrals for both even and odd variables. We will start with the

/Rdx e = \/g, (1.50)

followed by the delta function inspired Gaussian integral

most familiar single-variable case

a

. 2
/ dxdp e"P* = 27?/ dx §(ax) = -, (1.51)
R R



The multi-varible generalization of the above integrals

n/2

i3 ™
d" —Ajjztr?
/ LT (det A)172

and

/ d"pd"x et Briptal _
R2n

The Berezin version of the single variable

/ d6df ¢ = / d8d (1 + abf) = / d6df abd = a
RO[2 ROI2 RO[2

with multi-variable integrals

_ 1 o
/ d"0d" P = =N " drinidn B, By = det B.
n:

Let us mention one more integral, commonly-used in physics literature

i 1 o
/ 9 00 = S A Ay Ay uia, = PHA).

with Pf(A) being Pfaffian of the matrix A;; which obey
[Pf(A)]? = det A.

1.5 Differential forms as functions

The differential forms on R™ by construction are
Q*(R") = A"R" @ C*(R").
We can use Grassmann-odd variables to represent A*R™ so that
Q*(R") = C*(R") @ C=(R") = C=(R"™).

Let us introduce a map
F:Q(R") — C®°R") : w— F,,.

(1.52)

(1.53)

(1.54)

(1.55)

(1.56)

(1.57)

(1.58)

(1.59)

(1.60)



Using coordinates 2’ and v on R™" we can write the map F in components

1 : - 1 | |
w = E Zwil---ik(‘r)dx“ A ANda™ — F, = E Zwil...ik(x)@bzl P

Proposition: The map
F: Q' (R) — C>*(R"")

is the isomorphism of differential graded algebras.

Proof: We need to check whether F' preserves the structures defining the DGA:

Vector space structure

Fowipy = aF,+ BF,, Va,B R, Yw,pue Q(R")

Multiplication structure
Fopp = F, - F,.

Grading
| Fo| = |l

the external derivative is the first-order differential operator
Fdw = Dde

with i
Da=Y_ ',
i—1

e D, is differential
Di = W00, = =) 00, == 000, = —Dj=0.
e D, obey graded Leibnitz

D4(FG) = DgF -G + (-1)IFICIF . D,G

(1.61)

(1.62)

(1.63)

(1.64)

(1.65)

(1.66)

(1.67)

(1.68)

(1.69)



1.6 Differential forms as functions on supermanifold

Let {U,} be an open covering of the topological space M. We can endow M with the structure
of n|m-dimensional suprmanifold with the following information. Let ¢, : Uy, — R™™ be a
coordinate chart on U, with local coordinates (z4,0,). On U, N Uz we can relate (z4,06,)
and (z3,03) by (2, 0a) = ¢a O¢El($ﬁ, 65). The map Gop = ¢o ogbgl is a transition function.
By construction

G5aGap =1, GapGarGay =1 (1.70)

Alternatively, we can describe the manifold M purely by specifying the transition functions
gap that obey (1.70). A manifold is called differentiable if g,5 are differentiable, smooth if

Jap are smooth.

Example: Let X be the n-dimensional smooth manifold then we can construct odd tangent
bundle IIT X, a supermanifold of dimension n|n. Let {U,} be open covering of X and with
local coordinates * on U,. Using transition function g,s for X we can describe transition
function for IITX

333 = 93,3(956)
0, = 040;9.5(x5) (1.71)

(l‘a, Qa) = chﬁ(m,(% 05) = (gé6<xﬂ)7 %@géﬁ(xg))

In previous sections we discussed that the differential forms on R™ are the same as

functions on R™™ = IITR". This correspondence can be further generalized to
F:QX)—-C*(ITX) :w+— F, (1.72)
Proposition: Map F' is an isomorphism of DGA.

Proof: We already showed that F' is an isomorphism of DGA for each open set U, of
the covering {U,} of X. What we left to check is the transition for forms on X and func-
tions on IIT'X as we across the intersections U, N Ug. Let us label coordinates on IIT'X as
2' for even part and v* for odd part. The same coordinates z¢ can be used as coordinates

on X. The two differential forms w, and wg on U, and Up are related by the pullback map

W8 = YapWa (1.73)

10



where g, are the transition functions from zg to z,
To = Gas(25) (1.74)
The corresponding functions
1 i1 ik 1 1 ik
Wa = o7 sz‘l...z‘k@a)dﬂ?a A..Ndzlk = F, = o an...ik (T )P2k - - (1.75)

are related via

1 * [ %
Fug = Forgwa = k! Z(gaﬁw)il‘-ikwﬁl e Yy

T D 059050500k wir i (Gos(@e) WL -

e (1.76)
1 11 J1 ik Ik
= E Z Wiy ..., (gaﬂ(xﬁ))aj1ga5¢ﬁ : ~'~ajkgaﬁ : wg
D11 ikdk
— GZﬁFwa'

Thus we conclude that the functions F,,, and [y, are related by the pullback map Gz on
I[IT X, hence F,, is well-defined function on II7TX.

The integral over X of a top form w is identical to the Grassmann integral of the corre-

sponding function

/ w —/ d"xzd™ ) F,(x,1). (1.77)
X n7X
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