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1 Grassmann variables

Observation: We used the exterior algebra Λ∗ to define the differential forms

Λ∗Rn = T ∗Rn/{ei ⊗ ej + ej ⊗ ei, ∀i, j = 1..n}, (1.1)

with T ∗ being tensor algebra

T ∗Rn = T ∗R〈ei〉 = R⊕ R〈ei〉 ⊕ R〈ei ⊗ ej〉 ⊕ R〈ei ⊗ ej ⊗ ek〉 ⊕ .... (1.2)

There is another commonly used name for the same algebra - Grassmann algebra, because

we can describe the same algebra as algebra of polynomials of Grassmann variables ψi

Λ∗Rn = R[ψi] = R⊕ R〈ψi〉 ⊕ R〈ψi · ψj〉 ⊕ ...⊕ R〈ψ1 · ... · ψn〉. (1.3)

There are several other commonly used names for Grassmann variables - fermionic variables

in physics literature and Grassmann-odd variables in math literature. Grassmann variables

ψi obey exterior algebra relations

{ψi, ψj} = ψiψj + ψjψi = 0. (1.4)

The functions on Grassmann variables ψi are finite polynomials since

ψiψi = 0. (1.5)

We can introduce Grassmann version of the n-dimensional Euclidean space, denoted by R0|n
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and identify

Λ∗Rn = R[ψi] = C∞(R0|n). (1.6)

Definition: Parity |A| of the monomial A is an integer mod 2. Monomials with zero parity

are denoted as Grassmann-even while the ones with parity 1 as Grassmann-odd. Sometimes

the notation is simplified to odd and even variables. The generators of Grassmann algebra

have parities

|ψi| = 1. (1.7)

Parity of the product is the sum of parities

|A ·B| = |A|+ |B|, (1.8)

so the parity of the individual monomials is the total number of Grassmann variables mod 2

|ψiψj| = 0, |ψiψjψk| = 1, .... (1.9)

The parity 0 expressions behave as usual variables i.e. commute among themselves. For

example

[ψiψj, ψkψl] = 0, (1.10)

while expressions with odd parity anti-commute between themselves

{ψiψjψk, ψm} = 0. (1.11)

More generally for pair of expressions A and B with parities |A| and |B| the following relation

holds

[A,B]± = {A,B] ≡ AB − (−1)|A|·|B|BA = 0. (1.12)

The {·, ·] is physics notation, while [·, ·]± is math notation for the graded commutator, or

supercommutator in physics literature. The graded commutator obey the graded version of

the commutator properties

• Graded symmetry

{A,B] = −(−1)|A|·|B|{B,A] (1.13)

• Graded Leibnitz

{A,BC] = {A,B]C + (−1)|A||B|B{A,C] (1.14)
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• Graded Jacobi

{A, {B,C]] + (−1)|A|(|B|+|C|){B, {C,A]] + (−1)|B|(|C|+|A|){C, {A,B]] = 0. (1.15)

Example: The functions of single odd varible ψ are polynomials of degree 1

f(ψ) = f0 + f1ψ + f2ψ
2 + ... = f0 + f1ψ, f0, f1 ∈ R. (1.16)

Remark: Taylor series for functions on Grassmann spaces are always finite and we do not

need to worry about the convergence issues.

Example: The exponent function of four odd variables

e
∑
Aijψ

iψj = 1 +
∑

Aijψ
iψj +

1

2

∑
AijAklψ

iψjψkψl. (1.17)

1.1 Derivatives

We can define derivatives on monomials

∂ψ(1) = 0, ∂ψ(ψ) = 1, (1.18)

so the derivative of arbitrary function

∂ψf(ψ) = ∂ψ(f0 + f1ψ) = f0∂ψ(1) + f1∂ψ(ψ) = f1. (1.19)

For multivariable case

∂

∂ψ

(
ψ1ψ2...ψkψψk+1...ψn

)
= (−1)kψ1...ψkψk+1...ψn (1.20)

the way to determine the overall sign is to move the relevant variable to the very front, take

into account sign, from graded commutators and take a 1d derivative. The functions on

Grassmann variables are identical to their Taylor series, so we can extend the derivatives

on monomials to derivatives on functions. The derivative obey graded version of the usual

derivative properties:

• Linearity

∂ψ(αf + βg) = α∂ψf + β∂ψg, α, β ∈ R. (1.21)
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• Graded Leibnitz

∂ψ(A ·B) = ∂ψA ·B + (−1)|A|A · ∂ψB. (1.22)

• For a single Grassmann variable ψ-derivative and multiplication by ψ obey

{∂ψ, ψ} = ∂ψψ + ψ∂ψ = 1. (1.23)

• For multiple Grassmann variables ψi the derivative and multiplications obey

{∂i, ∂j} = 0, {∂j, ψi} = δij. (1.24)

1.2 Integration

The integration over Grassmann variables is performed using the Berezin rules∫
dθ 1 = 0,

∫
dθ θ = 1. (1.25)

The Berezin integral for function of singe odd variable∫
dθ f(θ) =

∫
dθ (f0 + f1θ) = f1

∫
dθ θ = f1 =

∂f

∂θ
. (1.26)

Let us list some properties of Berezin integration

• Integral of total derivative vanishes∫
dθ ∂θf(θ) =

∫
dθ f0 = 0 (1.27)

• Delta-function is the linear function

δ(θ) = θ (1.28)

Indeed an explicit check

f(0) =

∫
dθ δ(θ)f(θ) = f0 =

∫
dθ θf(θ) (1.29)

• Change of variables

d(aθ) =
1

a
dθ, d(θ + ε) = dθ, (1.30)
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what follows from

1 =

∫
dθ′θ′ =

∫
d(aθ) aθ =

∫
1

a
dθ aθ =

∫
dθ θ (1.31)

and

f1 =

∫
dθ′ f(θ′) =

∫
d(θ+ε) f(θ+ε) =

∫
d(θ+ε) (f1θ+f0+f1ε) =

∫
dθ f1θ. (1.32)

The multiple variable case integration picks up the top degree monomial form the function

i.e. ∫
dnθf(θi) =

∫
dθ1...dθn f(θ) =

∫
dnθ f11...11θ1...θn = f11...11 =

∂nf(θi)

∂θ1...∂θn
, (1.33)

while the sign is determined by order of θ’s, in a way similar to the derivative definition.

Example: The Berezin integral over R0|n

∫
dnθ θi1 ...θin = εi1...in . (1.34)

There is an additional convention that we need is the integral of the form∫
R0|n

dθ1...dθn αθ1...θn = α (1.35)

for α being monomial of Grassmann variables that does not depend on θi.

Example: The Grassmann-odd Fourier transform of 1 is∫
R0|2

d2θ eη1θ1+η2θ2 =

∫
R0|2

d2θ η1θ1η2θ2 = −
∫
R0|2

d2θ η1η2θ1θ2 = −η1η2. (1.36)

1.3 Change of variables

In previous section we observed that change of variables differ for Grassmann-even and

Grassmann-odd variables. Single variable case

d(ax) = adx, d(aθ) =
1

a
dθ (1.37)
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The multivariable generalization for linear variable change

x′i =
∑
j

Aijx
j, dnx′ = detA dnx,

θ′α =
∑
β

Dα
βθ

β, dmθ′ =
1

detD
dmθ.

(1.38)

with A and D being real matrices A ∈Matn×n(R) and D ∈Matm×m(R). We can generalize

the linear change of variables to include mixed terms.

Definition The linear operator W : Rn|m → Rn|m can be written in block form

W =

(
A B

C D

)
, (1.39)

with A and D being Grassmann-even while B and C being Grassmann-odd. We can use W

to describe the mixed linear change of variables

x′i =
n∑
j=1

Aijx
i +

m∑
β=1

Bi
βθ

β,

θα =
m∑
β=1

Dα
βθ

β +
n∑
j=1

Cα
j x

j.

(1.40)

The change of mixed integration measure

dnx′dmθ′ = Ber(W ) dnxdmθ, (1.41)

with Ber(W ) is the Berezian, or superdeterminant in physics literature, defined to be

Ber(W ) = sdet(W ) =
det(A−BD−1C)

detD
. (1.42)

The formula for Berezian fcan be derived using the multiplicativity under the composition

i.e.

Ber(W1 ·W2) = Ber(W1) · Ber(W2) (1.43)
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and factorization

W =

(
A B

C D

)
=

(
A−BD−1C B

0 D

)(
1 0

D−1C 1

)
, (1.44)

We can define a graded generalization of trace also known as the supertrace

Str W = Str

(
A B

C D

)
= TrA− TrD (1.45)

The supertrace and superdeterminant are related is the same way as the trace and determi-

nant

sdet(eV ) = exp (Str V ) (1.46)

We can generalize the linear transformations to arbitrary smooth maps f : Rn|m → Rn|m

with coordinate transformation of the integration measure being expressed through super-

Jacobian J of coordinate transformation

dmθ′dnx′ = Jdmθdnx, (1.47)

with

J = Ber(JAB ) (1.48)

The Jacobian matrix

JAB =

(
∂x′i

∂xj
∂θ′i

∂θβ

∂θ′α

∂xj
∂θ′α

∂θβ

)
. (1.49)

1.4 Gaussian integrals

In later sections we are going to use Gaussian integrals a lot, so let us summarize some

properties of the Gaussian integrals for both even and odd variables. We will start with the

most familiar single-variable case ∫
R
dx e−ax

2

=

√
π

a
, (1.50)

followed by the delta function inspired Gaussian integral∫
R2

dxdp eiapx = 2π

∫
R
dx δ(ax) =

2π

a
. (1.51)

7



The multi-varible generalization of the above integrals∫
Rn
dnx e−Aijx

ixj =
πn/2

(detA)1/2
(1.52)

and ∫
R2n

dnpdnx eiBkjp
kxj =

(2π)n

detB
. (1.53)

The Berezin version of the single variable∫
R0|2

dθdθ̄ eaθθ̄ =

∫
R0|2

dθdθ̄ (1 + aθθ̄) =

∫
R0|2

dθdθ̄ aθθ̄ = a (1.54)

with multi-variable integrals∫
dnθdnθ̄ eBijθ

iθ̄j =
1

n!

∑
εi1...inεj1..jnBi1j1 ...Binjn = detB. (1.55)

Let us mention one more integral, commonly-used in physics literature∫
d2nθ e

1
2
Aijθ

iθj =
1

2nn!

∑
εi1...i2nAi1i2Ai3i4 ....Ai2n−1i2n = Pf(A). (1.56)

with Pf(A) being Pfaffian of the matrix Aij which obey

[Pf(A)]2 = detA. (1.57)

1.5 Differential forms as functions

The differential forms on Rn by construction are

Ω∗(Rn) = Λ∗Rn ⊗ C∞(Rn). (1.58)

We can use Grassmann-odd variables to represent Λ∗Rn so that

Ω∗(Rn) = C∞(R0|n)⊗ C∞(Rn|0) = C∞(Rn|n). (1.59)

Let us introduce a map

F : Ω∗(Rn)→ C∞(Rn|n) : ω 7→ Fω. (1.60)
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Using coordinates xi and ψi on Rn|n we can write the map F in components

ω =
1

k!

∑
ωi1...ik(x)dxi1 ∧ ... ∧ dxik 7→ Fω =

1

k!

∑
ωi1...ik(x)ψi1 · ... · ψik (1.61)

Proposition: The map

F : Ω∗(R)→ C∞(Rn|n) (1.62)

is the isomorphism of differential graded algebras.

Proof: We need to check whether F preserves the structures defining the DGA:

• Vector space structure

Fαω+βµ = αFω + βFµ, ∀α, β ∈ R, ∀ω, µ ∈ Ω∗(Rn) (1.63)

• Multiplication structure

Fω∧µ = Fω · Fµ. (1.64)

• Grading

|Fω| = |ω| (1.65)

• the external derivative is the first-order differential operator

Fdω = DdFω (1.66)

with

Dd =
n∑
i=1

ψi∂i, (1.67)

• Dd is differential

D2
d =

∑
ψiψj∂i∂j = −

∑
ψjψi∂i∂j = −

∑
ψjψi∂j∂i = −D2

d = 0. (1.68)

• Dd obey graded Leibnitz

Dd(FG) = DdF ·G+ (−1)|F ||G|F ·DdG (1.69)
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1.6 Differential forms as functions on supermanifold

Let {Uα} be an open covering of the topological spaceM . We can endowM with the structure

of n|m-dimensional suprmanifold with the following information. Let φα : Uα → Rn|m be a

coordinate chart on Uα with local coordinates (xα, θα). On Uα ∩ Uβ we can relate (xα, θα)

and (xβ, θβ) by (xα, θα) = φα ◦φ−1
β (xβ, θβ). The map Gαβ = φα ◦φ−1

β is a transition function.

By construction

GβαGαβ = 1, GαβGβγGαγ = 1 (1.70)

Alternatively, we can describe the manifold M purely by specifying the transition functions

gαβ that obey (1.70). A manifold is called differentiable if gαβ are differentiable, smooth if

gαβ are smooth.

Example: Let X be the n-dimensional smooth manifold then we can construct odd tangent

bundle ΠTX, a supermanifold of dimension n|n. Let {Uα} be open covering of X and with

local coordinates xα on Uα. Using transition function gαβ for X we can describe transition

function for ΠTX

xiα = giαβ(xβ)

θiα = θjβ∂jg
i
αβ(xβ)

(xα, θα) = Gαβ(xβ, θβ) = (giαβ(xβ), θjβ∂jg
i
αβ(xβ))

(1.71)

In previous sections we discussed that the differential forms on Rn are the same as

functions on Rn|n = ΠTRn. This correspondence can be further generalized to

F : Ω∗(X)→ C∞(ΠTX) : ω 7→ Fω (1.72)

Proposition: Map F is an isomorphism of DGA.

Proof: We already showed that F is an isomorphism of DGA for each open set Uα of

the covering {Uα} of X. What we left to check is the transition for forms on X and func-

tions on ΠTX as we across the intersections Uα ∩ Uβ. Let us label coordinates on ΠTX as

xi for even part and ψi for odd part. The same coordinates xi can be used as coordinates

on X. The two differential forms ωα and ωβ on Uα and Uβ are related by the pullback map

ωβ = g∗αβωα (1.73)
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where gαβ are the transition functions from xβ to xα

xiα = giαβ(xβ) (1.74)

The corresponding functions

ωα =
1

k!

∑
ωi1...ik(xα)dxi1α ∧ ... ∧ dxikα 7→ Fωα =

1

k!

∑
ωi1...ik(xα)ψi1α · ... · ψikα (1.75)

are related via

Fωβ = Fg∗αβωα =
1

k!

∑
(g∗αβω)i1...ikψ

i1
β · ... · ψ

ik
β

=
1

k!

∑
i1j1...ikjk

∂j1g
i1
αβ...∂jkg

ik
αβ ωi1...ik(gαβ(xβ))ψj1β · ... · ψ

jk
β

=
1

k!

∑
i1j1...ikjk

ωi1...ik(gαβ(xβ))∂j1g
i1
αβψ

j1
β · ...∂jkg

ik
αβ · ψ

jk
β

= G∗αβFωα .

(1.76)

Thus we conclude that the functions Fωα and Fωβ are related by the pullback map G∗αβ on

ΠTX, hence Fω is well-defined function on ΠTX.

The integral over X of a top form ω is identical to the Grassmann integral of the corre-

sponding function ∫
X

ω =

∫
ΠTX

dnxdnψ Fω(x, ψ). (1.77)
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