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History of random tensors

o First introduced in zero dimension: random geometry and quantum
gravity [Ambjorn Durhuus Jonsson '90, Boulatov '92, Ooguri '92, ...]

o Strongly coupled QFTs and holography (d = 1): SYK model without
disorder [Witten, Klebanov, Tarnopolsky, .. .]

@ Tensor models in higher dimension: new class of conformal field
theories — melonic CFTs
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Different types of melonic limit

Multiple fields: 4 tensor fields, O(/V)® symmetry
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Colored tensor models: 1 tensor field, O(/V)3 symmetry
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SYK model

(*]

I bizia Wi Vi Yia iy

(~]

Multi matrix models with a large number of matrices [Ferrari, Schaposnik
Massolo, Valette ... ], different symmetry groups



Colored O(N) models

Ta,2,. 5, in fundamental representation of O(N) x O(N) x --- x O(N)

(4] Propagator: Pa132---ar,b1b2--.br = 5a1b1532b2 R 53rbr
o Interaction: complete graph K, i1

K4 KG

A melonic large N limit exists for prime r. Ferrarri, Rivasseau, Valette '17



Irreducible tensor models

o What about other tensor representations?
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Completely symmetric tensors: no melonic large N limit

Irreducible tensors:

(]

o Propagator: orthogonal projector on an irreducible representation of

O(N)

o Interaction: Complete graph invariant

@ Do these models admit a large N expansion?

o Is it melonic?



Irreducible tensor models

Conjecture:
For r = 3, there exists a melonic large N limit for O(N) symmetric
traceless tensors. [Klebanov, Tarnopolsky '17]

o Evidence: Explicit numerical check for all diagrams up to order \8

o Proof and generalizations:

° O(N) irreducible, r =3 [Benedetti, Carrozza, Gurau, Kolanowski]

° Sp(N) irreducible, r=3 [Carrozza, Pozsgay]

o Generalization for r > 37
= Here for 5 indices



Outline

O The model

© Perturbative expansion

© Sketch of the proof



The model
Free energy:
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@ P one of seven orthogonal projectors on irreducible representations
@ Interaction vertex
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Propagator

P: orthogonal projector on one of the irreducible tensor spaces
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For traceless symmetric tensors:
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Types of edges

@ Unbroken: all strands traverse

—
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o Broken: a pair of corners is connected by a strand at each end of the
edge. Rescaled by 1//V
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@ Doubly broken: two pairs of corners are connected by a strand at

each end of the edge. Rescaled by 1//V?
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Perturbative expansion

@ Fp(A): sum over rooted connected combinatorial maps G

o Half-edge: represented with five strands
@ 945 ways to connect two half-edges

@ Projector: combination of those terms with different weights and
signs

o Stranded map G: combinatorial map with a choice of one term per
edge
B = Y AOAQ)

G connected, rooted



1/N expansion

Amplitude of a stranded map:
A(G) = K(G)N(C)(1 + O(1/N))
e K(G) non-vanishing rational number independent of /V
@ One free sum = One factor of /V per face
o Degree of a stranded map:

w(G) =5+ 5V(G) + B(G) + 2B5(G) — F(G)



1/N expansion

Amplitude of a stranded map:
A(G) = K(G)N(C)(1 + O(1/N))

e K(G) non-vanishing rational number independent of /V
@ One free sum = One factor of /V per face

o Degree of a stranded map:

w(G) =5+ 5V(G) + B(G) + 2B5(G) — F(G)

Goals:
— Non-negative degree

— Maps of zero degree are melonic
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Problematic cases

o Simplify the degree by considering number of faces of length p

w(G) =5+ B(G) +2Bx(G +ZF (7—1>

— Can be negative iff faces of length p =1 or p = 2 (short-faces):
o p = 1: Tadpoles, double-tadpoles
@ p = 2: Melons, dipoles

o Graphs with only long faces: positive degree



Bad double tadpoles

Chain of p double tadpoles:
o 4 faces per vertex
o Factor N~° per vertex

o 2 faces when we glue two double-tadpoles
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Unbounded from above

— non-trivial cancellations



Bounds on combinatorial maps

o Stranded maps with negative degree

@ Use irreducibility of the representation to bound the amplitude of the
full combinatorial maps

o Double-tadpoles combinatorial maps well-behaved

@ Melons: contribute to leading-order



Bounds on combinatorial maps

o Stranded maps with negative degree

@ Use irreducibility of the representation to bound the amplitude of the
full combinatorial maps
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Double-tadpoles combinatorial maps well-behaved
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Melons: contribute to leading-order
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Problem: generalized double-tadpoles — arbitrarily negative degree

o Need to subtract both melons and double-tadpoles



Main theorem

We have (in the sense of perturbation series):

Fe(\) = > N“FS().
weN

o Subtract double-tadpoles and melons
@ Restrict to unbroken edges

@ Induction: remaining graphs have positive degree



Step 1: Subtraction of double-tadpoles and melons

At the combinatorial map level:

=0 — &= =0

= Crucial role of the irreducibility assumption

@ Rewrite out theory with modified covariance and subtracted
interaction

o New perturbative expansion in terms of maps G with no
double-tadpoles or melons




Step 2: Restriction to unbroken edges

o Cut and glue: changes the number of faces by —1, 0 or +1
o From doubly broken to unbroken propagator:
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Step 2: Restriction to unbroken edges

o Cut and glue: changes the number of faces by —1, 0 or +1
o From doubly broken to unbroken propagator:
D (= D (=
— e —
— S 1cutand glue ——— 1 cut and glue
Remove broken edge:
o decrease the number of faces by at most one

o decrease the number of broken edges by one

o the degree can only decrease



Step 3: Remaining graphs

Let G be a stranded graph. If G has no double-tadpole and no melon,
then w(G) > 0.

— proof by induction



Let G be a stranded graph. If G has no double-tadpole and no melon,
then w(G) > 0.

— proof by induction
@ Look for a strict subgraph that can be deleted without increasing the
degree and preserving the constraints
@ Exhaustive graph-theoretic distinction of cases

@ High number of particular two-point subgraphs to consider



Examples of combinatorial moves

’ c d )
N O—Q
a c Ch 2 1/><i
) ( v 0 : :
d

DG

UuU
nn



Examples of combinatorial moves
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Boundary graphs
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Boundary graphs
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@ Recursive bounds on w <+ bounds on flip distance between boundary
graphs
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End graphs

@ Ring graphs (V = 0)

o G with no short faces



End graphs

@ Ring graphs (V = 0)
o G with no short faces

@ Special cases that need to be treated separately



Leading order

Stranded graphs with no melon can have vanishing degree

— Non-trivial cancellations



Stranded graphs with no melon can have vanishing degree
— Non-trivial cancellations

@ Bounds on combinatorial maps through Cauchy-Schwarz inequalities

A(@0) = 4(€58) 4 (060) -

@ Maps with no melons are subleading

e Conclusion: A Feynman map is leading order iff it is melonic



Schwinger-Dyson equation

The two-point function verifies a closed SDE
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F,(,o)()\) is a solution of the polynomial equation:

1—X+mpA°X® =0



Conclusion and outlook
@ Irreducible tensor models with 5-simplex interactions: melonic
large- N expansion

o Recursive bounds from a detailed combinatorial analysis of the
Feynman graphs.

o Estimated scaling of four and eight-point functions: could include
other effective interactions
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