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Invitation to topological recursion and its ramifications: Exercises

Weil–Petersson volumes

Let Mg,n(L1, . . . , Ln) be the moduli space of oriented hyperbolic surfaces of genus g with n
boundary components of geodesic lengths L1, . . . , Ln. Every Riemann surface can be decom-
posed into 2g − 2 + n pairs of pants with 3g − 3 + n internal lengths. These lengths and the
gluing angles give coordinates in this moduli space (called Fenchel–Nielsen coordinates). Using
them we locally define a 2-form ωWP on the moduli space. Taking care of some issues, we can
use it to define Weil–Petersson volumes:

Vg,n :=
1

(3g − 3 + n)!

∫
Mg,n(L1,...,Ln)

ω3g−3+n
WP .

It is only possible to compute Vg,n directly for very small (g, n), but Mirzakhani (2004) found
a recursion for them:

Vg,n = “expression in terms of Vg′,n′” (complicated looking integral formula),

with 2g′ − 2 + n′ < 2g − 2 + n.
Consider the Laplace transforms of the WP volumes:

Wg,n(z1, . . . , zn) =

∫ ∞
0

· · ·
∫ ∞
0

e−z1L1−...−znLnVg,n(L1, . . . , Ln)
n∏
i=1

Li dLi.

In 2006, Eynard and Orantin proved that Mirzakhani’s recursion is actually an instance of TR,
by Laplace transform.

Theorem. The TR applied to the following spectral curve

SWP =


x(z) = z2,

y(z) = −1
4π

sin(2πz),

ω0,2(z1, z2) = B(z1, z2) = dz1dz2
(z1−z2)2

governs Weil–Petersson volumes, in the sense that the TR multi-differentials are ωg,n(z1, . . . , zn) =
Wg,n(z1, . . . , zn) dz1 · · · dzn.

Exercise 1. Using topological recursion on the spectral curve of the previous theorem, compute
W0,3(z1, z2, z3) and W1,1(z1). (Bonus: Compute W0,4(z1, z2, z3, z4) and more.)
Start by showing that the recursion kernel is:

K(z1, z) :=

∫ z
−z ω0,2(z1, ·)

2(ω0,1(z)− ω0,1(σ(z)))
=

−π dz1
(z21 − z2) sin(2πz) dz

,

with σ(z) = −z.
Deduce that V0,3(L1, L2, L3) = 1, V1,1(L1) = 1

24
(2π2 + 1

2
L2
1) and V0,4(L1, L2, L3, L4) = 2π2 +

1
2

∑4
i=1 L

2
i . (You may use a CAS for this computation).

GUE = Maps without internal faces

Exercise 2. Consider maps without internal faces, that is tk = 0 in the generating series. This
corresponds to the Gaussian Unitary Ensemble (GUE).

1. Deduce from combinatorics that Map
[g]
` = 0 for all ` odd. (Bonus) Can you also justify

this vanishing making use of the correspondence to a certain expectation value?



2. (Bonus) Determine the constant ZGUE such that
∫
HN

dνGUE = 1, with

dνGUE(A) =
1

ZGUE
e−C Tr(A2) dA.

3. Write the Tutte’s recursion for the generating series Wg,n(x1, . . . , xn) of maps without
internal faces.

4. From the Tutte’s recursion for the disk, i.e. for (0, 1), compute W (x) = W0,1(x). Can you
recognise the coefficients of x−(1+2m)?

5. Show that W (x) is an analytic function of x ∈ C \ [a−, a+]. Compute a±.

6. Compute ω0,1(z) and ω1,1(z). Would you know how to deduce the number of maps of
topology (1, 1) with boundary length up to 10? (Indication: To compute ω1,1(z), you
can use the topological recursion formula and a CAS. To compute the number of maps of
topology (1, 1), you can use a CAS.)

Reminder: Wg,1(x) =
∑

`≥0
Map

[g]
`

x`+1 , ωg,1(z) = Wg,1(x(z)) dx(z), with x(z) = z + 1
z
.

Properties

For all 2g − 2 + n > 0, we have dilaton equation∑
α∈Ram

Res
z=α

Φ(z)ωg,n+1(z1, . . . , zn) = (2g − 2 + n)ωg,n(z1, . . . , zn),

where dΦ = ydx (defined up to a constant, but Res
z=α

ωg,n(z1, . . . , zn) = 0.

Exercise 3. Deduce a reasonable definition for ωg,0 from dilaton equation.

Exercise 4. Prove homogeneity: if we rescale y(z) 7→ λy(z), the output of TR rescales as
ωg,n 7→ λ2−2g−nωg,n.

Exercise 5. (Symplectic invariance) Prove that the following transformations of spectral curves
(x, y) are symplectic, i.e. they preserve the symplectic form dx ∧ y:

1. y 7→ y +R(x), where R(x) is a rational function of x;

2. y 7→ λy, x 7→ x
λ
, λ ∈ C∗;

3. x 7→ ax+b
ax+d

, y 7→ (cx+d)2

ad−bc y;

4. (x, y) 7→ (y,−x) (exchange transformation).

Prove that the first three leave the output of topological recursion invariant. The transformation
of the output when applying the last transformation is highly non-trivial, being actively studied
and still to be properly understood (more on talks next week).

Bonus exercises on maps

There are a special type of maps, very related to the exchange transformation (symplectic
invariance), called fully simple maps. In some sense, fully simple maps are the dual of maps;
you will learn more on this duality in the 3 of the TR talks of next week. Simple maps are
defined as maps in which when going around the edges of a boundary, one only enters every
vertex once. Fully simple maps are simple maps in which the boundaries don’t share any vertex.
Do you understand the definitions? Consider the analogue of the generating series of maps in

which we only sum over fully simple maps: FSMap
[g]
`1,...,`n

.

Exercise 6. Consider the generating series of disks W (x) and fully simple disks X(w):

W (x) =
∑

`≥0
Map

[0]
`

x`+1 and X(w) =
∑

`≥0 FSMap
[0]
` w

`−1 .

Prove that X(W (x)) = x.



Exercise 7. Consider quadrangulations, i.e. maps with tk = 0 for k 6= 4. Draw all the disks
with one boundary of length 4 and none or 1 internal quadrangle. How many are there? How
many of those are simple? And fully simple? Compute the number of quadrangulations with a
boundary of length 2 and none or 1 internal quadrangle. How many cylinders with boundaries
of lengths 2 and 4 are there? How many of those are simple/fully simple? How are the series

F
[0]
`1

and F
[0]
`1,4

related? Do you observe some general phenomenon?

Maps with labeled half-edges are in one-to-one correspondence with triples of permutations
σ, α, ϕ on the set of half-edges. The permutation σ is defined as the permutation whole cycles
go around the half-edges of vertices (counter-clockwise), α is an involution that pairs half-edges
and ϕ has cycles that go around the half-edges of faces (counter-clockwise).

Exercise 8. Consider the following map with labeled half-edges. Find the associated permu-
tations σ, α, ϕ that encode it. Check that you get σ ◦α◦ϕ = 1 and that the number of vertices,
edges and faces of the map coincide with the number of cycles of σ, α, ϕ, respectively.
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Exercise 9. Formalise the definitions of isomorphisms of maps and autormorphisms of maps
using the permutational model and play with them.

Bonus TR exercise

Exercise 10. Compute the spectral curve of quadrangulations (in terms of the parameter z).
Would you know how to extract the number of quadrangulations, first for disks and then for
the next topologies?


