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o A triple duality: symplectic, simple and free



3 contexts:

o Free probability:
Moments ¢ «+ Free cumulants

@ Combinatorics:
Maps < Fully simple maps

@ Topological recursion (TR):

¥ Riemann surface
x: 3 — Cp! y:x — cp! R Multi-differentials

= ydx 7l-form ~ ‘/Jg,n(zl, .. ,Zn)a zi € IR
wo,1 =Y vg,n > 0.

wo,2 bidifferential

TR N
(6, y) ~= wgn > (X,7) ~> dg,n,

with dx Ady =dx Ady (symplectic transformation).
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Symplectic transformation & __---~

@ CMSS, '06: (Collins, Mingo, Sniody, Speicher ;006).

@ GGN, '11: (Goulden, Guay-Paquet, Novak, "11).

@ BG, "17: (Borot, G-F, '17), BCDG, '19: (Borot, Charbonnier, Do, G-F, "19), BCG, '21:
(Borot, Charbonnier, G-F, ‘21).

@ BDKS, '21: (Bychkov, Dunin-Barkowski, Kazarian, Shadrin, ‘21), ABDKS, "22: (Alexandrov
+ BDKS, '22).
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Q Master relation: a universal duality?



Double monofone Hurwitz numbers

k,dEZZo,/\,uFd.

Definition

Double Hurwitz number Hy.(\, p) ~>
number of possibly disconnected
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weighted by |Aut]|.
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Double monofone Hurwitz numbers

k,dEZZo,/\,uFd.

Definition

Double Hurwitz number Hy.(\, p) ~>
number of possibly disconnected
coverings of the sphere with
ramification profile Hild ) = #
@ AoverO0, poveroo,
@ simply ramified over k points in
P\ {0, 00},
weighted by |Aut]|.

@ C, ~ Conjugacy class in G4 of elements of cycle type A + d.

He(\, p) = % |{(0’,T1,...,Tk) |o€Cx, 1€ Caa.. 1), OT1- Tk € CH}| J

Transpositions 7 = (a; by). witha; < by, i=1,...,k
@ b; < by ~ Weakly monofone:Hks()\, 1) (Goulden-Guay-Paquet-Novak, 11).
@ b; < by ~ Strictly monotone: H (X, ).

d—1
HS(\,p) = > HS (A, wh* € Qr] and HS (A, 1) = > HE (A, w) (—h)* € Q[A].
k=0 k>0




Topological parfition functions and master relation

Fock space ~~» completion of the ring of symmetric polynomials with coefficients
formal series in h:

]:R = Rﬂ_plzp27p37"']]7 ‘FR;E = “FR®Q((E))
© X\ € Y~ Young diagrams. Consider py = px, =+ P,y -

o z(3) = IT.%) M [Tjs, (W)L where my()) is the number of j's in A.



Topological parfition functions and master relation

Fock space ~~» completion of the ring of symmetric polynomials with coefficients
formal series in h:

Fr=R[p1,p2,p3;---],  Frn=TFr®Q(h).
@ X\ € Y ~ Young diagrams. Consider py = px, RS SIS
o z(3) = IT.%) M [Tjs, (W)L where my()) is the number of j's in A.
Topological partition function: Z = ef € Frp. F = g0 h29=2Fy, Fy € Fr.
z=exp (3 w02 BNy S Nz,
g>0

z(A) AEY
XEY



Topological parfition functions and master relation

Fock space ~~» completion of the ring of symmetric polynomials with coefficients
formal series in h:

Fr=R[p1,p2,p3;---],  Frn=TFr®Q(h).
@ X\ € Y ~ Young diagrams. Consider py = px, RS SIS
o z(3) = IT.%) M [Tjs, (W)L where my()) is the number of j's in A.
Topological partition function: Z = ef € Frp. F = g0 h29=2Fy, Fy € Fr.
_o Fg(\) Zinl—
_ 2g—2Fg _ IA]=£()
Z=exp (Y 0 ) pA)=1+> 1 Z(\)pa.
g>0 A€y
ey

Two topological partition functions Z and ZV satisfy the master relation if

Z(\) =2(\) > HS(\,w)Zz" () (*)
HEX]




Topological parfition functions and master relation

Fock space ~~» completion of the ring of symmetric polynomials with coefficients
formal series in h:

Fr=R[p1,p2,p3;---],  Frn=TFr®Q(h).
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Topological partition function: Z = ef € Frp. F = g0 h29=2Fy, Fy € Fr.
_o Fg(\) Zinl—
_ 2g—2Fg _ IA]=£()
Z=exp (Y 0 ) pA)=1+> 1 Z(\)pa.
g>0 A€y
ey

Two topological partition functions Z and ZV satisfy the master relation if

Z(\) =2(\) > HS(\,w)Zz" () (*)
HEX]

Dual formulation of the master relation:

() & 2/ (W) =20 Y HS w2 ().
B[



Multiplicative functions, correlators, open problem and strategy

Topological partition function Z = ef « multiplicative function @z PS— R[A].
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Definition
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Maps and fully simple maps

Definition

A map of genus g and n boundaries is a connected graph I' embedded info a
closed oriented surface X of genus g such that

X\TI'x |_|]D) (faces), with n distinguished faces, (up to iso).

A @

Simple: Boundaries are simple polygons. J

Topology (g, n) = (1,2 boundaries)

Fully simple: Simple and pairwise disjoint boundaries.

> & &




Maps and formal hermitian matrix models

Generating series of maps of genus g and n boundaries of lengths 1y , . . ., n:

Map? | = > I tengtnen)-
MeMl (1. 1) S ETFaces(M)

FSMap,[fI] - ~ Same for fully simple maps.

kn




Maps and formal hermitian matrix models

Generating series of maps of genus g and n boundaries of lengths 1y , . . ., n:

Map? | = > I tengtnen)-
MeMl (1. 1) S ETFaces(M)

k™ Same for fully simple maps.

FSMapE’l] .

Hn: N x N hermitian matrices. V(x) = % = 2k>1 %‘xk and the (unitary
invariant) measure on Hy:
1 2
dv(A) = —e NV ga, with 25 = / e NTrga.
ZO HN
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Maps and formal hermitian matrix models

Generating series of maps of genus g and n boundaries of lengths 1y, . . ., ln:

Map[g] T Z H tength(f) -

MeMB(1 ... 1) ETFaces(M)

FSMap[g] ~+ Same for fully simple maps.

o kn

Hn: N x N hermitian matrices. V(x) = 5 — 315 % L xk and the (unitary
invariant) measure on Hy:

2

dv(A) = ie*NTrWA)dA, with 2o = e My dA.

Z
0 Hy

Moments and classical cumulants:

<HTrM" > and ¢ (TrM%,... TrM™).
@ y=(c1C ... ) CYClein Gy ~ Py (M) = HM) Me; (e

(TIPx(M)) and  ca(Py, (M), Py (M),
i=1

where ~; are pairwise disjoint cycles of Sy (N > >=1 ; €(v)).



From maps to free probability via matrix models

Free probability from matrix model:

.y = lim N"Zcq(TrM*, ... Tr M),
12 Is--tn

N—oo

n
. —24-d —
Koyt :#LmooNn Fen (Pyy (M), . .., Py, (M), d_;ei.



From maps to free probability via matrix models

Free probability from matrix model:

©ry,.en = lim N"2cq(TrM%, ..., TrM*"),

N—oo

n

— —2+4+d _

Koy, tn _N11_>mooN" Fen (Pyy (M), . .., Py, (M), d_;ei.
i=

Proposition (Brézin-Itzykson—Parisi-Zuber, 78, Borot-G-F, “17)

cn(TrMA, .. TrMi) = 3" N2-29-"Mapl? |
920

Cn (P'yl (M), ... s Pryn (M)) = Z Nz_zg_n_dFSMap%i],m,en'
g9>0




From maps to free probability via matrix models

Free probability from matrix model:

b1ty = lim N 2c,(TrM“Y, ... Tr M%),
12 1--%n

N—oo

N— o0

Koy, by = Jim N 2+dcn(7)'y (M), -~-7P'~/n(M))7 d:z&.

cn(TrMe1 TrMZ") = ZNz 29— "Map[g] "

tn

g>0

cn(Pyy (M), ..., Py (M) = 3 N2-29-"-dFSMapl?l .
920

Remark: For more general multi-tracial hermitian measures, stuffed maps.

From maps to free probability

Ly, ln _Map[o] o Bt —FSMap[O]




From maps to free probability via matrix models

Free probability from matrix model:

1oty = Jim N"2¢,(TrM*, ..., TrM*n),

— 00

Kty oty = Jim N2 e (P (M), ..., Py (M), d = L.

N—o0

Proposition (Brézin-Itzykson—Parisi-Zuber, ‘78, Borot-G-F, “17)

cn(TrMY, ... TrM%) = 3 N2729-"Mapl?

Zlv"'vln,
9>0
cn(Pry (M), ., P (M) = - N>729-"dRsMap? .
g>0

Remark: For more general multi-tracial hermitian measures, stuffed maps.

From maps to free probability (with genus corrections)




The origin of the master relation

A d. Map} and FSMap$ generating series of possibly disconnected maps with
boundary lengths given by A and with weight Nx(M),

Theorem (Borot-G-F, “17, Borot-Charbonnier-Do-G-F, ' 19)

FSMap$ = z(x) >, H=(\,p)|,_1 Mapy,, M
Ad

Map$ = z(\) ) _ H<()\,,u)|h:% FSMap;.  (2)
pHd

3 proofs:
@ Via matrix models: Express

FSMap3, = (Px(4)) = <l£[73«,i(A)> = </u Pa(UAU)dU)
i=1 N

in ferms of the < [T, TrM/\i>, using Weingarten calculus.

o 2 combinatorial proofs ~~ 1 via bijective combinatorics.



Proof via bijective combinatoricCs goint work with

Definition
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one internal face. Boundary faces ~ blue faces and internal faces ~ red faces.
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Proof via bijective combinatoricCs goint work with

Definition

Dessin d’enfant ~ map with each edge adjacent to one boundary face and
one internal face. Boundary faces ~ blue faces and internal faces ~ red faces.

Dy (X, p) ~ number of (possibly disconnected) dessins d’enfant with blue face
degrees by A and red face degrees by u, and with k more edges than vertices.

Idea: Construct a bijective function:
map —— (fully simple map, dessin d’enfant)

09 99 ©4

ordinary map fully simple map Gessin d'enfant
iessin d’enfani



Proof via bijective combinatorics gt

006

fully simple map

dessin d’enfant

Slogan: The fully simple map encodes the internal faces of the map while the
dessin encodes how the boundaries of the map intersect.
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Symplectic invariance

(2, (3%, 1) AR wan (21, 20) (w0 = Fg € C)

o ”
preserving '
|[dx A dy|
- e=¢&:(xy) — (Y, %)
(2, (X%, 9)) NN Gg,n(215 - - -5 2n) (Dg0 = Sq) not well understood.

Lletx(z) =a+~v(z+ %)
Theorem (Eynard, ‘05)
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iTR
£
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Symplectic invariance

(2, (3%, 1) AR wan (21, 20) (w0 = Fg € C)

¢ 2
preserving '
|[dx A dy|
- e=¢&:(xy) — (Y, %)
(2, (X%, 9)) NN Gg,n(215 - - -5 2n) (Dg0 = Sq) not well understood.

letx(z) =a+~y(z+ %)

Theorem (Eynard, ‘05) Theorem (Borot—CharbonnierG-F, '21)

(0,1) et (0,2) V'

(CPY, (x,y = W% (x)),wo 5 = B) ¢ (CP', (y,x),w0,2 = B)

iTR e §TR

coZn — Dg,n see5Zn)
%ZW,[F](XM...,X,'[), ﬂqﬁ_)(Y['lg](ylw"7yn)'
V2g—-2+n>0, z; —» oco. V2g—-2+n> 0,z — oo.
Maps Fully simple maps

@ Our proof (Borot-Charbonnier-G-F, "2 1): combinatorial, via ciliated maps.

@ Proof by Bychkov-Dunin-Barkowsi-Kazarian-Shadrin, "21: via Fock space
formalism (x replaced by 1/x, as later).
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Partitioned permutations

Partitioned permutations: (U,~) € PS(d).U € P(d).~ € S(d).U > 0,.
|(U,~)| = d + #cyc(y) — 24blocks(U) > 0, |(0y,id)| =d+d—2d =0.
Example: U = {{1,2,3,4,5},{6,7,8,9}}.v=(1,2,3)(4,5)(6,7,8).
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0, otherwise.
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Partitioned permutations

Partitioned permutations: (U,~) € PS(d).U € P(d).~ € S(d).U > 0,.
|(U,~)| = d + #cyc(y) — 24blocks(U) > 0, |(0y,id)| =d+d—2d =0.
Exomple: U= {{1’ 27 3’ 4a 5}? {67 75 85 9}}' Y= (17 25 3)(4a 5)(6’ 7? 8)

Product on PS(d):

Ur)- (V,m) = {(u VY, I U]+ 1V, m)] = UV VA Planarity)

0, otherwise.

Convolutfion: f,g: PS — C

(f * g) (ua ’Y) = Z f(vv W)Q(W, U)

(V,m)-(W,o)=(U,7)
Delta function:

1 fA=04and o =id,
6 el = .
(A a) { 0 otherwise.
Zeta function:
_ )1 ifA=0,,
(A a) = {O otherwise .

Mobius function: Flu: PS(d) — Csuchthat u+x ¢ = ¢+ p=24.



The open problem

Sf: PS — C multiplicative function (i.e. f(14,~) depends only on the conjugacy
class of y and f(U, ) = [Tyey S Lu,Ylv))-
Jevrtn =F ey 4011 - m), v acycle of length £;.
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over non-crossing partitioned permutations).



The open problem

Sf: PS — C multiplicative function (i.e. f(14,~) depends only on the conjugacy
class of v and f(U,7) = [Tyey S (Lu, YU
Jevrtn =F ey 4011 - m), v acycle of length £;.

©, k: PS — C multiplicative functions such that ¢ = ¢ * «. J

@ ¢ ~» moments of a higher order probability space.

0 k ~ free cumulants defined by k = p* ¢ (& ¢ = *x K, with ¢ x - < sum
over non-crossing partitioned permutations).

Encode ¢y, ,....¢, aNd Ky, .. ¢, intfo The generating series:

n=1: Mx)=1 +Z<,pgx£, Clw) =1 +wal.

>1 >1
Higher order:
. Z 1 0
Mn(x1,~~-,xn) = (Pel,...,enxll"'xnnv
£y,....€n>1
[ 0
Cn(wy,...,wn) = E Koy, e - W

£tn>1
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The open problem

Sf: PS — C multiplicative function (i.e. f(14,~) depends only on the conjugacy
class of vy and f(U,7) = [1yey S QusVIu)).
Jerven =F (e 4ot - 7n), i @ cycle of length 4.

p, k: PS — C multiplicative functions such that ¢ = ¢ * &. J

@ ¢ ~» moments of a higher order probability space.

0 k ~ free cumulants defined by k = p* p (& ¢ = (*x k, with ( x - < sum
over non-crossing partitioned permutations).

Encode ¢y, ,....¢, ONd k¢, ..., Into The generating series:

n=1: M) ::l—l—Zgogxé, C(w) ::l—i—me[.

0>1 0>1
Higher order:
. £ 0
Mn(xy,.. ., Xn) = Z YN0 LI
£1yebn>1
0 0
Cn(wry, ..., wn) = Z Key,. e W
41,.-.,&121

Question: Functional relation between My (x, . ..,xn) and Cn(wy, ..., wn)?



First and second orders

R-fransform machinery:
@ n=1: (Voiculescu,86)
C(xM(x)) = M.
Originally: Relation between the R-fransform R(w) and the Stieltjes
fransform W(x), C(w) = 1 + wR(w) and W(x) = x~1M(x~1).
Combinatorially: (Speicher,94)



First and second orders

R-fransform machinery:
@ n=1:(Voiculescu, 86)
C(xM(x)) = M.

Originally: Relation between the R-fransform R(w) and the Stieltjes
fransform W(x), C(w) = 1 + wR(w) and W(x) = x~1M(x~1).
Combinatorially: (Speicher,94)

o (Collins, Mingo, Sniady, Speicher ,06) Introduced higher order free
cumulants and freeness, and proved n = 2 :
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R-fransform machinery:
@ n=1: (Voiculescu,86)
C(xM(x)) = M.
Originally: Relation between the R-fransform R(w) and the Stieltjes
fransform W(x), C(w) = 1 + wR(w) and W(x) = x~1M(x~1).
Combinatorially: (Speicher,94)

o (Collins, Mingo, Sniady, Speicher ,06) Introduced higher order free
cumulants and freeness, and proved n = 2 :

X1 Xo dln wq dln Wwo ( wiwy >
Ms(x1, X = Co(wy, w rae——a
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where w; = ;M (x;). or equivalently x; = w;/C(wy).

@ n > 37 The number of types of (1¢,4...4¢,,71 - - - Yn)—NON-Crossing
partitioned permutations grows quickly = their proof is hard o generalize.
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First and second orders

R-transform machinery:
@ n=1: (Voiculescu, 86)
C(xM(x)) = M.
Originally: Relation between the R-fransform R(w) and the Stieltjes
fransform W(x), C(w) = 1 + wR(w) and W(x) = x~!M(x~1).
Combinatorially: (Speicher,94)

@ (Collins, Mingo, Sniadly, Speicher ,06) Introduced higher order free
cumulants and freeness, and proved n = 2 :

X1 X dlnw; dln wz( w1 Wy )
My (X1, Xx: = Co(wy, w —= |,
2(,%2) + (x1 — x2)2 dlnx; dlnxy 2(wr, wo) + (w; — wg)?2

where w; = ;M (x;). or equivalently x; = w;/C(wy).

@ n > 37 The number of types of (1¢,4...4¢,,71 - - - Yn)—NON-Crossing
partitioned permutations grows quickly = their proof is hard o generalize.

n = 1,2 : (Borot, G-F ,17) from combinatorics of fully simple maps.
n = 3 : (Borot, Charbonnier, G-F ;21) for specific unitary invariant hermitian
matrix models, from fopological recursion.



Higher order probability space (A, ) and free cumulants «

A algebra, ¢ = (pn)n>1 moments, with pn: A™ — C linear.
Decorate PS with A: PS(A) := g0 PS(d) x A4,

For1 <j<n,setL; = Z{::l £;. Moments are multiplicative functions:
Loyt ttpyy ) Qs s Qo ey = onl@ Qe a1y - ALy)
Free cumulants:
p=Crr= > K& R=p%p

“non-crossing”
partitioned permutations



Higher order probability space (A, ) and free cumulants «

A algebra, ¢ = (pn)n>1 moments, with pn: A™ — C linear.
Decorate PS with A: PS(A) := g0 PS(d) x A4,
For1 <j<n,setL; = Z{::l £;. Moments are multiplicative functions:
Loyt tepy v @y Qe 1 te,) = pn(ar - Qeys e AL — 14100 AL,)
Free cumulants:
p=(xKk= Z KER=U*p

“non-crossing”
partitioned permutations

Definition (Higher order freeness)

(Ap)ier are free if k(1n, )|y, ..., aq] = 0,V € S(d) whenever Ji(p) # i(q) such
that ap € Aypy aNd ag € Ayg).

If pn = 0 for n > 2: recover first order freeness.
As classical cumulants linearise adding independent variables, free cumulants
linearise adding free variables: If a, b € A are free,

H(l|)\|,’y)[a+ b,...,a+ b] :n(lw,'y)[a,...,a}+n(1|>\|,'y)[b,...,b],

for A\ dand~ € Cy.



Surfaced free probability

Extended multiplication on partioned permutations:
U oW,m):=UVV,yom).
(Can also be understood as multiplication on surfaced permutations).

ym=(1,2,5,4,3)
v =(1,2,3)(4,5) T =(2,4)

D)

[(04,Y)|+](0x, )| =5+2—-2-245+4—-2-4=3+1=4=5+1—-2 = |(Oyx,y7)|.

|(U,~)| = d + #cyc(y) — 24blocks (i)



Surfaced free probability

Extended multiplication on partioned permutations:
U,v)oWV,n)=UVV,yom).
(Can also be understood as multiplication on surfaced permutations).

v =(1,2,3)(4,5) = (2,4) yr = (1,2,5,4,3)

(1650

[(04,)|+]|(0x, 7)| = 5+2—2-145+4—2-4 =5+1 =6 # 4 = 5+1—-2 = |(0r,y7)|.

|U, )| = d + #cyc(v) — 2#blocks ()



Surfaced free probability

Extended multiplication on partioned permutations:

(A,a) © (B,B) = (AVB,aop).
(Can also be understood as multiplication on surfaced permutations).
Extended convolution:

(i ®)(C,7) = > Si(A @) fa(B, B) -

(A,0)O(B,8)=(C,7)
Extended zeta function:
Ch(A ) = h*I¢(A4, @), |a] = d - #0a.
Extended Mobius function pp: PS(d) — C[A] uniquely determined by
P ®Cp=Cr®pp=20.

= Notion of (g, n)-freeness.

Theorem (Borot, Charbonnier, Leid, Shadrin, G-F, '21)

(An)nN, (Bn)n ensembles of random matrices of size N, (An)n unitarily invariant,
Ay independent of By. If AN — a, By — b, when N — oo, up fo order (go, ng).
then a and b are (go, no)-free.

Generalises (Voiculescu, 91) (first order freeness); corrections of order N—290— "o,



Outline

@ Moment-free cumulant relations: M = Go n ¢+ GY,, = C
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@ Go,n(r+ 1): set of bicoloured trees with white vertices labeled from 1 to n
having valency r; + 1,. .., + 1, and without univalent black vertices.
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acting on w; which only involves C(wy).
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Moment-free cumulant functional relations

@ Go,n(r+ 1): set of bicoloured trees with white vertices labeled from 1 to n
having valency r; + 1,. .., + 1, and without univalent black vertices.

o Weight (3,Vi(wi) of the i-th white vertex: differential operator of order r;
acting on w; which only involves C(wy).

@ Z(T): for each black vertex, subset of white vertices connected to it.

Theorem (Borot, Charbonnier, Leid, Shadrin, G-F, '21)

Letx; = wi/C(wy). Forn > 3,

Mu(x1,.. o xa) = Y > (Ho,i(wi)) I cui(w).

20 TEGY p(r+1) ~i=1 I€Z(T)

o Weight per tree: W(T) = [Tjez(ry Cor(wr).

w;wj

o T’ ~ Ca(wy, wy) should be replaced with Ca (wy, wy) + o w)? if i # j.
i — Wy



Set of bicolored graphs

@ Go,n(r+ 1): set of bicoloured trees with white vertices labeled from 1 to n
having valency ry + 1,...,rm + 1, and without univalent black vertices.

@ Z(T): for each black vertex, subset of white vertices connected to it.
o Weight per tree: W(T) = [Ty Cor(wr).

o [T’ means: Cy(w, wy) should be replaced with Ca (wy, wy) + %
i

Example: n=7




Set of bicolored graphs

@ Go,n(r+ 1): set of bicoloured trees with white vertices labeled from 1 to n
having valency r; + 1,. .., + 1, and without univalent black vertices.

@ Z(T): for each black vertex, subset of white vertices connected fo it.

o Weight per free: W(T) = [Tjcz(r) Cyr(wr).

wiwj

o TT' means: C(w;, wy) should be replaced with Ca (wy, wy) + T
i~ Wi

Example: T e Gp7(1,1,1,1,1,8,1)

We W3 )

W(T) = C4(w1, we, ws, we)C3(wy, we, w7)(c2(w67 ws) + (e — w3)2



Finite sums and example

@ Go n(r+ 1): set of bicoloured frees with white vertices labeled from 1 fo n
having valency ry + 1,...,rm + 1, and without univalent black vertices.

For n fixed, Go n(r + 1) # 0 only for finitely many r = (ry,...,m) € N™.
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A N Lo



Finite sums and example

@ Go n(r+ 1): set of bicoloured frees with white vertices labeled from 1 fo n
having valency ry + 1,...,rm + 1, and without univalent black vertices.

For n fixed, Go n(r + 1) # 0 only for finitely many r = (ry,...,m) € N™.

Ex: n=3 ~» Gy 3(r+ 1) # @ only forr € {(0,0,0),(1,0,0), (0, 1,0),(0,0,1)}, and
there is only one Ty € Gp 3(r + 1) for each of these r:

To = To,0,0, T =Ty o0, T =T 1 0, T®) =Ty,
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y=C(w)



Finite sums and example

@ Go n(r+ 1): set of bicoloured frees with white vertices labeled from 1 fo n
having valency ry + 1,...,rm + 1, and without univalent black vertices.

For n fixed, Go n(r + 1) # 0 only for finitely many r = (ry,...,m) € N™.

Ex: n=3 ~» Gy 3(r+ 1) # @ only forr € {(0,0,0),(1,0,0), (0, 1,0),(0,0,1)}, and
there is only one Ty € Gp 3(r + 1) for each of these r:

To = To,0,0, T =Ty o0, T =T 1 0, T®) =Ty,

A SN e o

.
Or(w) = X mxo (grmvrmy o) e [P (By + 5) : 1‘

y=C(w)

Only terms with m < r give contribution # 0 to O, (w). l




Finite sums

@ Gon(r+ 1): set of bicoloured trees with white vertices labeled from 1 to n
having valency r; + 1,...,m + 1, and without univalent black vertices.

Forn fixed, Go n(xr + 1) # 0 only for finitely many r = (ry, ..., mm) € N,

O — w ) e 1 m ) v r 1
1) = Zozo (cerade) e ™ (%t ) |y=C(w)

Only terms with m < r give a # 0 contribution to O, (w). l

Remarks = The sums of the RHS of

Mp(xy,. .o xa) = Y > (Ho,i(wi)) 1T cur(w)

Mon>0 TEGg p(r+1) N i=1 1€Z(T)

are finite.



Example: n =3

To = To,0,0, ™™ = T1,0,0, T = To,1,0, TG = To,0,1-

A N L o



Example: n =3

To = To,0,0 T =Ty 90, T® =Ty 1 0, T =To,1.

A SN Lo

W(Tp) = C3(wy, wa, ws),
wi Wy

m) (Cz(wlv wg) + L0 )

WTD) = (Caluwr, wy) + (w0 —ws)?



Example: n =3

TD =Ty g0, T® =Ty 1.0, T® =Too,1.

A SN Lo

W(To) = Cs(wr, wa, w3),

To = To,0,0,

(w1 — wp)?

. w "1 m (8 +2) 1
Or(w) = Zmzo (C(w)x’(w) 3w) C(w)x’ (w) [v™) ( ch !_4) ‘

|y=C(w)

1 w !
Oo(w) = C(w)x (w)’ Or(w) = C(w)x' (w) 8w(c(w)2x/(w))~



Example: n =3

To = To,0,0, ™™ = T1,0,0, T = To,1,0, TG = To,0,1-

A SN Lo

W(Tp) = Cs(wr, wa, ws),

(T(l)) = (Cz(wl, wy) + %) (c2(w1: ws) + ﬁ)
1 w 1
Oow) = Cpwa)y W= C(w)x/(w)aw(c(w)zx'(w))'

Mn (%1, -5 %n) = 320 ra>0 22TeGo p(rt1) (H?:l Ori(wi))W(T)

M3(x1, X2, X3) =

1 W(T®)
T2, Clwox (w) (W(T") + 2 W e ))

with W(T(i)) = Hj;éi (Cz(wi7 wy) + &)

(wi—wy)?



Beyond planar = beyond leading order (genus corrections)

To prove

M-C
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(more complicated graphs, with cycles) and specialize o g = 0.



Beyond planar = beyond leading order (genus corrections)

To prove

M-C
Go,n(X1,- -+, Xn) = Mn(x1,...,Xn) <> Gg’n(wlvn-,wn) = Cn(wy,...,Wn),

we actually prove

M-C
Gg,n(X1, .-, X%n) < Gy n(Wr, ..., Wn)

(more complicated graphs, with cycles) and specialize o g = 0.

=

Theory of moments and higher order free cumulants with genus corrections
(and a notion of (g, n)-freeness).

Idea of proof:
- ) Sz =Cr®@Pzvp

Z(N) =z(N) X pa HS (W )2V (v)



Beyond planar = beyond leading order (genus corrections)

To prove

M-C
Go,n(X1, -+, Xn) = Mn(x1,...,Xn) G&n(wl,...,wn) = Cn(wy, ..., Wn),

we actually prove

M-C
Gg,n(X1,- -, %) 5 Gy n(Wr, ..., Wn)

(more complicated graphs, with cycles) and specialize to g = 0.

=

Theory of moments and higher order free cumulants with genus corrections
(and a notion of (g, n)-freeness).

Idea of proof:
— o Pz =Ch®Pzv g

ZA) =z\) X g HS(\v)ZV(v)

(2] M-C

Gg,n < Gg



Beyond planar = beyond leading order (genus corrections)

To prove

M-C
Go,n(X1, -+, Xn) = Mn(x1,...,Xn) G&n(wl,...,wn) = Cn(wy, ..., Wn),

we actually prove

M-C
Gg,n(X1,- -, %) 5 Gy n(Wr, ..., Wn)

(more complicated graphs, with cycles) and specialize to g = 0.

=

Theory of moments and higher order free cumulants with genus corrections
(and a notion of (g, n)-freeness).

Idea of proof:

o Pz =Ch®Pzv g
ZA) =zN) X L q HS (N, v)ZV(v) ﬂ
(2] M-C

Gg,n < Gg
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Questions: future and ongoing work

o Master relation simplifies maps; for constellations it forgets one color (from
(m + 1)-constellations to m-constellations). Studying these towers of
problems related by the master relation (also from TR and free probability).
Other meaningful towers?

@ Further consequences in free probability? From the work of Arizmendi, Leid,
Speicher, in free probability the master relation can be realised by
conjugating with a free circular element c. This explains the tower of
constellations in that context. Is that phenomenon still frue for higher genus
moments and free cumulants (moments of a are cumulants of cac*, if a
and c are free of all orders)?

o Symplectic invariance of TR? Theorem: (Alexandrov, Bychkov,
Dunin-Barkowski, Kazarian, Shadrin) If we have TR for Gg,n. we have TR for
Gg. With a symplectically transformed spectral curve. (Hock] Laplace
’rrcmsform of the duality relation (suitable in the quantum curves setting).

o Extend to the orthogonal/real symmetric setting.

@ Combinatorial proof of the functional relations? Ongoing work of Lionni.
@ Relation to ongoing work of Zuber on counting partitions of genus g?



C(wy, we, wy)

BEHOMNESZTVWEX UKL
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o Bonus: fower of constellations



Constellations

m-constellation (m > 2):

@ faces coloured in black and white and only faces of different colour can
be adjacent;

Q black faces are of degree m (hyperedges) and white faces are or degree
multiple of m;

© 3 acoloring of the vertices in {1, ..., m} such that around every black face
the vertices are of colours 1,2, ..., m clockwise.
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Constellations

m-constellation (m > 2):

@ faces coloured in black and white and only faces of different colour can
be adjacent;

Q black faces are of degree m (hyperedges) and white faces are or degree
multiple of m;

© 3 acoloring of the vertices in {1, ..., m} such that around every black face
the vertices are of colours 1,2, ..., m clockwise.
7
6
2 5Ny
1 4
3

Can be encoded by m + 1 permutations o, ..., om (acting on hyperedges)
such that og = o1 - - - om. Where

0 o, i=1,...,m~ hyperedges around the vertices of colour i;
@ oo ~ faces.
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Constellations

m-constellation (m > 2):

@ faces coloured in black and white and only faces of different colour can
be adjacent;

Q black faces are of degree m (hyperedges) and white faces are or degree
multiple of m;

@ 3 acoloring of the vertices in {1, ..., m} such that around every black face
the vertices are of colours 1,2, ..., m clockwise.

7
o1 = (13)(2)(4)(576)
o5 = (1)(245)(3)(67)
2 5\, o5 = (127)(34)(5)(6)
f 00 = 710205 = (14)(25)(73)(6)

3

Can be encoded by m + 1 permutations og, . . ., om (acting on hyperedges)
such that og = o1 - - - om. Where

0 o, i=1,...,m~ hyperedges around the vertices of colour i;
@ oo ~ faces.
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000 0000 00000000 00000000 0000000 000 elele] }

oy = simplifying one constellation = forgetting one colour
Master relation for constellations~ bijection:
(dessin,

(m+ 1)-constellafion “simple”(m + 1)-constellation
= m—cons’rella’rion)

= ((0’0,0’1"'0’m,0’m+1), (0’00’;+1,0'1,...,0'm))

s.th.oo = (01 om)om4+1 s.th. O‘oo‘m+1 =01 -0m

7 "6,

& RN
s Al

o103 = (13)(2475)(6) o1 = (13)(2)(4)(576)

00;015-+-,0m+1
sth.oo =01 omt1

w

1= (13)(2)(4)(576)

2 = (1)(245)(3)(67) 03 = (127)(34)(5)(6) o2 = (1)(245)(3)(67)

o3 = (127)(34)(5)(6) 00 = (14)(25)(73)(6) 0005 ' = 0102 = (13)(2475)(6)
0 = (14)(25)(73)(6)

Simplify the last colour of the (m+1)-constellation (red). Dessin ~ information
about the colour m + 1; m-constellation ~ the other m colours.
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