SPECIAL RELATIVITY - MIDTERM EXAM

Exercise 1. In $\mathbb{R}^{2,1}$, consider a spinor ψ^{α} and a unit vector n^{μ}, with corresponding spinor matrix $N^{\alpha}{ }_{\beta}=n^{\mu}\left(\sigma_{\mu}\right)^{\alpha}{ }_{\beta}$. What is the geometric meaning of the linear transformation $\psi^{\alpha} \rightarrow$ $N^{\alpha}{ }_{\beta} \psi^{\beta}$? Illustrate by examples.

Exercise 2. When we intersect a cone in \mathbb{R}^{3} by various planes, we get Archimedes' conic sections: the circle, ellipse, parabola and hyperbola. Which surfaces do we get when we intersect the lightcone in $\mathbb{R}^{3,1}$ with a spacelike hypersurface? A timelike hypersurface? A lightlike hypersurface? Hint: in the latter case, use $x^{a}=(u, v, x, y)$ coordinates, and write the squared distance $\left(x_{a}-x_{a}^{\prime}\right)\left(x^{a}-x^{\prime a}\right)$ between two points on the section.

Exercise 3. Let us parameterize the $\mathbb{R}^{3,1}$ lightcone as:

$$
\begin{equation*}
x^{\mu}=(t, t \sin \theta \cos \phi, t \sin \theta \sin \phi, t \cos \theta), \tag{1}
\end{equation*}
$$

and introduce a complex coordinate $\xi=\cot \frac{\theta}{2} e^{i \phi}$ for the projective lightcone. Identify the $S O(3,1)$ generators which:

1. Preserve the points $\xi=0$ and $\xi=\infty$.
2. Preserve $\xi=\infty$ but not $\xi=0$.
3. Preserve $\xi=0$ but not $\xi=\infty$.

What is the action of these generators on ξ ?

