SPECIAL RELATIVITY – MIDTERM EXAM

Exercise 1. In $\mathbb{R}^{2,1}$, consider a spinor ψ^{α} and a unit vector n^{μ} , with corresponding spinor matrix $N^{\alpha}{}_{\beta} = n^{\mu}(\sigma_{\mu})^{\alpha}{}_{\beta}$. What is the geometric meaning of the linear transformation $\psi^{\alpha} \rightarrow N^{\alpha}{}_{\beta}\psi^{\beta}$? Illustrate by examples.

Exercise 2. When we intersect a cone in \mathbb{R}^3 by various planes, we get Archimedes' conic sections: the circle, ellipse, parabola and hyperbola. Which surfaces do we get when we intersect the lightcone in $\mathbb{R}^{3,1}$ with a spacelike hypersurface? A timelike hypersurface? A lightlike hypersurface? <u>Hint: in the latter case, use $x^a = (u, v, x, y)$ coordinates, and write the squared distance $(x_a - x'_a)(x^a - x'^a)$ between two points on the section.</u>

Exercise 3. Let us parameterize the $\mathbb{R}^{3,1}$ lightcone as:

$$x^{\mu} = (t, t\sin\theta\cos\phi, t\sin\theta\sin\phi, t\cos\theta) , \qquad (1)$$

and introduce a complex coordinate $\xi = \cot \frac{\theta}{2} e^{i\phi}$ for the projective lightcone. Identify the SO(3,1) generators which:

- 1. Preserve the points $\xi = 0$ and $\xi = \infty$.
- 2. Preserve $\xi = \infty$ but not $\xi = 0$.
- 3. Preserve $\xi = 0$ but not $\xi = \infty$.

What is the action of these generators on ξ ?