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1. From Brownian motion to Dyson’s BM model
(random points: stochastic log-gas)



1 dim standard Brownian motion (BM)

Let (2, F,P) be the probability space of 1-dim. standard Brownian motion,
{B(t) : t > 0} adapted to the filtration (F;):>.

(BM1) B(0) =0 with probability 1.
(BM2) B(t) has a continuous path almost surely.

(BM3) Given any t > 0. For an arbitrary n € N:={1,2,...},
and for any sequence of times, t, :=0<1t;, <--- <t, :=1,

e B(ty)— B(tm_1),m=1,...,n, are independent from each other.

® B(ty)— B(tm-1) ~N(O,t, —tn_1), m=12 ... n.

It means that, for any 0 < s <t < oo and a < b,

PIB(t) — B(s) € [a.b] :/ p(t — 5, 2|0)dz.

where for z,y € R

1 2
—(x—y)=/2t for t > 0
p(t,ylx) = \/27rt€ ’ o ’  transition prob. density.
dx —vy), for t =0, 6



The mean is constant in time;

E[B(t)|Fs| = E[(B(t) — B(s)) + B(s)|Fs] = E[B(t) — B(s)|Fs] + E[B(s)|F]
=04+ B(s) = B(s), 0<s<t<oo, a.s.

: Gaussian Dist
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For each time interval [0,7],¢ > 0, put n € N and consider a subdivision of [0, ]

to=0<t; <---<t,:=t, s.t. max |t,, —t,_1| >0 asn— oo.
1<m<n

The quadratic variation of B(t) is defined by

(B,B),:=P-1lim » (B(t,,) — B(t,-1))> convergence in probability

n—oo
m=1

— lm P [) S (Bltw) — Bltuor))’ — (B. B)

n—oo

>5] =0, Ve>0.

m=1

We can prove
<B,B>t:t, tEO

We can also prove that the total variation diverges,

P—lim Z |B(t,,) — B(t,,-1)| = o0 as n — oo in probability.
n—oo

m=1



In summary,
E[(B(t)|Fs] = B(s), 0<s<t<o0, a.s. )

P
Z | B(tm) — B(tm-1)| — oo, : .
— > martingale properties

S (B(tw) = B(tn-1))* — (B,B), =t T coas t T o

m=1 J



Consider the process (B(t)2 — (B, B)t) —

This is martingale;

E[B(t)* — t|F| = E[(B(t) - B
= E[(B(t) — B(s))*|Fs] + 2E[(B(t) — B
= (t—5)+0+B(s)* —t
=B(s)? -5, 0<s<t<o

10



E[B(t)|Fs] = B(s) < E[B(t) — B(s)|Fs] =0
—> E[dB(t)] =0
Reasonable: increment dB(t) ~ symmetric dist. N(0, dt)
E[B(t)? — tF,] = B(s) — s = E[(BW®)? - B(s)?) — (t - 5)|F] = 0
<> E[(B(®)*—t)— (B(s)* — s)|F] =0
— Bld(B(t)° —t)] =0
< 2E[B(t)dB(t)] —dt =0
(Note again: dB(t) ~ N(0,dt) = E[B(t)dB(t)] = 0)
<= —dt =0 contradiction!

This implies
dB(t)* # 2B(t)dB(t).

We need additional term to cancel —dt.
That new term should be called the Ito term:

11



That new term should be called the Ito term:

AB(1)? = 2B()dB(t) +dt = 2B()dB(t) +5 x 2 x di
<= dB(t)* = df(B(t)) (with f(y) = y°)
df (y) Ld*f(y)
il dB(t) + =—— d(B, B),
dy y=B(t) Q 2 dy? y=B(t) (5, B)
= Qy‘ gi )dB(t) +% X2 X d{B;B)
y=DB(t

If we follow this Ito calculus (stochastic analysis), then for (B(t)? — t):>o,
E[d(B(t)? —t)] = E[2B(t)dB(t) +dt] — dt = 2E[B(t)dB(t)] +dt — dt = 2E[B(t)dB(t)] = 0,

and the quadratic variation is (2BdB,2BdB); = 4B(t)*(dB,dB); = 4B(t)?dt.
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Let D € N and consider identical but independent D BMs, B;(t),..., Bp(t).
By definition, B;(t) + B,(t) and B;(t) — B;(t), 1 <i,7 < D are martingales.
Then their squares are not, but the followings shall be martingales;

(Bi(t) + B;(t))* — (B; + B;, B; + B,
(B;(t) — Bj(t))2 —(B; — B, 25 = Bj>t.

and hence, the difference of these two should be also martingale,
4B;(t)B;(t) — ({(B; + By, B; + B;); — (B; — B;, B; — B;):).
Define the mutual quadratic variation (cross variation) by
1
(By; Bils 1= Z“Bi + By, By + By )y — (B — By; B — Byje)e

This is calculated as

_ J (B, B} —0)/d=t, (i=}]) o
(Bi, Bj): = {(Qt ona=0 (i 4 7) =  d(B;, B;): = 0;dt.

13



Ito’s formula

e Let NcNand y:= (y1....,yn) € RV.
e Let F' be a function of t and y; F' = F(t,y).

e Assume that a N-component stochastic process Y (¢) = (Yi(t),...,Yn(t)),t >
0 is given.

Then, for a stochastic process (F(¢,Y(1)));~0, the difference is given by the
following formula, which is called [t6’s formula,

F N oF
aF (LY (1) = 20 gy 5~ OFLY) e
& = Wi v
1 2F
5 2. W d(Y., Yy, t>0
1<igen  Yi%Yi ly=v )

14



D-dim BM and D-dim Bessel process

For the BM starting from z € R, we write
B*(t) :=x+ B(t), t>0.

The probability law and the expectation are written as P* and E*;
for F;-measurable function f,

E*f(B(1))] = ELf(B*(1))].

Consider D independent BMs, B/ (t), t > 0 starting from z;,i =1,... D.
Then define the D-dim. BM started at & as the vector-valued BM,

B® = (B™(1), B(t),...,B'?), t>0.

Then the D-dim. Bessel process, BES), is defined as the radial coordinate of
the D-dim. BM,

R (1) = |B(1)| = \/ By (1) + -+ B (12 £ 20,

where the initial value is given by R*(0) =2 = |z| = /22 + - + 2% > 0.

15



3 dim Bessel process, BES3

X3

A

)x2
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BESp, (R*(t))i>0, is defined as R*(t) = F(B*(t)), t > 0, with F(y) = \/yf + -t yE.
We see that
OF(y) — 0 OF (y) __Yi O F(y) _ 0ij Yy =1 D

ot - Oy Fly) oyoy;  Fly) Fly? 7T

d(Bfa,BjJ% :5”(175, Z,j: 1,,D

Then the drift terms (finite variation part) become

L 1 S Bxl(t)BT:'(t)
d(By",B{"), = = e L2 8 0;,dt
y:B“’(t) ’ f 2 1<§j:<D { F(B:B(t)) F(Bm (t))S ’

1 S| —n B(t)?
_ = {Zl<z<D . ZlSZSD ( ) }&jdt

1 3 F(t,y)
8y28yj

1<i,j<D

2 | F(B*(t)) F(B=(t))*
D-1 1 ﬁ_D—lﬁ
2 F(B=(t) 2 Re(t)
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BESp, (R*(t))i0, is defined as R*(t) = F(B®(t)), t > 0, with F(y) = ,| > 2.

We see that
F F °F
Hw) O _u PEW b ww
ot Jy; F ayiay} F £

d(B*, B >—&@t i,j=1,...,D.

D
1
B (t) =z ) BI (1B (1).

y=B*(t)
Its quadratic variation is calculated as

D
< ZB"” dB", IZB}dejJ> = B0

D
Bl (t)B; (t)(dB}",dB;"),

M

t Jj=1
D D
L 1 €T; 2 o
t)Q Z Z J 6@Jdt Rm(t)g Z Bz (t) 5ijdt— dt.
=1 j=1 i=1

This implies that, with another BM (B(t)):>¢, we have

(R;(t) 2.5t (t)dB?(t))m " (B#))1s0.

1=1
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Now we assume D > 1 (not only integers). Consider BES), starting from z > 0
as the solution of the following stochastic differential equaiton (SDE),

D—1 dt

AR (1) = dB" (1) + —5— s,

0<t<T"

where 7% = inf{t > 0: R*(t) = 0}.

The first term in the RHS is a martingale part
and the second term is a finite variation part (drift term).
The process consisting of these two parts is called a semi-martingale.

19



Dyson’s BM model

e Fix Ve N.
e Prepare N BMs,

B:ll(t):337+B“(t), tZO, $¢E]R, izl,...,N,

and N(N — 1)/2 pairs of BMs

~

{B,J(t), Bjj(t)}1§i<j§N, L= 0, starting from the OI‘igiIl.

e Then, we have a total of N +2 x N(N —1)/2 = N? BMs, each of them

independent from the rest.

e Then consider an N x N Hermitian-matrix-valued Brownian motion,

( B (1 Bi(t) + V=1Bia(t)  Bin(t) + V=I1Bin(t)
11 N \/§ \/5 R
Bia(t) — vV/—1B15(t) Rz Byn(t) + v/ —1B;n (1)
B*(t) = NG 2 () 2
Bin(t) — V=1Bin(t) Bon(t) — v/—1Bon(2) ;1:.]\; |
/2 /2 T Byi(®). )

e By definition, the initial state of this Brownian motion is the diagonal
matrix B*(0) = diag(xy,x2,...,xy). We assume z; < 15 < --- < xp.

20



e Corresponding to calculating the absolute value of B*(t), by which BES)
was introduced, here we calculate the eigenvalues of B*(?).

e For any ¢t > 0, there is a family of N x N unitary-matrix-valued process,
{U(t)} which diagonalizes B*(t),

UNEIB*(EUE) = dag(Puld), - - dllE)) = AlE), &=k
e Consider a subspace of RV defined by

Wy :={x = (z1,72,...,28) ERY 12y <39 < --- < w7},

which is called the Weyl chamber. If we impose the condition (\;(t))Y, €
Wy, U(t) is uniquely determined at each time t > 0.

21



Ito’s formula

If X(t) = (X;;(t)) and Y(t) = (Y};(t)) are N x N matrices with semi-martingale
elements, then

AX ()Y () = dX* ()Y (£) + X* ()Y (£) + (dX*,dY)s, >0,

where (dX*, dY); denotes an N x N matrix-valued process, whose (i, j)-th element
N

is given by the finite-variation process Z(dX—ki, dYgi)es 1 £ 1,5 < N,
k=1

22



Applying Ito’s formula to A(t) = U*(t)B*(t)U(t),t > 0, we have the equality

dA(t) = dU*(£)B=(£)U(t) + U (£)dB=()U(t) + U*(¢)B=(1)dU (1)
+ (dU*,dB®U), + (dU*,B=dU), + (U*dB®,dU),, t > 0.

Since U*(t)U(t) = | for each time t, Itd’s formula gives,

0 = d(U*()U(t)) = dU*(£)U(t) + U*(£)dU(t) + (dU*, dU),.

23



The following lemma is established.

Lemma 1.1 The eigenvalue process (\;(t))Y,,t > 0 of the Hermitian-matrix-

valued Brownian motion (B(t));>¢ starting from diag(zy,...,zy), satisfies the
SDEs,
d\:(t) = dBT (t) + Z . t>0, i=1,....N.
1<j<N, '* )
J7i

where (B (t));L,, t > 0 are independent BMs different from the N? BMs used
to define B*(t) above.

24




We consider the following one-parameter (§ > 0) extension of the above
eigenvalue-process.

Define an interacting Brownian motions, X (t) = (X;(t), Xz(¢),..., Xn(t)), t > 0 as
a solution of the following system of SDEs, with the condition z; < 2, < --- < zyn
for initial positions z; = X;(0),1 <i < N,

B dit .
]Sgg'N
JF1

where {B;(t)}Y,, t > 0 are independent BMs and

T% = min T:.
1<i<j<N Y

It is called Dyson’s Brownian motion model with parameter § with N particles,
abbreviated as DYS here.

25



aw)

DYSY o eigenvalue process of the Hermitian-matrix-valued BM
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DYSY (2) eigenvalue process of the Hermitian-matrix-valued BM

DysonModel time=0
25
I} =1 [ ] [ ]
_25 T T T T T T T
=200 -150 -100 50 0 50 100 150 200
Re
DysonModel time=0
500 4
400 4
300 -
K]
E
k=
200 -
100 4
D i 1 ] 1 ht 1 ht ] 1 ]
-2 =150 100 =50 0 50 100 150 200 27

Re



aw)

DYSY o eigenvalue process of the Hermitian-matrix-valued BM
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aw)

Dysy ‘&

eigenvalue process of the Hermitian-matrix-valued BM

3? DysonModel time=0
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=
‘A
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2. Schramm-Loewner evolution (SLE) and
Gaussian free fields
(random curves and random surfaces)

30



Complexification of Bessel process flow

We start from BES), (R*(t));>0, introduced in Section 1 :

D—1 di

dR*(t) = dB"(t) + — 20k

=, 0£it< T

e This is a diffusion process on R, := R, U {0}.

e 1z in the supper script indicates the initial position on R-,.

Denote the upper half complex plane as H:= {z € C:Imz > 0},
and let H:= HUR.

We set Z7(t) = X*(t) +/—1Y?*(t) € H\ {0}, t > 0 and complexificate BES) as

D—-1 dt

dZ*(t) = dB(t) + — 20

with the initial condition Z*(0) = z = v + /—1y € H\ {0}.

e The crucial point of this complexification of BES is that the BM remains
real, B(t) e R, t > 0.

31



Then, there is an asymmetry between the real part and the imaginary part of
the flow in H,

D-1 X3 (t)

2 ( i) + (e ()2
D1 YA (t

2 (XE(1)* + (Y=(2))?

dX*(t) = dB(t) +

dY*(t) = —

Assume D > 1.

e As indicated by the minus sign in RHS of the second equation, the flow
is downward in H.

e If the flow goes down and arrives at the real axis, the imaginary part
vanishes, Y*(¢) = 0, then equation is reduced to be the same equation as
equation for the BES ), which is now considered for R\ {0} =R, UR_.

Im z

A
- —_—
= >
X Re z 32




For z € H\ {0}, ¢t > 0, put

Then,
D—1 dt dg(z) D —1 1
dZ*(t) = dB(t = t > 0.
Q (t)+ 2 Z*(t) — ot 2 gi(z)—B(t) -

Put 4 A

K 51 <~ =+ ot
and set ¢;(z) = \/kg:(z). Then we have the equation in the form

0g:(2) 2

_ Ct>0
ot g9:(z) — VEB(1)

This equation is called the Schramm-—Loewner evolution with parameter k;
SLE,.

33



Loewer equation

e Let D be a simply connected domain in C which does not complete the
plane; D C C.

e Its boundary is denoted by 0D.

e We consider a slit in D, which is defined as a trace
n=A{n(t):te0,00)}
of a simple curve n(t) € D,0 <t <oo; n(s)#n(t) for sH#t.

e We assume that the initial point of the slit is located in 0D,

. T
gl = ltlﬁ)l?](t) € ab.




o Let

n(0,t] :={n(s): s € (0,t]} and D;:=D\n(0,t], te(0,00).

e The Loewner theory (1923) describes a slit n by encoding the curve into
a time-dependent analytic function gpn : t € (0, 00) such that

gpy : conformal map D! — D, te(0,00).

=

35



Here we consider the Loewner theory for

D=H:={z€C:Imz >0} (the upper half plane).

n:={n(t):t € (0,00)} is a simple curve,
n(0) :=limn(t) =0 € R,

t—0
n(0,¢] CH, Vte (0,00),
lim 7(t) = oc.

t—0o0

A Im? ,:'700

/o

36






e For each time t € (0, 00),
H,' := H\7n(0,1]

is a simply connected domain in C.

e And there exist analytic functions gy» such that

gr : conformal map H; — .

HY :=H \ 5(0,#] IHy H

/ S

38



e We specify the conformal map by putting the condition
gan(2) =2+ ——+0(]z|77) as z —
! z

for some ¢; > 0, in which the coefficient of z is unity and no constant term
appears. This is called the hydrodynamic normalization.

e The coefficient ¢; gives the half-plane capacity of 1(0,¢] and denoted by
heap(n(0,t]).

39



Theorem 2.1 (Lowner (1923), Kufarev—Sobolev—Sporyseva (1968)) Let 7 be a

slit in H for which the parameterization by ¢ is arranged so that

¢; = heap(n(0,t]) =2t, t € (0,00).

Then there exists a unique continuous driving function V (¢) € R,t € (0, 00) such

that the solution ¢; of the differential equation

dgi(z) 2 150

dt gi(z) =V (t)’

under the initial condition
go(z) =z € H

gives gt = gH?vt S (Oa OO)'

The above equation is called the chordal Loewner equation.

40




e Note that at each time ¢ € (0, 00), the tip of slit n(¢) and the value of V(¢)
satisfy the following relations,

. - . _1
V)= lim  gunt)+z) <« 0(t)=limgu(V(t)+z2), t20
n(t)+z€H] z€H

e Moreover, V() = lim gy (n(t)) and ¢t — V(t) is continuous.
s<t s%tg Y

e We write

gm(n(t)) =V () €R, <= n(t) =gm(V(t) € OH], t=0.

t

41



Loewer equation with multi-slit

Theorem 2.1 can be extended to the situation such that 7 in H is given by a
multi-slit (Roth—Schleissinger (2017), K—Koshida (2021)).

e Let N e N:={1,2,...} and assume that we have N slits
i ={ni(t):t€(0,00)} CH,i=1,...,N, such that
— they are simple curves, disjoint with each other, n, Nn; = 0,1 # j,

— starting from N distinct points lim;_o7;(t) =: 7;(0) on R;
m(0) < - <nn(0),
— and all going to infinity; lim, ,. 7;(t) =00, i =1,..., N.

%\g

Y,(0) Y,000 Y;0) [Y,(00 -+ ¥\(0)  Rez 42




e A multi-slit is defined as a union of them, Uf\il n;, and

H :=H U (0, ]

1=1

for each t > 0 with H/ := H.

e For each time ¢ € (0,00), H is a simply connected domain in C and then
there exists a unique analytic function gy such that

guy : conformal map Hy — H,

satisfying the hydrodynamic normalization condition

hcap(UiL n:(0, 1)) +O(|2]7%)

Nar

gun(2) = 2 +

as z — oQ.
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Theorem 2.2 For N € N, let | J;, 7 be a multi-slit in H such that

hcap(CTJn(O,t]) =2Nt, te (0,00).

=1

Then there exists a set of weight functions w;(t) > 0,t > 0,i = 1,..., N sat-
isfying >~ w;(t) = 1,t > 0 and an N-variate continuous driving function
V(t) = (Vi(t),...,Vxa(t)) € RVt € (0,00) such that the solution ¢; of the dif-
ferential equation

dgt NUJ%

||M2

)

gives g, = gy, t € (0,00).

J




Similarly to the previous single-slit case, the following relations hold,

Vi) = lim  ggn(mi(t) +2) <= n(t) = lim gE_H%(VY;(t) +2z), i=1,...,N,
2—0, t z—0, "
ni (t)+z€H] z€H

and we write for the multiple tips n;(t), i =1,...,N, t >0,
gw(mi(t)) =Vit) eR, i=1,...,N, t=>0

in the above sense.

S
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Schramm- Loewner evolution (SLE)

e So far we have considered the problem such that, given time-evolution of
a single slit 7(0,¢],t > 0 or a multi-slit Ufil n(0,t],t > 0 in H, time-evolution
of the conformal map from H} to H, ¢ > 0 is asked.

e The answers are given by the solution of the Loewner equation in The-
orem 2.1 for a single slit and by the solution of the multiple Loewner
equation in Theorem 2.2 for a multi-slit, which are driven by a function
(V(t))s>0 and by a multi-variate function V (t) = (Vi(t),..., Vx(t)) € RVt >
0, respectively.

e The both processes are defined in R and deterministic:

single slit 7(0,t] € H,t > 0 driving function (V(t));>o on R
multi-slit (JY, 7(0,t] € H,t >0 multi-variate (V (t));>o on RY

46



e For H with a single slit, Schramm (2000) considered an inverse problem
in a probabilistic setting.

— He first asked a suitable family of driving stochastic processes (Y (t))i>o
on R.

— Then he asked the probability law of a random slit in H, which will
be determined by the above mentioned relations from (Y (¢)):>, and
the solution g; = gyr,t > 0 of the Loewner equation):

random curve 7(0,t] € H,t > 0 « driving stochastic process (Y (t));>; on R

47




e Schramm argued that conformal invariance implies that the driving pro-
cess (Y (t));>o should be a continuous Markov process which has in a par-
ticular parameterization independent increments.

e Hence Y (¢) can be a constant time change of a one-dimensional standard
Brownian motion (B(t));>0, and it is expressed as

(VEB(t))s>0 (o) (B(kt));>o with a parameter x > 0.

The solution of the Loewner equation driven by Y (t) = /xB(t),t > 0,

dgun(2) 2 F>0
dt gur(2) —VEB()  —

is called the chordal Schramm-Loewner evolution (chordal SLE) with
parameter x > 0 and is written as SLE, for short.

gHg(Z) =z E Ha

48



The following was proved by Lawler, Schramm, and Werner (2004) for x = 8
and by Rohde and Schramm (2005).

Proposition 2.3 = A chordal SLE, gy»,t € (0,00) determines a continuous curve
such that

n=1{nt):te0,00)})Cc HUR

n(0) := limn(¢) =0,

lim |n(t)| = oo
t—00

with probability one.

e The continuous curve 7 determined by an SLE, is called an SLE, curve
(or SLE, trace)

49




e The probability law of an SLE, curve depends on k.

— As a matter of fact, SLE, curve becomes self-intersecting and can
touch the real axis R when x > 4, so it is no more a slit, since a slit
has been defined as a trace of a continuous simple curve.

— When k > 4, the domain H \ (0, ] is divided into many components,
only one of which is unbounded.

<

0 0
(a) (b) (c)
(a) 0< k<4 (b) 4 <k <8 (c) k=28
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So here we change the definition of H!, > 0 as follows,
H} := the unbounded component of H \ 7(0, ],

Then
guy : conformal map H — H, ¢ >0.

We also define
K =H\H, t>0.

and call it the SLE hull.

t > 0.
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Selection problem of driving process for multiple SLE

For simplicity, we assume the equal weight w;(t) = 1/N,t > 0,7 = 1,...,N in
Theorem 2.2.

Then the Loewner equation for the multi-slit in H is written as

dgH’? N
; t > 0, n — 2z € H.
2:: ) —v =0 el =s

Then we ask what is the suitable family of driving stochastic processes of N
particles on R, Y (t) = (Yi(t),...,Yn(1)),t > 0;

N
multiple SLE, curves Um(O,t] cH,t>0
i=1
<= driving many-particle stochastic process (Y (t));>o on RY ?
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e The same argument with Schramm (2000) will give that Y (¢) should be
a continuous Markov process.

e Moreover, Bauer, Bernard, and Kyt6la (2005), Graham (2007), and
Dubédat (2007) argued that (Y*(t));>0,7 = 1,..., N are semi-martingales
and the quadratic variations should be given by (dY;,dY}); = kd;;dt,t > 0,
1<12,5 <N with k > 0.

e Then we will be able to assume that the system of SDEs for (Y (¢));>¢ is
in the form,

dY;(t) = V/kdB;(t) + Fy(Y (t))dt, t>0, i=1,...,N,

where (B;(t))i>0,2 = 1,..., N are independent one-dimensional standard
Brownian motions, x > 0, and {Fj(xz)})., are suitable functions of x =
(z1,...,zy) which do not explicitly depend on t.
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In the following, we will give a theory so that the driving process (Y ()):>¢

should be a time change of DYS; with 5 = 8/k to construct a proper multiple
SLE.

e We consider the Gaussian free field (GFF) and its generalization called

the imaginary surface with parameter Yy, which are considered as the
distribution-valued random fields on H.

e Under the relation
2 K

X = \/E T \/55
we regard the SLE/GFF coupling studied by Dubédat, Sheffield, and
Miller as a temporally stationary field.

e We extend it to multiple cases. We prove that the multiple SLE/GFF

coupling is established, if and only if the driving N-particle process on R
is identified with DYSg,.
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Our answer to this selection problem of driving process for the multiple SLE
will be given by

Yi(t) = v/rdB(t +4Z

1<j<N, Yi( Y;(t)
J7i

(law)

e Since (VEB(t))i>0 = (B(kt))r>0,
we perform a time change xt — t and define X (t) := Y (xt),t > 0. Then we
have the following set of SDEs for (X (¢));>0,

dX;(t) =dB;(t) + — E dt
I<j<N,
J#i
o] 1
X.(t) = dB.(t) + = E > =1 N
A d @(t) d z(t) 9 @(t) Xj(t) dt, t>0, ) y 4V
1<j<N

with

e Hence, we can say that the N-particle system (Y (¢)):>o is a time change
of the Dyson model with g = 8/xk; DYSg/,.
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fermions (matter)| Gaussian random variable

bosons (fields)

‘/\

Gaussian free field (GFF)

1 dim Brownian motion (BM)

d dim Bessel process

_— =

free boundary
GFF

Dirichlet

boundary GFF

Dyson’s BM Schramm-Loewner

Liouville quantum gravity

(LQG)

evolution (SLE)

\/

multiple SLE driven by
Dyson’s BM

\

guantum
surface

multipe-SLE/GFF coupling

]
Imaginary
surface
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fermions (matter)| Gaussian random variable | bosons (Tields)

~t T~
’ R
*

N\
- / - ¢
1 dim Brownian motion (BM) Gaussian free field (GFF) \\
/ .
free boundary | Dirichlet
GFF | boundary GFF

d dim Bessel process | . |
|

/\ Liouville uantum gravity

Dyson’s BM Schramm-Loewner , (‘I\TQG)_ | |
evolution (SLE) quantum | | imaginary |
\/ surface “.| surface x
multiple SLE driven by >~ .
Dyson’s BM

\

multipe-SLE/GFF coupling
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Dirichlet boundary Gaussian free field (GFF)

e For two functions f,g € C>*(D), their Dirichlet inner product is defined as
1
(F9) = 5= [ (VD) (Vo))
T JD

e The Hilbert space completion of C2°(D) with respect to this Dirichlet inner
product will be denoted by W (D). We write || f|v = \/{f, f)v,f € W(D).

e If we set
2T

U, = /\—n €, N €N,
then by integration by parts, we have
1
<Un, un)V - %(una (_A)um> — 5nma n,mec N.

Therefore {u,},cn forms a CONS of W (D).
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Assume that D, D’ C C are simply connected domains and let

¢: D" — D conformal map.

Lemma 2.5 The Dirichlet inner product is conformally invariant, that is,

/D (V1)(2) - (Vo) (2)pldz) = / (V(f 0 9))(2) - (V(g o 9))(2)u(dz)

!

for f,g € CX(D).
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Definition 2.6 (Dirichlet boundary GFF) A Gaussian free field (GFF) with
Dirichlet boundary condition is defined as a pair ((Q"Y, FC' PCIY) ) of a
probability space (QFF, FOFF PCFF) and an isometry

H - W(D) N LQ(QGFijGFF?PGFF)

such that each
H(f):=(H, f)v, feW(D)

is a centered (mean zero) Gaussian random variable, whose characteristic
function is given by

ECFF[oV=TOHY] = exp (—%2\/&1"[([{, f)v]) . BER, feW(D).

Here
Var[(H, f)v] := EGFF[(Ef)%] =%, few(D)
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By Definition 2.6 we have the following simple formula for covariances,

Cov[(H, f)v. (H.g)v] = B [(H. f)v(H.g)v| = (f.9)v, f.9 € W(D).

Fron Lemma 2.5, we see that the pull-back
" W(D)3 frs fopeW(D)
is an isomorphism.

This allows one to consider a GFF on an unbounded domain:

— Assume that D’ is bounded on which a Dirichlet GFF H is defined,

but D is unbounded.
— We can define a family {{(p.H, f)v: f € W(D)} by

<W*an>v = <H? gp*f>V7 f S W(D)

By Lemma 2.5, we can prove the equality,

Cov[(p.H, f)v, (¢-H, g)v] = Cov[(H, f)v,(H, g)v].

That is, the covariance structure does not change under a conformal map

v. We say that the GFF is conformally invariant.
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Green’s function

By a formal integration by parts, we see that

27r
1

" 2r

. fe = 5= [ (VIDE) - (V@) = o [ HE)(-
(H. (- ).
Motivated by this observation, we define
(H. f) = 2n(H.(-2)" f)g for € D(~A)™),

where D((—A)™!) denotes the domain of (—A)~! in W(D).

(2)p(dz)

The action of (—A)™' is expressed as an integral operator and the integral

kernel is known as the Green’s function. Namely,

1

()1 )E) = 5

_/DGD(z,w)f(w),u,(dw), ae.ze€ D, [feD((—-A)),

where Gp(z,w) denotes the Green’s function of D under the Dirichlet boundary

condition.
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e The covariance of (H, f) and (H,g) with f,g € D((—A)™!) is written as

ESH, f)(H ) = [ F(2)Gp(z w)g(w)u(dz)p(dw).

DxD

® When we symbolically write

(H.N) = [ HEGuld), 1 eD(=4)7),
the covariance structure can be expressed as

ElH(z)H(w)| = Gp(z,w), z,weD, n#uw.
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When D is the upper half plane H,

Z— W

—Relog(z— w) — Re log(z —w), z,w € H, z # w.

‘zlog]z—ﬁ|—10g|z—w\

e The conformal invariance of GFF implies that for a conformal map ¢ :
D' — D, we have the equality,

Gp(z,w) = Gplp(z),p(w)), =z,we D"

e In the following, we will regard the upper half plane H as the represen-
tative of the simply connected domain D C C. .

e Since each D’ C C is specified by the conformal transformation ¢ : D" — H,
we put this in the superscript and write

G (z,w) = G (2, w) = Gu(p(2), p(w)).

e By the explicit form of Gy(z,w) given above, we have

G¥(z,w) = log |p(2) — p(w)| —log |p(z) — p(w)

= Re log(p(z) — ¢(w)) — Re log(p(2) — p(w)). e



3. Multiple SLE/GFF coupling driven by
Dyson’s BM model
(random points/curves/surfaces)
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We write the probability space of the multiple SLE as (Q°F F5LE (FSLE) | PSLE),

Now we define the direct product of this space and that for the Dirichlet
boundary GFF,

(Q?‘F7 P) _ (QSLE % QGFF’fSLE % FGFF,PSLE % IP)GFF)

We consider the multiple SLE as well as GFF in this extended probability
space, and the multiple SLE is assumed to be adapted to the filtration,

Fr=FE < {0,Q°), t>0.

In summary, we assume the following;

dQHf(Z) al 2 . .
a9 \=) o .
di Z—; g (2) = Yi(t)"  — gy (2) = gu(2) =z € H,
Yi(t) = gan(i(t)) == lim  ggn(z), i=1,...,N, >0,

z—n; (t),z€HY

gy © conformal : H} — H.
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GFF transformed by multiple SLE
e Put

G™ (z,w) := Gu(guy(2), gy (w)), > 0.

e Then define the Dirichlet boundary GFF, gy H, on H,t > 0, such that
its Green’s function is given by the following equation.

Proposition 3.1 For t > 0,
1

- 4ZN:‘Im (QH?(z)l— Y@-(t)> o <9H:? (w) = Yi(t)) |

z,w € HY.

e For a given domain A C H, we assume that supp (f) of f € C*(H) satisfies
supp (f) C A. Then we define the Dirichlet energy of GFF by

" (z)GgH?(z,w)f(w)m(dz)m(dw).

By Proposition 3.1, we have

Iyn N

dE7(f)
— =

=1

(/A iy (z)Q— Y, (1)

Gy
It implies that £, (f) is non-increasing function of ¢,

f(Z)m(dZ))2 ,

67



Multiple SLE/GFF coupling as temporally stationary field

Consider the following time-evolution of extended GFF,
H; := QH?*H +be, >0,

where the process (h;):>0 is not yet determined. The process (h;):>¢ shall be a
functional of the mutiple SLE (g ):>0.

Definition 3.2 (multiple SLE/GFF coupling) For any domain A C H such that
va=inf{Imz:z € A} >35> 0,

define the (F;):>o—stopping time by 74 := sup{t > 0 : A C H/} and assume
0 <T < 74. For the multiple SLE, assume the equality

(Hy, f) ) (Hy, f), te€]0,T] (temporal stationarity)

for any [ € C*(H) with supp (f) C A. Then we say that the multiple SLE/GFF
coupling is established.
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Definition 3.2 (multiple SLE/GFF coupling) For any domain A C H such that
va=inf{lmz:z € A} >76 >0,

define the (F;);>o—stopping time by 74 := sup{t > 0 : A C H/} and assume
0 <T < 714. For the multiple SLE, assume the equality

(Hy, ) ) (Hy, f), te€]0,7] (temporal stationarity)

for any f € C*(H) with supp (f) C A. Then we say that the multiple SLE/GFF
coupling is established.

A

ey .

15(t) / 1,(0)
//' 772(0 H

n,(t)
(1)

Y,(0) Y,(0) Yy0) |[Y,00) -+ Y (0) Re z
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Proposition 3.3 Assume the following.

(A) (b)i>o is a continuous local martingale and its quadratic covariation
satisfies the equalities,

d(h.(2),b.(w)); = —dG™ (z,w), zweH], tel0.00),
(0., f). (0. f))r = —dEL" (f) for f € C°(H) with supp (f) € A C H.

Then the multiple SLE/GFF coupling is established for H,; := guy, H + bt > 0.

Proof. Introduce a real parameter ¢ € R and consider the characteristic func-
tion for (H,, f), E[eV-1#.0)], Here E denotes the expectation with respect to
the joint probability law P of the multiple SLE and GFF. b,(-) is /;—measurable,

E{B\/——wwm} _E

E{GXP(\/__U%QHQ*H: f>)}]:t} 6‘/_19<h*’f>] :

an

Since supp (f) C A, Var[(gg H, )] = £, (f). Hence by the definition of centered
GFF,

E| exp(v=10(gey H. f))

62 I
./T‘-t} — exp (—315,4 t (f)) :

Then we obtain

E|eVTHD| — R [exp (9—; D+ VIO f>>] - 20




By Itd’s formula,

2 9
dexp (%E4 “(f) 4+ vV—16(b, f>>
2

= (vt 1) = 5 (8 )+ a0 ) 0. 000) b (5 )+ V0001
92

= V=10d{b,, f) exp (—;Eiﬂz(f) +v/=10(h. f>) ,

where the assumption (A) was used. Hence exp (—922 EZH?(f) + V—l@(f)t,f)) is

an JF;-local martingale. Therefore, the characteristic function, given by the
expectation of martingale, is time independent and equals to its initial value,

E [exp (—Q—;Eiﬂm +V=10(ho. f>)] — B[/

The proof is complete. g
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Complex-valued logarithmic potentials

e Assume that the driving process (Y (t));>¢ of the multiple SLE is given by

dY(t) = VkdBy(t) + F(Y (t))dt, >0, i=1,... N

e For - € C,2) € R,i = 1,...,N, we consider a sum of complex-valued
logarithmic potentials,

N
O(z,y) =) log(z—y").
i=1

e And consider a stochastic process (®(gu»(2),Y (1)))i>0-
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Following Ito’s formula and some calculation based on the multiple SLE, we

have (f'(z) :=df(z)/dz)

2 & 1 1
__Z n(z) — Yi(l) ! Z E(t)—Y-(t)_Fi(Y(t)) at

We find the following:
2
Jr 2
then the last term in RHS = d(y log g]’H[?(z)),

(1)

1
(ii) if F(Y)=4 E FOESTOk i=1,...,N, (the drift term of DYSg),)
J

1<G<N, 7
j#i

then the second term in RHS = 0.
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Hence we put

Bi(-) = Im [\wagHg(-)?Y(t)) — xlog g ()

N _% Z arg (guy (1) — Yi(t)) — xarg g’ (-).

Then the above observation implies the following.

Proposition 3.4 Assume that the driving process of the multiple SLE is given

2
by DYSy. If x = —=

— \éE’ then (h:()):>0 is a local martingale and satisfies

N
1

=29y 1 B, HY :

db,(z) ;_1 m gHg(z)—E(t)d (), zeH!, tel0, 0)

Then the assumption (A) holds.
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Imaginary surface

Consider the collection

S:= {(D7 h)|D € C : simply connected, h : extended GFF on D}.

Fixing a parameter y € R, the following equivalence relation in S was intro-
duced.

Definition 3.5 Two pairs (D, h) and (D, h) € S are y-equivalent if there exists a
conformal map ¢ : D — D and

>~ (law

B ) p.h — yarg ¢,

In this case, we write (D,h) ~ (D.h).

e Each element belonging to the equivalence class S/ ~ is called an imagi-
nary surface (Miller—Sheffield 2016) (or an AC surface (Sheffield 2016);
(AC means a combination of an altimeter and a compass.)
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o~

Definition 3.5 Two pairs (D, h) and (D, h) € S are y-equivalent if there exists a
conformal map ¢ : D — D and
B p.h — yarg Q'

~ A~

In this case, we write (D, h) ~ (D, h).

e Each element belonging to the equivalence class S/ ~ is called an imagi-
nary surface (Miller—Sheffield 2016) (or an AC surface (Sheffield 2016);
(AC means a combination of an altimeter and a compass.)

e That is, in this equivalence class, a conformal map ¢ causes not only a
coordinate change of a GFF as h — ¢,h associated with changing the
domain of definition of the field as D — ¢ !'(D), but also an addition of
a deterministic harmonic function —yarg ¢’ to the field. Notice that this
definition depends on one parameter y € R.

The time-dependent field obtained by multiple SLE/GFF coupling is a imagi-

2 R

nary field with y = NG -5 associated with the time evolution of the bound-
K

ary points (Y (t))>0 ~ DYSsg/,.
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The following is the main result in this talk.

Theorem 3.6 Assume

X= =
Then, if and only if the driving process of multiple SLE (Y (t));>0 is given by
the solution of the SDEs

1

in(t):\/EdBi(t)qLélE dt, t>0, i=1,...,N,

Sz Vil = Yil)
JFi

the multiple SLE/GFF coupling is established. In other words the driving
process of multiple SLE is uniquely determined to be the Dyson model with

DYSs),, if the multiple SLE/GFF coupling holds.
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The multiple SLE driven by DYS; with the relation = 8/x, inherits many
properties from the original SLE, with a single SLE curve. Actually, we have
proved that our multiple SLE, also shows phase transitions at k. = 4 and
Re = 8.

Theorem 3.7 For each i =1,..., N, the limit 7;(t) = lim_ o gg» (Y;(t) ++/—1¢) exists
for all £ > 0 and tlim 1n;(t) = oo with probability one. Moreover, the following
—00

three phases are observed.

(a) If0 <k <ke=4, n(0,00),i=1,...,N are simple disjoint curves such that
n;, CH,72=1,..., N with probability one.

(b) Ifke =4 <k <F.=8,m;,i=1,...,N are continuous curves with probability
one, and they intersect themselves and R with positive probability.

(¢c) Ifk=28,m;,i=1,...,N are space filling continuous curves with probability
one.
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nYae N N

n™a

TI{] )(l‘) n (2)(I) n (3)0)

(b) 4 <k <8

17 (N)(I)

7V N N3

(c) k=238
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1. From Brownian motion to Dyson’s BM model
(random points: stochastic log-gas)

2. Schramm-Loewner evolution (SLE) and
Gaussian free fields
(random curves and random surfaces)

3. Multiple SLE/GFF coupling driven by
Dyson’s BM model
(random points/curves/surfaces)

4. Concluding Remarks
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Scaling limits of statistical mechanical models?

Model for coil-globule
transitions in 2-dim polymers?

ok {4 .
R s . s

Describing the commensurate-
iIncommensurate transitions
studied by Huse and Fisher
(Phys. Rev. B29 (1984)) ?
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Infinite N limits ?

Multiple SLE

Numerical simulation by S. SchleiBinger
Imz
1.5F

0.5F

e S T S !
21y
() =2V —texp (\/199 _ £ 5 ) : —g <p< g? t > 0.

“High-end model” of Wigner’s semicircle
(Hotta—Katori: J. Stat. Phys. 171 (2018) 166—188)
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Multiple SLE slits

. IR 3
A
i \»’iﬁ!

Re(yk(t))
Numerical simulation by S. SchleiBinger
Imz

3.0
25E

Re z

“infinite SLE version” of Brézin—Hikami (—Pearcey)
(Hotta—Katori: J. Stat. Phys. 171 (2018) 166-188) 83
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From Hotta—Schleiflinger: J. Theor. Probab. 34 (2021) 755-783
(by numerical simulations)

(Endo—Katori—Koshida: in preparation)
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Variations like RMT ?

[GUE]| Dyson’s BM model on R: dY(t) = /kdB;(t) + 4 Z ! dt
Le /o Yilt) = Y5(1)

dge(z) - 2

multiple SLE on H:= {2 € C:Imz > 0}: -~ =

’ { TR e 0

2

harmonic term (local martingale): y := N 7/@

K

b(2) = \% > g (92) ~ i) ~ narga! (2
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[chiral GUE] Bru—Wishart(—Laguerre) process on R, :={r € R:2>0}: v >0

8(v+1)—k 1 1
dY;(t) = VrdBi(t) + N0 dt+4 ) (K(t)Y-(t)+K(t)+Y-(t))dt

1<GEN, j#i J

multiple SLE on the first orthant O :={z € C: Rez > 0,Imz > 0}:

dgi(z) a 2 2 4y
@ Z (gtcz) R Ym) T

harmonic term (local martingale):

SI

Z{cug (1) = Y1) + g (9(=) + Vi) } — xarg (=) — xarg g/ (2
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[circular unitary ensemble (CUE)] circular Dyson model on T := {z € C: |z| = 1}:

Yi(t) =V 190 doi(t) = VrdBi(t) +2 ) cot (@i(t) ; O; (t)) dt

1<j<N,j#i

radial multiple SLE on D:={z € C: |z| < 1}:

dgr ZQtZ + V()
1lgtz }/?t)

N+2
VE 2

harmonic term (local martingale): {y :=

. ——Zarg (0(2) = Y1) + Exargn(2) + 2= 3 arg¥i(1) = vargg/ ()

(Endo—Katori—Koshida: in preparation)
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Thank you very much
for your attention.
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