
5 Geometry of field space
Differential geometry is one of the most powerful mathematical tools one can use in theoretical

physics. It is indispensible in the description of fields in spacetime. Indeed, we view spacetime
as a differential manifold M, and fields as tensors, spinors, or other objects, living on that
manifold. The simplest kind of field, a scalar field, is just a function onM. The electromagnetic
gauge potential Aµ is a 1-form onM. The metric gµν is a rank 2 tensor onM.

But the use of differential geometry does not stop there. For example, previously we have seen
how the phase space of a physical system can be viewed as a symplectic manifold. In ordinary
mechanics, there are only finitely many degrees of freedom, so this manifold is finite-dimensional.
However, in the case of field theory, there are infinitely many degrees of freedom. Thus, phase
space is infinite-dimensional.

Usually when learning differential geometry one only deals with finite-dimensional manifolds.
The standard definitions do not automatically extend to the infinite-dimensional case, and
subtle and strange things can happen if one is not careful. There are different ways to define
infinite-dimensional manifolds, with different names, for example: Banach manifolds, Frechet
manifolds, Hilbert manifolds. If we were being perfectly rigorous in this course, we would have
to pick one of these options, and check that everything we are doing still makes sense. However,
there is not enough time to do this, and we wouldn’t get much out of it anyway. So we will not
worry too much about this, and just assume that all of the finite-dimensional intution works
out.

5.1 Configuration space
A ‘configuration’ of a field is a specification of the value that it takes at every point in spacetime.
For a scalar field, a configuration is just a function overM. More generally, a field configuration
is a section of some bundle Φ overM, which is sometimes called the ‘field bundle’. Recall that
such bundles are equipped with a map π : Φ→M, and that the preimage

π−1(x) = {y ∈ Φ : π(y) = x} (5.1)

of a point x ∈M is known as the ‘fibre’ over x. A ‘section’ of Φ is the choice of an element of
each fibre. The space of all sections is denoted C = Γ(Φ), and is called ‘configuration space’.
Let us use φ(x) to denote the value taken at x ∈M by a given configuration φ ∈ C.

For an example, consider the electromagnetic gauge potential, where Φ is T ∗M, the cotangent
bundle overM. An electromagnetic field configuration is a section of the cotangent bundle
T ∗M, i.e. a choice of 1-form at x for every x ∈M.

We can view configuration space as an infinite-dimensional manifold (modulo rigour), from
which every other space of interest in the covariant phase space formalism is derived. Let us
now try to understand the meanings of various geometric objects in configuration space.

A path in configuration space I → C, t 7→ φt, where I is some interval in R, is simply a
1-parameter family of field configurations. Let V be the tangent vector to this path. What is the
meaning of this tangent vector? To find out, suppose we have some function F on configuration
space, which we evaluate on φt. Then taking a derivative with respect to t, we have

d
dtF (φt) = φ̇t ·

∂F

∂φ

∣∣∣∣∣
φ=φt

, (5.2)
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where the · denotes a sum over field components. But by the definition of a tangent vector, we
have

d
dtF (φt) = V (F (φt)), (5.3)

so
V = φ̇t ·

∂

∂φ
. (5.4)

So the components of the tangent vector are just φ̇t, which is the infinitesimal change in field
configuration as one moves along the path φt. More generally, considering the tangent vectors
to all possible paths in configuration space, a general vector on C may be written δφ · ∂

∂φ
, where

δφ is some infinitesimal variation of the fields. So this tells us what configuration space vectors
are – they are simply field variations! The space of all field variations φ→ φ+ δφ is thus the
same as TC, the tangent bundle to the configuration space. The space of all field variations to
a particular field configuration φ is TφC, the tangent space to C at φ.

5.2 Locality and jets
In this course we will be interested in theories which can be defined locally. For such theories,
the Lagrangian form at a point x in spacetime only depends on the fields φ and some number
of their derivatives at x:

L|x∈M = L

(
φ(x), ∂φ

∂xµ
(x), ∂2φ

∂xµ∂xν
(x), . . .

)
(5.5)

On the other hand, a general field-dependent spacetime function is some map

f : C ×M→ R, (φ, x) 7→ f(x)|φ, (5.6)

that does not need to have this kind of local dependence. For example, f could be the shortest
distance from x to ∂M. This function depends on the metric in a very non-local way.

A useful way to formalise this locality is in terms of jets. Given a section φ of the field
bundle Φ, i.e. a configuration in C, we can compute k of its derivatives at a point x ∈M. The
k-jet of φ at x is simply the collection of values taken by the field and these derivatives,

jkx(φ) =
(
φ(x), ∂φ

∂xµ
(x), ∂2φ

∂xµ∂xν
(x), . . . , ∂kφ

∂xµ . . . ∂xρ
(x)
)
. (5.7)

The k-jet space of Φ at x is the set containing all possible k-jets at x,

Jkx = {jkx(φ) : φ ∈ C}. (5.8)

In other words, each point in Jkx corresponds to a specification of the first k derivatives of the
fields at x. Finally, the k-jet bundle is the disjoint union over spacetime of all the k-jet spaces,

Jk =
⊔
x∈M

Jkx . (5.9)

We have the map
Jk →M, Jkx 3 j 7→ x, (5.10)
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under which Jk forms a fibre bundle over spacetime. The fibre over x ∈M is the k-jet space
Jkx . Given a field configuration φ ∈ C, let jk(φ) be the section of the k-jet bundle J whose value
in the fibre over x is jkx(φ).

From now on, let us drop the k on everything, and just refer to k-jets as jets, the k-jet
bundle Jk as the jet bundle J , and so on.

The map jx : C → Jx enables us to define local functions on configuration space. Indeed,
suppose we have some function f : J → R defined on the jet bundle,

f = f
(
x, φ(x), ∂φ

∂xµ
(x), ∂2φ

∂xµ∂xν
(x), . . .︸ ︷︷ ︸

jx(φ)

)
. (5.11)

We can then define a field-dependent spacetime function F : C ×M→ R via

F : (φ, x) 7→ F (x)|φ = f(x, jx(φ)). (5.12)

In this way, at the point x, the function F only depends on the values of φ and its first k
derivatives at x. Thus F is a local function.

We can do a similar thing to define other kinds of local objects, such as spacetime tensors
that depend locally on the fields. Essentially, we can think of these objects as being defined on
the jet bundle. Then we use the function j : C → Γ(J) to go from the field configuration φ to a
section j(φ) of the jet bundle, on which we can then evaluate the object. This will always give
a local dependence on the fields and their derivatives.

It is sometimes more useful to think of local objects as being defined directly on the jet
bundle, and we will frequently do this.

5.3 Variational bicomplex
Of particular interest in the covariant phase space formalism are differential forms with local
field dependence. We already know how to think of local 0-forms, i.e. local functions – these
are just functions on the jet bundle J . What about higher-degree forms?

Using a set of local spacetime coordinates, we can immediately write down a set of D 1-forms
on the jet bundle:

dxµ , µ = 1, . . . , D. (5.13)

However, xµ are not the only coordinates on the jet bundle. We also have coordinates for the
field values and their derivatives φ, ∂µφ, ∂µ∂νφ, . . . , so we also have the 1-forms

dφ , d(∂µφ) , d(∂µ∂νφ) , . . . . (5.14)

Actually, when discussing these 1-forms, we will change the notation d to δ, and so write them
as

δφ, δ(∂µφ), δ(∂µ∂νφ), . . . . (5.15)

The reason for this change of notation is that we will eventually associate these 1-forms with
linearised field variations. The notation then helps us to distinguish between field variations
and spacetime forms.
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Note that the first set of 1-forms (5.13) are aligned along spacetime directions of the bundle,
while the second set (5.15) are aligned along the vertical directions of the bundle, i.e. along the
fibres. For this reason, we sometimes call (5.13) ‘horizontal’, and (5.15) ‘vertical’.

We can get higher order forms by taking exterior products of the above basis 1-forms. For
example

dx1 ∧ dx2 = − dx2 ∧ dx1 (5.16)

is a horizontal 2-form on J . It is a useful convention when taking exterior products of vertical
forms to not explicitly write out the wedge symbol. This allows us to avoid confusing the two
types of form. For example,

δφ δ(∂1φ) = −δ(∂1φ) δφ (5.17)

is a vertical 2-form on J . We can also have forms which have both horizontal and vertical parts,
such as

dxµ δ(∂µφ) = −δ(∂µφ) dxµ . (5.18)

It is useful to distinguish between the horizontal and vertical degrees of a form. To this end,
a form which involves p horizontal 1-forms and q vertical 1-forms is called a (p, q)-form. For
example, (5.18) is a (1, 1)-form.

Now let’s consider exterior derivatives on the jet bundle. We denote the exterior derivative d.
Given a function f on the jet bundle, we can now take its exterior derivative to get the 1-form

df = dxµ ∂f

∂xµ
+ δφ · ∂f

∂φ
+ δ(∂µφ) · ∂f

∂∂µφ
+ . . . , (5.19)

where, as previously, the · denotes a sum over fields. It is convenient to write this as

df = df + δf, (5.20)

where
df = dxµ ∂f

∂xµ
(5.21)

and
δf = δφ · ∂f

∂φ
+ δ(∂µφ) · ∂f

∂∂µφ
+ . . . . (5.22)

The exterior derivatives of higher degree forms are defined in the usual way.

We call d the horizontal exterior derivative, and δ the vertical exterior derivative. One can
confirm that they anticommute2

{d, δ} = 0. (5.23)

We also have d2 = 0 and δ2 = 0. Suppose α is a (p, q)-form. Then dα is a (p+ 1, q)-form, while
δα is a (p, q + 1)-form.

We call this system of (p, q)-forms, as well as the two types of exterior derivative, a variational
bicomplex.

2 It is also possible to use a convention in which d and δ commute.
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5.4 Solution space
As described in the previous section, when dealing with covariant field theories it is most
convenient to think of the Lagrangian L as a top form on spacetime that depends locally on
the fields φ. In the context of the variational bicomplex, we should think of L as a (D, 0)-form,
because it is a horizontal (i.e. spacetime) form of degree D, but only a function of the fields, i.e.
a vertical form of degree 0.

When we take a variation of the Lagrangian with respect to the field change φ→ φ+ δφ, this
is essentially the same as taking the vertical exterior derivative. We end up with a (D, 1)-form,
which, as we showed in the last section, may be written

δL = E · δφ+ dθ (5.24)

by appropriate application of the product rule. In this expression E is a spacetime D-form
that depends locally on the fields, so it is a (D, 0)-form, and θ = θ(φ, δφ) is a spacetime
(D − 1)-form that depends locally on the fields φ, and linearly on one field variation δφ, so it is
a (D − 1, 1)-form. One can check that the degrees of all the terms in the above equation are
the same.

The equations of motion E(φ) = 0 are obeyed only on a subspace S ⊂ C of the full
configuration space. This space S is called the solution space, and configurations in the solution
space are sometimes called on-shell. On-shell, we clearly have

δL = dθ . (5.25)

In the case of a theory without gauge symmetry, the solution space S is the phase space of the
theory. In the case of a theory with gauge symmetry, we need to perform a symplectic reduction
on the solution space, and the result is the phase space of the theory.

In either case we need to define a presymplectic form for the solution space, and this is what
we will do next.

5.5 Presymplectic current and presymplectic form
The (D − 1, 1)-form θ is sometimes called the presymplectic potential density. Consider its
vertical exterior derivative

ω = δθ. (5.26)

This is a (D− 1, 2)-form, sometimes called the presymplectic current. On the space of solutions,
we have

dω = d(δθ) = −δ(dθ) = −δ2L = 0. (5.27)

Thus ω is on-shell closed.

Let us now pick a Cauchy surface Σ in spacetime. Since ω is a (D − 1)-form in spacetime,
we can integrate it over Σ to obtain

ΩΣ =
∫

Σ
ω. (5.28)

ΩΣ is a 2-form on configuration space C. Moreover, it is an exact form ΩΣ = δΘΣ, where

ΘΣ =
∫

Σ
θ. (5.29)
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The pullback of ΩΣ to the space of solutions S ⊂ C is the presymplectic 2-form.

There is now the question of which Cauchy surface we should use to define the presymplectic
2-form. Suppose we have two Cauchy surfaces Σ1,2 which together bound a region U of spacetime.
Note that any two Cauchy surfaces which share a boundary ∂Σ1 = ∂Σ2 have this property.
Then on-shell we have by Stokes’ theorem

ΩΣ1 − ΩΣ2 =
∫

Σ1
ω −

∫
Σ2
ω =

∫
U

dω = 0. (5.30)

Thus the presymplectic 2-form is the same on both surfaces. So the presymplectic 2-form can
only change if the Σ1,Σ2 do not share a boundary. If that is true, then there is an additional
codimension 1 surface I interpolating between ∂Σ1 and ∂Σ2 such that Σ1,Σ2, I bound a region
U , and we have

ΩΣ1 − ΩΣ2 =
∫

Σ1
ω −

∫
Σ2
ω =

∫
U

dω︸ ︷︷ ︸
=0

−
∫
I
ω. (5.31)

So in this case the presymplectic 2-form changes by the integral of the presymplectic current
over I, which is sometimes called the presymplectic flux through I.

This will be very important when we come to consider asymptotic symmetries. If we want
to view the evolution from Σ1 to Σ2 as a symmetry, then we need to require that ΩΣ1 = ΩΣ2

– because symmetries must conserve the presymplectic 2-form. Thus, such symmetries need
to satisfy

∫
I ω = 0, i.e. need to have zero presymplectic flux through I. This restricts which

transformations Σ1 → Σ2 are symmetries, in a way that depends on properties of the fields at
I.

5.6 Possible ambiguities
The above construction as we have described it is not completely well-defined. There are two
possible sources of ambiguity in the definition of the presymplectic 2-form.

1. First, we’ve only used the bulk Lagrangian form L. But L is only defined up to the
addition of an exact (D, 0)-form, so L → L + dK for some (D − 1, 0)-form K. This is
because we can simultaneously modify the boundary lagrangian by l→ l −K, and the
action does not change:

S =
∫
M
L+

∫
∂M

l→
∫
M

(L+ dK) +
∫
M

(l −K) = S +
∫
∂M

K −
∫
∂M

K = S. (5.32)

Because the action does not change, the dynamics will be completely unaltered. However,
the vertical exterior derivative of the Lagrangian does change:

δL→ δL+ δ(dK) = E · δφ+ d(θ − δK) . (5.33)
The equations of motion thus stay the same, but θ → θ − δK. Then

ΘΣ → ΘΣ −
∫

Σ
δK. (5.34)

This seems like it could be an ambiguity, but actually, the presymplectic 2-form itself
does not change:3

ΩΣ = δΘΣ → δΘΣ +
∫

Σ
δ2︸︷︷︸
=0

K. (5.35)

3 Note that the vertical derivative does not necessarily commute with spacetime integration. Indeed, one can
check that δ

∫
S

= (−1)k
∫
S
δ, where k is the codimension of S.
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So there is no problem here.

2. Second, consider again the fundamental relation

δL = E · δφ+ dθ . (5.36)

We have been using this to define the (D − 1, 1)-form θ. However, this relation is also
satisfied if we change θ → θ + dα for some (D − 2, 1)-form α, since

dθ → d(θ + dα) = dθ + d2︸︷︷︸
=0

α. (5.37)

So θ is only determined up to the addition of a spacetime-exact form. Under this ambiguity
we have

ΘΣ → ΘΣ +
∫

Σ
dα = ΘΣ +

∫
∂Σ
α, (5.38)

and therefore
ΩΣ → ΩΣ + δ

(∫
∂Σ
α
)

= ΩΣ +
∫
∂Σ
δα. (5.39)

So in this case the presymplectic 2-form itself does change, by a term at the boundary ∂Σ
of the Cauchy surface. Thus, we have a genuine ambiguity in the formulation.

5.7 Boundary conditions
Usually, I will coincide with the boundary ∂M. Recall from the last lecture that we need
to impose boundary conditions at ∂M, and include a boundary action, in order to have a
well-defined variational principle. We can use these to fix the ambiguity in the presymplectic
2-form.

Since we are assumingM has a Cauchy surface, it must be globally hyperbolic, so we can
foliate it by Cauchy surfaces and writeM = Rt × Σ. Let Σt be the surface Σ at a fixed value
of t, which we take as a time label. Consider the evolution between an initial time t0 and a
final time t1, which takes place in the submanifold [t0, t1]× Σ. The action in this region is

St0,t1 =
∫

[t0,t1]×Σ
L+

∫
∂([t0,t1]×Σ)

l (5.40)

=
∫

[t0,t1]×Σ
L+

∫
[t0,t1]×∂Σ

l +
∫

Σt1
l −

∫
Σt0

l. (5.41)

Note that [t0, t1]× ∂Σ ⊂ ∂M.

We can now increase the extent to which we require the variational principle to be well-
defined. In particular, we require it to be well-defined between any arbitrary times t0 and t1.
The variation of the action is

δSt0,t1 =
∫

[t0,t1]×Σ
E · δφ+

∫
[t0,t1]×∂Σ

(θ + δl) +
∫

Σt1
(θ + δl)−

∫
Σt0

(θ + δl). (5.42)

It is instructive to compare δSt0,t1 to the variation of the action st0,t1 for a general Hamiltonian
mechanical system with generalised coordinates and momenta qa, pa. The action for such a
system between times t0 and t1 is

st0,t1 =
∫ t1

t0
dt
(∑

a

paq̇a −H(p, q)
)
, (5.43)
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where H(p, q) is the Hamiltonian, and its variation may be written (after integrating by parts)

δst0,t1 =
∫ t1

t0

∑
a

[
δpa

(
q̇a −

∂H

∂pa

)
− δqa

(
ṗa + ∂H

∂qa

)]
+
[∑
a

paδqa

]
t=t1
−
[∑
a

paδqa

]
t=t0

. (5.44)

Let us go on-shell, i.e. assume Hamilton’s equations of motion are satisfied. Then we are just
left with

δst0,t1 =
[∑
a

paδqa

]
t=t1
−
[∑
a

paδqa

]
t=t0

. (5.45)

Note that these remaining two terms are the symplectic potential Θ = ∑
a p

a dqa at t1 minus
the symplectic potential at t0 (evaluated against the variation δqa).

In order for the Hamiltonian interpretation of the action St0,t1 , we need an analogous result
to hold. In fact, we can use this to determine what the “true” symplectic potential is, and this
turns out to fix the ambiguity.

Going on-shell (i.e. setting E = 0), we have

δSt0,t1 =
∫

[t0,t1]×∂Σ
(θ + δl) +

∫
Σt1

(θ + δl)−
∫

Σt0
(θ + δl). (5.46)

In order for this to match with (5.45), it should only have a dependence on the fields at Σt1 ,Σt0 .
But there is an integral over [t0, t1]× ∂Σ that seems to ruin this.

However, there would be no problem if we could write∫
[t0,t1]×∂Σ

(θ + δl) = Ft1 − Ft0 (5.47)

for some function Ft that depends only on the fields on Σt.

δSt0,t1 = Ft1 +
∫

Σt1
(θ + δl)− Ft0 −

∫
Σt0

(θ + δl), (5.48)

and by comparison with (5.45) we would find that the true presymplectic potential is Ft +∫
Σt(θ+ δl). In fact, by the form of the left hand side of (5.47), Ft can only depend on the fields
at ∂Σt, and in particular it should be the integral of some local (D − 2, 1)-form C over ∂Σt, so

Ft =
∫
∂Σt

C. (5.49)

Then the symplectic potential would be

ΘΣ =
∫

Σ
(θ + δl − dC). (5.50)

(The minus sign in front of dC comes from accounting for orientations.)

Let us note that it is possible to choose C appropriately in such a way that (5.47) and (5.49)
are equivalent to

θ + δl = dC . (5.51)

Note that this only needs to hold when pulled back to [t0, t1]× ∂Σ, and on-shell E = 0.

In general, it would be too much to ask for (5.51) to hold without some additional conditions
at the boundary [t0, t1] × ∂Σ. But unless (5.51) holds, the variational principle will not be
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well-defined, and the Hamiltonian interpretation will not apply. Thus, we must have boundary
conditions such that (5.51) holds. Different choices of boundary condition lead to different C.

This observation is enough to fix the ambiguity noted above. To see this, note that under
the ambiguity transformation θ → θ + dα, we have C → C + α. Thus, (5.50) is invariant under
this transformation, and so unambiguous. Comparing with what we claimed for the symplectic
potential previously,

ΘΣ =
∫

Σ
θ, (5.52)

we see there are two extra terms. The first is
∫

Σ δl – we can just ignore this term. The reason is
that when computing the presymplectic form ΩΣ = δΘΣ, this term contributes

δ
(∫

Σ
δl
)

=
∫

Σ
δ2︸︷︷︸
=0

l = 0. (5.53)

So it doesn’t affect ΩΣ.

The other term is
∫

Σ dC. In order for (5.50) to agree with what we originally claimed for the
presymplectic potential, we need to be able to set this term to zero. And, in fact, we can do this:
we can just apply the transformation θ → θ + dα with α = −C. Under this transformation we
have C → 0. The overall value of (5.50) does not change – but now its form agrees with what
we had previously.

This then gives us the way to fix the ambiguity. We pick θ (within the class of possible
choices under θ → θ + dα) in such a way that θ + δl|[t0,t1]×∂Σ = dC = 0, when the boundary
conditions and equations of motion are satisfied. This then gives the correct presymplectic
form. Any other non-trivially distinct choice of θ would result in a dC 6= 0, and so an incorrect
presymplectic form.

For an example, let us consider the scalar field. The bulk Lagrangian is

L = −1
2
(
ηµν∂µφ∂νφ+m2φ2

)
dDx . (5.54)

We showed in the last lecture that we can pick l = 0, and θ = δφ ∗ dφ. This is consistent with
boundary conditions are such that φ is fixed at ∂Σ, and we see that θ + δl = 0 at [t0, t1]× ∂Σ.
Thus, dC = 0, and so the correct, unambiguous symplectic potential is

ΘΣ =
∫

Σ
δφ ∗ dφ . (5.55)

5.8 Covariant phase space
The space of the solutions equipped with the 2-form ΩΣ is called the covariant phase space,
or in the case when ΩΣ is presymplectic it is sometimes called the covariant pre-phase space.
The presymplectic case occurs when there are gauge symmetries, and we need to carry out a
reduction procedure over these gauge symmetries in order to get the true covariant phase space.
We will discuss this in the next section, as well as some specific examples. As we will see, the
resulting symplectic space will turn out to be equivalent to the canonical phase space.
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