
4 Covariant field theories
Consider a classical particle. In a Hamiltonian treatment, at each moment in time the state

of the particle can be described by finitely many numbers: the generalised coordinates qa and
conjugate momenta pa, a = 1, . . . , n. The action for such a particle then takes the form

S =
∫ T

0
L(p, q, q̇) dt , where L(p, q, q̇) =

∑
a

paq̇a −H(p, q), (4.1)

and the equations of motion associated with this action are just Hamilton’s equations

q̇a = ∂H

∂pa
, ṗa = −∂H

∂qa
. (4.2)

The theory of the particle is 1-dimensional. At each moment in time, the particle lives at a
0-dimensional point somewhere along its worldline.

In this course, we want to consider field theories in an arbitrary number of spacetime
dimensions D. It is possible to fit such theories into the framework we just described. At each
moment in time, the fields live on a (D − 1)-dimensional spacelike surface, which we will call Σ.
The state of the fields at a given time are then specified by infinitely many numbers: the values
of the fields ϕa at each point in Σ, as well as their conjugate momenta πa. We upgrade the sum
over a to include an integral over Σ:

∑
a

paq̇a →
∫

Σ

(∑
a

πaϕ̇a

)
dD−1x . (4.3)

The Hamiltonian is a functional of the fields and conjugate momenta, which we will assume can
be written as a local integral:

H(p, q)→ H[ϕ, π] =
∫

Σ
H (ϕ, π) dD−1x . (4.4)

The action therefore takes the form

S =
∫ T

0
dt
∫

Σ

(∑
a

πaϕ̇a −H (ϕ, π)
)

dD−1x . (4.5)

If we vary this action, we will find the field theory version of Hamilton’s equations:

ϕ̇a = δH

δπa
, π̇a = −δH

δϕa
. (4.6)

This perspective on field theory, called the ‘canonical’ formulation, can sometimes be very
useful. However, most of the time when doing field theory we do not deal with actions of the
Hamiltonian form (4.5). Instead we use the Lagrangian formalism, in which we do not consider
the fields as living on a particular spatial slice Σ at each moment in time, but rather as living
on all of spacetime at once. Then the action is simply the integral over spacetimeM of some
functional of the fields φa and their derivatives:

S =
∫
M
L(φ) dDx . (4.7)

Here we are writing the dependence on the fields as L = L(φ), but this is really shorthand for
L = L(φ, ∂φ, ∂2φ, . . . ).
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It is usually the case that we can switch between the Lagrangian and canonical Hamiltonian
points of view. As an example, consider the Lagrangian of a scalar field in Minkowski spacetime:

L(φ) = −1
2η

µν∂µφ∂νφ−
1
2m

2φ2. (4.8)

To move to the canonical setting we need to pick a notion of time, and use it to slice spacetime
M into spacelike surfaces Σ of constant time. Luckily in this case the choice is obvious – let’s just
use Minkowski time t, and Σ = RD−1. At a given time t, and point in space (x1, . . . , xD−1) ∈ Σ,
we define

ϕ(xi) = φ(t, xi). (4.9)

To get the momentum conjugate to ϕ, we take the Euler-Lagrange derivative of L(φ) with
respect to its time derivative:

π(xi) = δL

δ∂tφ
= ∂tφ(t, xi) = ϕ̇(xi). (4.10)

Then the Hamiltonian is defined with a Legendre transform

H(ϕ, π) = πϕ̇− L = 1
2π

2 + 1
2δ

ij∂iϕ∂jϕ+ 1
2m

2ϕ2. (4.11)

It’s simple to verify that the resulting Hamiltonian action is equivalent to the original Lagrangian
one.

For the scalar field, this was simple enough to do. It can be done more generally, for more
complicated theories, but there can be two problems with this.

First, its not usually so obvious which is the best time slicing to use. In this case, we
used Minkowski time, and the reason this worked nicely is because of the underlying Poincaré
symmetry. But there is also Lorentz symmetry, so we could have done a Lorentz boost, and
this would lead to a different, but equally valid time slicing. In general, however, there will be
no Poincaré symmetry. The choice of time slicing will be completely arbitrary, since there will
be no symmetry principles which we can use to guide this choice.

Second, in many cases the Lagrangian action is much simpler than the Hamiltonian one. For
example, consider the Einstein-Hilbert action that governs general relativity:

S = 1
16πG

∫
M
R
√
−g dDx . (4.12)

There is only one field – the metric gµν . If you follow all of the steps necessary to get to a
canonical Hamiltonian action, you have to do a lot of messy algebra, and what you end up
with is called the ADM (Arnowitt-Deser-Misner) action. You have to choose an (arbitrary)
slicing of spacetime, and a division of the coordinates into space and time coordinates. Then
you decompose the metric into its timelike and spacelike directions, which produces several
fields – the induced metric hij on each spacelike surface, as well as the other components of the
metric which are known as the lapse N and shift N i.

ds2 = gµν dxµ dxν = −N2 dt2 + hij(dxi +N i dt)(dxj +N j dt). (4.13)
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After working it through, you can show that the momenta conjugate to the lapse and shift
vanish (these are primary constraints),

δL

δ∂tN
= δL

δ∂tN i
= 0, (4.14)

while the momentum conjugate to the spatial metric is

πij = δL

δ∂thij
=
√
h(Kij −Khij), (4.15)

where
Kij = 1

2N
(
∂thij −DiNj −DjNi

)
(4.16)

is the extrinsic curvature of hij . Here we are raising and lowering ij . . . indices with hij and its
inverse hij, and Di is the covariant derivative associated with hij. In terms of these variables,
the action is

S = 1
16πG

∫
dt dD−1xN

√
h
(
Rh −KijK

ij +K2
)
, (4.17)

where Rh is the Ricci scalar of the spacelike metric. One now has to convert this into Hamiltonian
form – we won’t go into more of the details of this, but the point is that it is already becoming
quite complex, especially compared to the simplicity of (4.12). Things become even more
complicated when we add matter to the action.

These two drawbacks to the canonical approach are not unrelated. They both stem from
there being not enough (or too much) symmetry. In the case of the first drawback, this makes
it difficult to pick a preferred time-slicing. And in the second, it means that the physical fields
are much easier to understand from the Lagrangian point of view, which emphasises the role
played by the full structure of spacetime.

Fortunately, there is an alternative to the canonical Hamiltonian framework. This is the
covariant phase space formalism, and we will learn about it over the next few weeks.

4.1 Lagrangian as a top form
Let us use the symbol φ to denote all of the dynamical fields in spacetime. This can include
the metric gµν in gravity, as well as any matter fields, and anything else that might be evolving.

Up to now, we have been viewing the Lagrangian as a function on spacetime, and we have
been defining the action as the integral of this function over spacetime. However, to do this
integration, we need to pick a volume form, and in theories where the metric is dynamical (such
as gravity), the volume form can vary. For this reason, it is actually more useful to define the
Lagrangian to be a top form L = L(φ) on spacetime. Then we define the action as just the
integral of this top form:

S =
∫
M
L(φ). (4.18)

In terms of the Lagrangian function, we have L = Lfunction
√
−g dDx. In general at a point in

spacetime L(φ) will depend on the fields φ and finitely many of their derivatives at that point.

We get the equations of motion by varying the fields φ. The Lagrangian form depends on φ
and several of its derivatives, so after a variation φ→ φ+ δφ we will have (at linear order in δφ)

δL = L(φ+ δφ)− L(φ) = L(0)(φ) · δφ+ Lµ(1)(φ) · ∂µδφ+ · · ·+ Lµ...ν(k) (φ) · ∂µ . . . ∂ν︸ ︷︷ ︸
k

δφ, (4.19)
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for some forms Lµ...(i) (φ) that depend on the fields and their derivatives. Here we are using · to
denote a summation over all fields (previously we used an index a and ∑a). We can use the
product rule to massage this into a more useful equation. Since we are dealing with differential
forms, it is most convenient to use Lie derivatives. For example, we have1

Lµ(1) · ∂µδφ = Lµ(1) · L ∂
∂xµ
δφ = L ∂

∂xµ
(Lµ(1) · δφ)− (L ∂

∂xµ
Lµ(1)) · δφ. (4.20)

Now we can use the fact that the Lie derivative of a top form is an exact form. This can be
seen from Cartan’s magic formula for the Lie derivative of a differential form

Lξω = d(ιξω)− ιξ dω ; (4.21)

when ω is a top form we have dω = 0 so the second term vanishes. Thus we have

Lµ(1) · ∂µδφ = d
(
ι ∂
∂xµ

(
Lµ(1) · δφ

)
︸ ︷︷ ︸

=θ(1)

)
− (L ∂

∂xµ
Lµ(1)) · δφ. (4.22)

We can do this application of the product rule twice to obtain

Lµν(2) · ∂µ∂νδφ = d
(
ι ∂
∂xµ

(
Lµν(2) · ∂νδφ

)
− ι ∂

∂xν

(
(L ∂

∂xµ
Lµν(2)) · δφ

)
︸ ︷︷ ︸

=θ(2)

)
+ (L ∂

∂xν
L ∂
∂xµ
Lµν(2)) · δφ. (4.23)

In fact, we can do this for every term in (4.19), and will obtain

Lµ...ν(i) · ∂µ . . . ∂νδφ = dθ(i)(φ, δφ) + (−1)i(L ∂
∂xν

. . .L ∂
∂xµ
Lµ...ν(i) ) · δφ, (4.24)

for some (D − 1)-forms θ(i) that depend on φ, δφ and their derivatives. Substituting this
into (4.19), we end up with

δL = E(φ) · δφ+ dθ(φ, δφ) , (4.25)

where θ = θ(1) + θ(2) + · · ·+ θ(k), and

E(φ) = L(0)(φ)− L ∂
∂xµ
Lµ(1)(φ) + · · ·+ (−1)kL ∂

∂xν
. . .L ∂

∂xµ
Lµ...ν(k) (φ). (4.26)

This is the form version of the Euler-Lagrange derivative of L, and it gives the equations of
motion E(φ) = 0. To see this, we can note that using Stokes’ theorem the variation of the
action is

δS = δ
(∫
M
L
)

=
∫
M
δL =

∫
M
E(φ) · δφ+

∫
∂M

θ(φ, δφ). (4.27)

Ignoring the boundary term, we see that δS = 0 for arbitrary δφ implies that E(φ) = 0, as
expected.

Equation (4.25) is very important, and we will return to it often. In the covariant phase
space formalism, the form θ is just as important as the equations of motion.

Note that although it is useful to have the general formula (4.26) for the equations of
motion, in practice for a given action it is often simpler to not use it. Instead one just directly
manipulates δL into the form in (4.25). Similarly, although it is possible to write down a general
formula for θ, in practice it is usually easier to just obtain it directly.

1 Here we are assuming φ transforms like a scalar field, but similar results apply for other types of field.
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For example, consider again the Lagrangian of a scalar field.

L = −1
2
(
ηµν∂µφ∂νφ+m2φ2

)
dDx . (4.28)

Varying φ→ φ+ δφ, we can write the variation of the Lagrangian as

δL =
(
ηµν∂µ∂νφ−m2φ

)
δφ dDx− ∂µ(δφ ηµν∂νφ) dDx . (4.29)

We can write the latter term as d(δφ ∗ dφ), so for the scalar field we have

E =
(
ηµν∂µ∂νφ−m2φ

)
dDx , θ = δφ ∗ dφ . (4.30)

4.2 Boundary action and boundary conditions
When we obtained the equations of motion, we ignored the effects of the boundary contribution
in (4.27). Let’s now be a bit more careful about this.

In general, the action will have an additional contributions from the boundary of spacetime.
These are called boundary terms, or the boundary action. Let us write

S =
∫
M
L(φ) +

∫
∂M

l(φ). (4.31)

In this equation, l(φ) is a Lagrangian (D − 1)-form for the boundary. In order to distinguish
between the two Lagrangian forms, we will sometimes refer to L as the bulk Lagrangian, and l
as the boundary Lagrangian.

With the boundary term, the variation of the action may be written

δS =
∫
M
E(φ) · δφ+

∫
∂M

(
θ(φ, δφ) + δl(φ)

)
. (4.32)

So, the boundary Lagrangian does not influence the equations of motion. However, it is clear
that, even if the equations of motion E = 0 are satisfied, it may still be for certain field variations
δφ that we have δS 6= 0. In particular, these field variations are non-trivial at the boundary
∂M. This means that the equations of motion are not enough by themselves to ensure that the
fields extremise the action.

To fix this, it is necessary in general to impose boundary conditions, i.e. conditions on the
behaviour of the fields φ near the boundary ∂M. These boundary conditions must be chosen
such that they ensure the boundary contribution to δS vanishes.

The boundary conditions and boundary action are very closely linked, and must be compatible
with one another. This is best demonstrated with an example, so consider again the scalar field,
and let us suppose the boundary Lagrangian vanishes, l = 0. On-shell (i.e. when the equations
of motion are satisfied), we have

δS =
∫
∂M

θ =
∫
∂M

δφ ∗ dφ . (4.33)

It is clear that if we impose δφ|∂M = 0 (i.e. that the value of φ on the boundary is fixed), we
will have δS = 0. So with this boundary condition, the equations of motion are sufficient to
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extremise the action. Suppose instead we had a non-vanishing boundary Lagrangian l = −φ∗dφ.
Then on-shell we would have

δS =
∫
∂M

(θ + δl) = −
∫
∂M

φ ∗ dδφ , (4.34)

and in this case δφ|∂M = 0 is not sufficient to ensure δS = 0, because the pullback of ∗ dδφ to
∂M depends on the normal derivative of δφ at the boundary. However in this case we could
impose the boundary condition that the normal derivative of φ to the boundary is fixed; then
we would have δS = 0. But this boundary condition would not work when l = 0.

In gravity and gauge theory, these boundary contributions turn out to be quite important.

4.3 Dynamical and background fields
Sometimes there a theory will depend on external parameters that are non-dynamical. These
can be very simple – for example they can be just coupling constants. But they can also be
more complicated objects, such as a background metric. In any given setup, these parameters
are completely fixed. Let us use the symbol γ to collectively refer to them. The action, and
boundary/bulk Lagrangians depend on them as well as φ:

S(φ; γ) =
∫
M
L(φ; γ) +

∫
∂M

l(φ; γ). (4.35)

We refer to φ as dynamical fields, and γ as background fields.

Varying φ but keeping γ fixed, it is clear that the equations of motion and various boundary
contributions depend on γ,

δS =
∫
M
E(φ; γ) · δφ+

∫
∂M

(
θ(φ, δφ; γ) + δl(φ; γ)

)
. (4.36)

On the other hand, because the background fields are fixed in any given setup, we can’t
extremise the action with respect to them, so they have no associated equations of motion.
But we can still ask what might happen if we were to change them. In fact, asking this
question allows us to define a wide class of quite familiar field-theoretical objects. If we keep
the dynamical fields φ fixed, but vary the background fields γ → γ + δγ, the action will in
general change by

δS =
∫
M
J(φ; γ) · δγ +

∫
∂M

(
j(0)(φ; γ) · δγ + j(1)(φ; γ) · ∂nδγ + · · ·+ j(p)(φ; γ) · ∂pnδγ

)
(4.37)

for some forms J, j(0), j(1), . . . , j(p), where ∂n denotes a derivative normal to the boundary. These
forms measure the response of the theory to a perturbation of the background fields, which in
this context are sometimes called sources. The forms J, j(0), . . . are known as currents, and we
say that the sources are coupled to the currents via the pairing arising from the above equation.

As an example, consider an ordinary field theory coupled to a background metric gµν , and a
background gauge potential Aµ, and suppose we vary these background fields away from the
boundary while keeping the other fields fixed. Then we can write

δS =
∫
M

(1
2T

µνδgµν + JµδAµ

)√
−g dDx (4.38)

for some T µν and Jµ. These objects are well-known; T µν is called the energy-momentum tensor,
and Jµ is the electromagnetic current.
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4.4 Covariance and general covariance
The primary theories of interest in this course will be covariant ones. It is probably about time
that we defined what we mean by covariant.

Recall that the set of all diffeomorphisms which act on spacetimeM forms a group Diff(M).
In short, a covariant theory is one in which this group has an action on all of the fields (dynamical
and background), under which the equations of motion are unchanged. To be more precise, let
f :M→M be a diffeomorphism, under which φ→ φf and γ → γf . Then a covariant theory
is one for which

E(φf ; γf ) = 0 ⇐⇒ E(φ; γ) = 0 (4.39)

holds for all f .

The simplest way to construct covariant theories is to use standard tensor calculus operations
to construct the Lagrangian form L(φ; γ) out of the fields φ; γ. This then will guarantee that the
form E(φ; γ) will transform like a tensor under the action of φ→ φf , γ → γf . As a consequence,
the equations of motion E = 0 are tensorial, and so will automatically satisfy the requirement
of invariance (4.39).

Almost all field theories can be written in a covariant manner. This can be done by adding
sufficiently many new background fields. To get back the original theory one just then sets
these new background fields to their original values. For example, the scalar field on Minkowski
space is not covariant. But we can make it covariant by promoting the metric ηµν to a general
background metric gµν . To get back the original theory we just set gµν = ηµν . The covariant
phase space formalism will turn out to be most useful when applied to covariant field theories.
So from now on, we will assume that we are dealing with theories that have been made covariant.

On the other hand, there is a much stronger type of covariance that certainly does not hold
for a general theory. This is general covariance. A theory is generally covariant if the equations
of motion are unchanged when we apply a general diffeomorphism to the dynamical fields,
φ→ φf , but leave the background fields unchanged. These kinds of diffeomorphisms are known
as ‘active’ diffeomorphisms, whereas those that act on both the dynamical and background
fields are known as ‘passive’ diffeomorphisms.

General covariance is one of the key properties that makes theories of gravity special. It
strongly restricts the types of background field that can be part of a theory. To see this, suppose
we have a theory of fields φ and background fields γ that we have written in a covariant way,
and that moreover the theory is generally covariant. Covariance implies invariance under passive
diffeomorphisms φ → φf , γ → γf , while general covariance implies invariance under active
diffeomorphisms φ→ φf , γ → γ. A covariant and generally covariant theory should therefore
be also invariant under the third type of diffeomorphims φ → φ, γ → γf . If we consider an
infinitesimal diffeomorphism parametrised by a vector field ξ, then this corresponds to the
variation δφ = 0, δγ = Lξγ, and substituting this in to (4.37) we see that

δS =
∫
M
J(φ; γ) · Lξγ + boundary terms. (4.40)

For the equations of motion to be invariant under this transformation, the integrand above
needs to be independent of φ. This essentially leads to three possibilities:
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• Lξγ = 0. The only kind of γ that can satisfy this equation for all ξ are constant scalar
fields, a.k.a. coupling constants.

• J(φ; γ) is independent of φ. Since J is essentially the derivative of the Lagrangian with
respect to γ, this means that φ and γ are completely decoupled.

• γ only contributes at the boundary, so the bulk integral above automatically vanishes.

We can ignore any background fields which are decoupled from the dynamical fields, since these
have no physical role to play. Thus, there are only two types of background field in generally
covariant theories: coupling constants, and boundary sources.

This is quite a strong statement. It says that any non-trivial field in the bulk must be
dynamical. This is why the principle of general covariance, plus any notion of spacetime distance,
leads automatically to a theory of dynamical geometry – since any bulk metric in a generally
covariant theory must be dynamical.

Let us write down the most general action for a generally covariant theory. We will count
coupling constants separately, and not include them in the set of background fields γ. Thus,
the action takes the form

S =
∫
M
L(φ) +

∫
M
l(φ; γ) (4.41)

for some set of dynamical fields φ and boundary sources γ. Also, the linearised variation of the
action under φ→ φ+ δφ and γ → γ + δγ takes the form

δS =
∫
M
E(φ) · δφ+

∫
∂M

(
θ(φ, δφ) + δl(φ; γ)). (4.42)

The boundary currents j(0), j(1), . . . may be extracted from the form of δl.

As a final point, let us note that there is a deep connection between boundary conditions
and boundary sources. To see this, it is helpful to view the different boundary conditions that
one could impose as the values taken by a background field. For example, in the case of the
scalar field with action

S = −1
2

∫
M

dDx
(
ηµν∂µφ∂νφ+m2φ2

)
, (4.43)

the on-shell variation of the action was

δS =
∫
∂M

δφ ∗ dφ , (4.44)

and we noted that for this to vanish we needed to set the boundary condition δφ|∂M = 0, i.e.
we need to fix the value of φ on the boundary. But we didn’t specify what we would fix the
value of φ to be. We can view this fixed boundary value of φ as a background field γ = φ|∂M.
This field γ lives on the boundary, so we can view it as a boundary source. Moreover, we can
use the above to find the boundary current to which it is coupled:

δS =
∫
∂M

δγ ∗ dφ = −
∫
∂M

ε δγ ∂nφ, (4.45)

where ε is the induced volume form on ∂M. Thus, γ sources ∂nφ.

(This is one of the main conceptual ingredients that goes into the holographic principle,
where the background fields in a (D − 1)-dimensional theory set the boundary conditions of a
D-dimensional theory.)
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