SPECIAL RELATIVITY HOMEWORK - WEEK 4

Exercise 1. In $\mathbb{R}^{3,1}$, we have represent spacetime vectors as 2×2 matrices via:

$$
x^{\mu} \sigma_{\mu}^{\alpha \dot{\alpha}}=\left(\begin{array}{cc}
t+z & x-i y \tag{1}\\
x+i y & t-z
\end{array}\right) \equiv X^{\alpha \dot{\alpha}}
$$

Within this setup, write all 6 Lorentz generators $J_{\mu \nu}$ as $S L(2, \mathbb{C})$ generator matrices $\left(J_{\mu \nu}\right)^{\alpha}{ }_{\beta}$.
Exercise 2. A spacetime matrix $A_{\mu \nu}$ in $\mathbb{R}^{3,1}$ can be decomposed into three irreducible pieces - symmetric-traceless, antisymmetric, and trace:

$$
\begin{equation*}
A_{\mu \nu}=\left(A_{(\mu \nu)}-\frac{1}{4} A^{\rho}{ }_{\rho} \eta_{\mu \nu}\right)+A_{[\mu \nu]}+\frac{1}{4} A^{\rho}{ }_{\rho} \eta_{\mu \nu} . \tag{2}
\end{equation*}
$$

Write the corresponding decomposition for the spinor form $A_{\alpha \dot{\alpha} \beta \dot{\beta}}$ of $A_{\mu \nu}$.

