SPECIAL RELATIVITY HOMEWORK – WEEK 3

Exercise 1. Write the generator J_{uy} and group element $e^{\theta J_{uv}}$ of lightlike boosts, as 3×3 matrices in the (u, v, y) basis.

Exercise 2. Consider the intersection of the $\mathbb{R}^{2,1}$ lightcone with the lightlike plane v = 1. Express the (u, v, y) coordinates of points on this intersection in terms of our projective lightcone coordinate $\xi = \cot \frac{\phi}{2}$.

Exercise 3. Recall the vector multiplication table for the unit basis vectors in \mathbb{R}^3 :

$$\begin{aligned} \hat{x} \times \hat{x} &= 0 ; & \hat{x} \times \hat{y} &= \hat{z} ; & \hat{x} \times \hat{z} &= -\hat{y} ; \\ \hat{y} \times \hat{x} &= -\hat{z} ; & \hat{y} \times \hat{y} &= 0 ; & \hat{y} \times \hat{z} &= \hat{x} ; \\ \hat{z} \times \hat{x} &= \hat{y} ; & \hat{z} \times \hat{y} &= -\hat{x} ; & \hat{z} \times \hat{z} &= 0 . \end{aligned}$$
(1)

Write a similar table for a Lorentz-invariant vector product in $\mathbb{R}^{2,1}$, in terms of the unit vectors $\hat{t}, \hat{x}, \hat{y}$. Justify your signs carefully!

Exercise 4. Consider two $\mathbb{R}^{2,1}$ vectors a^{μ}, b^{μ} , encoded as traceless matrices $A^{\alpha}{}_{\beta}, B^{\alpha}{}_{\beta}$. What is the geometric meaning of the matrix product $(AB)^{\alpha}{}_{\beta}$? Back up your answer with examples.