SPECIAL RELATIVITY HOMEWORK - WEEK 3

Exercise 1. Write the generator $J_{u y}$ and group element $e^{\theta J_{u v}}$ of lightlike boosts, as 3×3 matrices in the (u, v, y) basis.

Exercise 2. Consider the intersection of the $\mathbb{R}^{2,1}$ lightcone with the lightlike plane $v=1$. Express the (u, v, y) coordinates of points on this intersection in terms of our projective lightcone coordinate $\xi=\cot \frac{\phi}{2}$.

Exercise 3. Recall the vector multiplication table for the unit basis vectors in \mathbb{R}^{3} :

$$
\begin{array}{lll}
\hat{x} \times \hat{x}=0 ; & \hat{x} \times \hat{y}=\hat{z} ; & \hat{x} \times \hat{z}=-\hat{y} ; \\
\hat{y} \times \hat{x}=-\hat{z} ; & \hat{y} \times \hat{y}=0 ; & \hat{y} \times \hat{z}=\hat{x} ; \tag{1}\\
\hat{z} \times \hat{x}=\hat{y} ; & \hat{z} \times \hat{y}=-\hat{x} ; & \hat{z} \times \hat{z}=0
\end{array}
$$

Write a similar table for a Lorentz-invariant vector product in $\mathbb{R}^{2,1}$, in terms of the unit vectors $\hat{t}, \hat{x}, \hat{y}$. Justify your signs carefully!

Exercise 4. Consider two $\mathbb{R}^{2,1}$ vectors a^{μ}, b^{μ}, encoded as traceless matrices $A^{\alpha}{ }_{\beta}, B^{\alpha}{ }_{\beta}$. What is the geometric meaning of the matrix product $(A B)^{\alpha}{ }_{\beta}$? Back up your answer with examples.

