SPECIAL RELATIVITY HOMEWORK – WEEK 2

Exercise 1. For matrices A_{ij} over \mathbb{R}^n , the determinant det A can be defined via:

$$\epsilon_{j_1\dots j_n} A_{i_1 j_1} \dots A_{i_n j_n} = (\det A) \epsilon_{i_1\dots i_n} , \qquad (1)$$

where $\epsilon_{i_1...i_n}$ is the Levi-Civita tensor. Meditate on this until you see it! Then, derive a closed-form formula for the determinant, i.e. det A = ...

Exercise 2. Descending now into \mathbb{R}^2 :

- 1. Rewrite the product $\epsilon_{ij}\epsilon_{kl}$ in terms of the identity matrix δ_{ij} .
- 2. Rewrite the determinant det A of a matrix A_{ij} in terms of matrix products and traces.

Exercise 3. In $\mathbb{R}^{1,1}$, using the lightlike coordinates u = t + x and v = t - x, write formulas of the form f(u, v) = 0 for the most general worldline of:

- 1. A particle at rest.
- 2. A particle at constant velocity.
- 3. A particle at constant proper acceleration $\sqrt{\alpha_{\mu}\alpha^{\mu}}$.

Exercise 4. Consider the conformal transformations:

$$u \to \frac{au+b}{cu+d}; \quad v \to \frac{\alpha v+\beta}{\gamma v+\delta}.$$
 (2)

Show that under such transformations, a particle at constant proper acceleration remains at constant proper acceleration.

Exercise 5. Now, consider the special case:

$$u \to \frac{u}{au+1} ; \quad v \to \frac{v}{av+1} .$$
 (3)

For a particle at rest at $x = x_0$ before the transformation, what will be its worldline after the transformation?